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An Efficient Response Surface Based Optimisation
Method for Non-Deterministic Harmonic and Transient

Dynamic Analysis
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Abstract: Deterministic simulation tools enable a very precise simulation of
physical phenomena using numerical models. In many real life situations how-
ever, a deterministic analysis is not sufficient to assess the quality of a design. In
a design stage, some physical properties of the model may not be determined yet.
But even in a design ready for production, design tolerances and production inac-
curacies introduce variability and uncertainty. In these cases, a non-deterministic
analysis procedure is required, either using a probabilistic or a non-probabilistic
approach.
The authors developed an intelligent Kriging response surface based optimisation
procedure that can be used in combination with any deterministic numerical analy-
sis code to perform efficient interval and fuzzy numerical analyses. The procedure
is illustrated on the transient analysis of a cable stayed bridge model and on the
harmonic analysis of a benchmark model.

Keywords: interval, fuzzy set, black box optimisation, multiple outputs, re-
sponse surface

1 Introduction

Non-deterministic approaches are gaining momentum in the field of numerical
modelling techniques. The ability to include non-deterministic properties is of
great value for a design engineer. It enables realistic reliability assessment that
incorporates the uncertain aspects of the design. Furthermore, the design can be
optimised for robust behaviour under varying external influences. Recently, criti-
cism has arisen regarding the general application of the probabilistic concept in this
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context. Especially when objective information on the uncertainties is limited, the
subjective probabilistic analysis result proves to be of little value, and does not jus-
tify its high computational cost [Elishakoff (2000); Moens and Vandepitte (2005)].
Consequently, alternative non-probabilistic concepts have been introduced for non-
deterministic numerical modelling.

In this context, interval and fuzzy approaches are becoming increasingly popular
for the analysis of numerical models that incorporate uncertainty in their descrip-
tion. In the interval approach, uncertainties are considered to be contained within
a predefined range. For each uncertainty, the analyst has to provide the lower and
upper bound. The fuzzy approach extends this methodology by introducing a level
of membership that represents to what extent a certain value is member of the range
of possible input values. This concept provides the analyst with a tool to express
a degree of possibility for a certain value. The interval and fuzzy set concepts are
described in more detail in sections 2.3.1 and 2.3.3.

In recent literature, the application of both the interval and the fuzzy concept for the
representation of parametric uncertainty during a classical numerical analysis has
been studied extensively. While the problem at the core of the analysis, that is the
solution of a set of interval equations, is easily formulated, the actual solution of this
problem was proven to be extremely problematic [Moens and Vandepitte (2005)].
Nevertheless, some solution schemes of fundamentally different nature have been
developed. This paper gives a short overview of available solution strategies in
section 3 and proposes a novel algorithm for accurate and efficient interval and
fuzzy numerical analysis in section 4.

Finally, section 5 applies this novel algorithm on a transient dynamic finite element
analysis of a cable stayed bridge model and on a harmonic dynamic finite element
analysis of a benchmark model.

2 Non-deterministic numerical analysis

This section starts with an unambiguous definition of terminology relating to non-
determinism and compares these definitions to other definitions found in literature.
The next two subsections give an overview of probabilistic numerical analysis and
non-probabilistic numerical analysis. Each subsection introduces the concept and
discusses its applicability. In a final subsection, both concepts are compared to each
other.

2.1 Terminology

Oberkampf, DeLand, Rutherford, Diegert, and Alvin (1999) classify non-
determinism in three categories: variability, uncertainty and error.
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Variability is defined as the variation which is inherent to the modelled physical
system or the environment under consideration. Variabilities vary both between dif-
ferent nominally identical realisations of a design and from time to time and from
place to place within the same realisation of the design. Scionti and Lardeur (2006)
classify the former as inter-variability and the latter as intra-variability. Produc-
tion tolerances, material characteristics and changing environmental conditions are
typical causes of variability.

Uncertainty is defined as a potential deficiency in any phase or activity of the mod-
elling process that is due to a lack of knowledge. This means that a deterministic
value exists for an uncertain model parameter, but that this deterministic value is
not known or not sufficiently accurately known. Uncertainties often arise from de-
cisions that are not made yet, from subjective knowledge of experts or from model
properties that are difficult to measure (for example damping characteristics of ma-
terials or clamping stiffnesses).

An error is defined as a recognisable deficiency in any phase of modelling or sim-
ulation that is not due to a lack of knowledge. The modelling errors introduced
by the mathematical description of the physical reality and the errors introduced
by the numerical analysis technique, for example discretisation errors, errors due
to incomplete convergence and rounding errors are examples of errors that occur
when using the finite element method. Human mistakes also introduce errors that
are categorised in this group.

Moens (2002) proposes a refinement on the terms variability and uncertainty, based
on the fact that these terms are not mutually exclusive. A variability is characterised
by a range of possible values and the likelihood of each variable within this range.
However, a variability can be an uncertainty too when no or limited information is
available on this range of possible values or on the likelihood of each value. Moens
calls this an uncertain variability. A variability of which both the range and the
likelihood of each value within this range is known is called a certain variability.

The same distinction can be made for uncertainties. An uncertainty that by nature
has a deterministic value but cannot be reliably modelled as such due to a lack of
knowledge is called an invariable uncertainty. On the other hand, an uncertain pa-
rameter that exhibits variability is called a variable uncertainty, although in general
the effect of the variability is negligible compared to the effect of the uncertainty.

2.2 Probabilistic non-deterministic numerical analysis

The probabilistic approach is the basis for most commercially available non-
deterministic analysis packages. This section describes the basic properties of the
probabilistic concept and its applicability for the modelling of variability and un-
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certainty. An elaborate discussion of the probabilistic concept is outside the scope
of this work, but can be found in the cited references.

2.2.1 Basic properties of the probabilistic concept

In the probabilistic concept, an uncertain quantity is described by a domain of pos-
sible values and the frequency of occurrence or the likelihood of each value in this
domain. For a probabilistic quantity X , this domain and likelihood are typically
described by a probability density function (PDF) fX(x). The probability that the
quantity lies within a given interval [a,b], indicated by P [a≤ X ≤ b] is directly
derived from this PDF:

P [a≤ X ≤ b] =
∫ b

a
fX(x)dx (1)

The expected value, mean value or average of the distribution fX(x), denoted as mX

is given by

mX = E [X ] =
∫

∞

−∞

x fX(x)dx. (2)

In general, the expected value of a function g(X) with respect to fX(x) is defined as

E [g(X)] =
∫

∞

−∞

g(x) fX(x)dx. (3)

Most other often used properties of the probabilistic quantity are described by or
derived from the PDF’s central moments. The nth central moment, denoted as mn,
is defined as

mn =
∫

∞

−∞

(x−E [X ])n fX(x)dx (4)

The second central moment or variance of the distribution, denoted as Var [X ], is
the most commonly used. The standard deviation, denoted as σX , defined as

σX =
√

Var [X ], (5)

is a commonly used measure for the scatter of the distribution around the expected
value.

For multiple probabilistic quantities, the PDF concept is extended to more dimen-
sions, which gives the joint probability density function (JPDF) fX1,...,Xn(x1, . . . ,xn).
The expectation E [Xi] and the variance Var [Xi] are defined analogous to the univari-
ate case. The first order joint central moment or covariance, denoted as Cov [Xi,X j]
gives a measure for the interdependence between the quantities and is defined as

Cov [Xi,X j] = E
[
(Xi−mXi)(X j−mX j)

]
. (6)
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The variances and covariances are often represented by the covariance matrix

Γ =


Var [X1] Cov [X1,X2] . . . Cov [X1,Xn]

Cov [X2,X1] Var [X2] . . . Cov [X2,Xn]
...

...
. . .

...
Cov [Xn,X1] Cov [Xn,X2] . . . Var [Xn]

 . (7)

Haldar and Mahadevan (2000) and Miller and Freund (1985) give an elaborate
overview of the probabilistic framework and discuss a variety of probability distri-
bution functions and their applicability for the description of random quantities.

Most non-deterministic numerical analysis software is based on the probabilistic
concept and uses the Monte Carlo method. Rubinstein (1981) and Schuëller, Pradl-
warter, and Koutsourelakis (2004) give in-depth discussions of this method. A lot
of research was and still is focused on the increase of its efficiency. Schuëller
(2001) gives an overview of these recent advances. The efficiency of the Monte
Carlo method can sometimes be increased by other techniques, for example adap-
tive mesh refinements in finite element applications [Manjuprasad and Manohar
(2007)].

2.2.2 Applicability of the probabilistic concept

Most available procedures and packages for non-deterministic numerical analysis
are based on the probabilistic concept. In these procedures, every non-deterministic
property is modelled as a probabilistic quantity. For the study of the applicability
of this probabilistic model, distinction between certain variabilities, uncertain vari-
abilities and invariable uncertainties is necessary.

The probabilistic model is perfectly suited to model certain variabilities: the avail-
able range of possible values and likelihood of each value within this range trans-
lates unambiguously to a probability density function. It is however important that
all information is available to acquire reliable results. For example, if more than
one non-deterministic parameter is present, the joint probability density function
describing the likelihood and interdependence of all non-deterministic model prop-
erties is required. If this information is not available, the accuracy and reliability of
the results is limited.

Uncertain variabilities or variable uncertainties can be modelled using the proba-
bilistic concept by performing the analysis with different probabilistic descriptions
of the uncertain variability, each consistent with the limited available information.
By comparing the results of these analyses, the analyst can estimate the influence of
the uncertainty. Although in theory all possible PDFs should be taken into consid-
eration, the analyst will select only a few probabilistic models which he considers
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most appropriate to obtain as much information as possible.

The probabilistic approach is least suited to model invariable uncertainties. The an-
alyst models an invariable uncertainty using a probability density function that to
his knowledge represents best the uncertain nature of the property, but this descrip-
tion is not based on objective information. Teichert (1998) indicates the difference
in the use of the probabilistic model for variabilities on one hand and for invariable
uncertainties on the other hand: in the former case, the probability density function
represents variability defined as a variation from unit to unit or from time to time
for the final product while in the latter case, the probability density function does
not represent variability in the physical structure and may not be interpreted as such
in an analysis. If the probabilistic model is used for both variabilities and uncer-
tainties, it is imperative to distinguish between both interpretations and treat them
differently in the numerical procedure as described by Hoffman and Hammonds
(1994). Gao, Song, and Tin-Loi (2009) propose such a method for reliability anal-
ysis of structures with both probabilistic and interval properties.

2.3 Non-probabilistic non-deterministic numerical analysis

This section describes the two most frequently used non-probabilistic concepts (the
interval concept and the fuzzy set concept) and their applicability.

2.3.1 The interval concept

Although the first use of the interval concept goes all the way back to Archimedes
who bounded the irrational number π by the interval 3 10

71 < π < 3 1
7 , most recent

developments in interval arithmetic are based on the work of Moore (1966) who
introduces intervals, vectors and matrices and develops an interval calculus.

An interval or interval scalar is a convex subset of the domain of real numbers R.
By definition, the range of the interval xI is bounded by its lower bound x and its
upper bound x. An interval is called closed if both the lower and the upper bound
are a member of the interval, that is

xI = [x,x] = {x ∈ R | x≤ x≤ x} . (8)

The domain of closed intervals is denoted IR.

An interval vector is a vector of which each element is an interval, that is

zI =


zI

1
zI

2
...

zI
n

=
{

z ∈ Rn | zi ∈ zI
i
}

. (9)
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The class of closed interval vectors of size n is denoted IRn.

Similarly, an interval matrix is a matrix of which each element is an interval, that
is

AI =


aI

11 aI
12 . . . aI

1n
aI

21 aI
22 . . . aI

2n
...

...
. . .

...
aI

m1 aI
m2 . . . aI

mn

=
{

A ∈ Rm×n | ai j ∈ aI
i j
}

. (10)

The class of closed interval matrices of size m×n is denoted IRm×n.

By definition, the entries of interval vectors and interval matrices are assumed to be
independent. Thus, an n-dimensional interval vector describes a hypercube in an
n-dimensional space. The vertices of this hypercube are determined by the lower
and upper bounds of the vector’s elements.

In case the elements of an interval vector or an interval matrix cannot be considered
mutually independent, the convex modelling approach as described by Ben-Haim
and Elishakoff (1990) can be considered. Using this approach, the range of the in-
terval vector or interval matrix is not limited to a hypercube, but any convex region
in the multidimensional space is allowed. In practice however, the description of
the parameter region is often limited to an elliptical region.

Although the concept of convex modelling is intuitive and sounds attractive, the de-
pendency between the elements of non-deterministic interval vectors and matrices
is difficult to handle in a numerical analysis and the data describing this interde-
pendence is generally not available. As a result, only a few applications of convex
modelling are described in literature.

2.3.2 Applicability of the interval concept

For the study of the applicability of the interval model, distinction between certain
variabilities, uncertain variabilities and invariable uncertainties is necessary.

Certain variabilities are generally described by a probability density function, that
is, a range of possible values and a likelihood of each value within this range. The
interval concept requires only a range of possible values. Consequently, a conver-
sion from a probabilistic description to an interval description is always possible:
the range of the PDF forms the interval. The likelihood of each value within this
range is lost in the interval concept. In some cases, variabilities are modelled using
an unbounded PDF, for example a Gaussian distribution. In these cases, applying
the mentioned modelling rule would require the interval to range over the entire
domain of real numbers because the PDF defines these values to be possible. How-
ever, the probability of the values located in the tails of the commonly applied
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unbounded PDFs is immeasurably low. Therefore, the analyst should use bounds
which he thinks are realistic with respect to the PDF. Often, the 3σ -bounds are
assumed to be realistic interval bounds. It is clear that this conversion introduces
subjectivity into the uncertainty description since the analyst deliberately chooses
which information contained in the PDF is used and which is discarded.

If for an uncertain variability the range is known, but no information on the likeli-
hood is available, every PDF over this range becomes equally plausible and should
be considered. However, the interval concept does not require information on the
likelihood, which makes it perfectly suited to model this kind of non-determinism.
Consequently, an interval can be interpreted as a collective description of all possi-
ble probability density functions over the considered interval.

For uncertain variabilities without objective information on the actual range and for
invariable uncertainties, a subjective interval has to be chosen in order to apply the
interval concept. When applying the interval concept to describe a lack of knowl-
edge, the interval quantities represent the values the analyst considers possible at
the time the analysis is performed and with the information and knowledge avail-
able at that time. When the uncertainty is used to model an open design decision,
it will be changed based on optimisation of personal preference of the designer in
a later stage of the design. When the uncertainty is used to describe a complex
property of a model, the exact value inside the interval can remain unknown even
after finishing the design.

2.3.3 The fuzzy set concept

The fuzzy set concept was first introduced by Zadeh (1965) as a scientific tool to
express often vague linguistic information. Mainly Dubois and Prade (1980, 1988)
contributed to the application of the fuzzy set concept in numerical analysis.

A fuzzy set can be interpreted as an extension of a conventional crisp set. Where
a crisp set clearly distinguishes between members and non-members of the set,
a fuzzy set introduces a gradual, soft transition from members to non-members
by introducing a membership level. The membership function µx̃(x) describes the
membership level of each element x in the domain X to the fuzzy set x̃:

x̃ = {(x,µx̃(x)) | x ∈ X ∧µx̃(x) ∈ [0,1]} . (11)

If µx̃(x) = 1, x is definitely a member of the fuzzy set x̃. If µx̃(x) = 0, x is definitely
not a member of the fuzzy set x̃. If 0 < µx̃(x) < 1, the membership is uncertain.

A normal fuzzy number is a fuzzy set in IR with at least one point where the mem-
bership function is equal to one and for which the membership function is strictly
increasing and decreasing to the left respectively right of that point. The most fre-
quently applied membership functions are the triangular and the Gaussian shape
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Figure 1: Triangular (left) and Gaussian (right) fuzzy membership functions.

functions, illustrated in Fig. 1. A normal fuzzy number with a triangular shape
function, support (the interval for which µx̃(x) > 0) (a,b) and top (the value for
which µx̃(x) = 1) c is often denoted (a/c/b).
Zadeh’s extension principle provides a general definition to calculate the fuzzy out-
put ỹ of a crisp function f (x1,x2, . . . ,xn) applied to n fuzzy inputs x̃1, x̃2, . . . , x̃n. It
defines the membership function µỹ(y) as

µỹ(y) = sup
x1,x2,...,xn

y= f (x1,x2,...,xn)

(min(µx̃1(x1),µx̃2(x2), . . . ,µx̃n(xn)))

µỹ(y) = 0 if f−1 ({y}) = /0.

(12)

This definition implies that the membership value of a fuzzy result ỹ for a specific
value y is the largest among the membership values of all realisations of y, that
is, all combinations of input parameters (x1,x2, . . . ,xn) that result in y. The possi-
bilistic interpretation of the extension principle is that if a value y has more than
one realisation, it will adopt the degree of possibility from the realisation with the
highest degree of possibility.

The definition (12) of the extension principle is not readily implementable as for
each value y of the output domain, it requires the complete set of realisations to
derive the membership value. In general, this is an extremely difficult and compu-
tationally expensive procedure.

An alternative approach consists in searching the output domain for sets which
have an equal membership level. This is achieved by analysing the input domain at
a specific membership level α . At this membership level, the α-cuts of the input
quantities are defined as

xI
i,α = {xi ∈ Xi | µx̃i(xi)≥ α} (13)
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Figure 2: α-cut procedure applied at three membership levels on a function with
two inputs and two outputs.

This means that an α-cut is the interval resulting from intersecting the membership
function at µx̃i(xi) = α . After deriving the α-cuts of all input quantities at a spe-
cific membership level, an interval analysis is performed on these intervals. The
resulting output intervals have two important properties:

• The output intervals result from combining all possible input quantities with
a value larger than or equal to α . Following the extension principle, all output
quantities have a membership level larger than or equal to α .

• Values outside the output intervals can not be obtained by combinations of
input quantities with membership levels larger than or equal to α . Therefore,
all values outside the output intervals have membership levels smaller than
α .

These two properties state that the obtained output intervals are intersections of the
output membership functions at membership level α and consequently an α-cut of
the output.

From a practical point of view, this means that a discretised approximation of the
output membership functions can be obtained by repeating the α-cut procedure
at a number of membership levels. Consequently, a fuzzy numerical analysis can
be replaced by a sequence of interval numerical analyses. Fig. 2 illustrates this
procedure on a function with 2 fuzzy inputs and 2 fuzzy outputs.
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2.3.4 Applicability of the fuzzy set concept

Zadeh (1978) extended the theory of fuzzy sets to a basis for reasoning with pos-
sibility. Wang and Klir (1992) developed the theory of fuzzy measures based on
this possibilistic interpretation. From this perspective, the membership function
is interpreted as a possibility distribution function. The possibility is defined as a
subjective measure that expresses the degree to which the analyst considers that
an event can occur. As such, it allows to define intermediate possibilities between
strictly impossible and strictly possible.

For certain variabilities, Civanalar and Trussell (1986) propose a method to derive
a possibility density function corresponding to a given probability density function.
The consistency principle states that the degree of possibility of an event is always
greater than or equal to its degree of probability. This principle implies that∫

B
fX(x)dx≤max

x∈B

(
µx̃(x)

max µx̃(x)

)
, (14)

where fX(x) is the probability density function for any set B in the feasible domain.
Even for a known probability density function, an infinite number of compatible
possibility density functions exists. Therefore, the conversion from a probabilistic
density function to a possibilistic density function always relies on some sort of
subjective judgement. Consequently, possibilistic analysis results should always be
interpreted in a subjective sense.

The choice of the possibility density function for uncertain variabilities and invari-
able uncertainties is subjective and can only be based on expert knowledge and
personal preference. This makes the fuzzy concept a tool for an analyst who wants
to study the effect of uncertainties of which he has expert knowledge that is difficult
or impossible to express using other modelling techniques.

Alternatively, based on the application of the α-level strategy, a fuzzy analysis can
also be interpreted as a large scale sensitivity analysis of the interval results with
respect to the input interval widths.

2.4 Comparison between the probabilistic and the non-probabilistic concept

The literature comparing the probabilistic and the non-probabilistic concept and
discussing the applicability of both concepts is extensive. Elishakoff (1998), El-
ishakoff and Zingales (2003), Moens and Vandepitte (2005, 2006) and Zingales
and Elishakoff (2000) give an in-depth comparison of both concepts and discuss
their applications. When the non-probabilistic methods were developed in the
early nineties, both concepts were seen as competing. By now, most authors
agree that both methods are quite complementary. Each of the concepts has ad-
vantages and disadvantages and is better suited or less suited to model certain types
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of non-determinism, but none of the discussed methods offers a solution for all
non-deterministic analysis problems.

2.4.1 Based on the type of non-determinism

Sections 2.2.2, 2.3.2 and 2.3.4 discuss the applicability of the considered concepts
for the distinguished types of non-determinism.

Certain variabilities are best modelled using the probabilistic concept, as the avail-
able range of possible values and likelihood of each value within this range trans-
lates unambiguously to a probability density function. All available objective infor-
mation is used in the non-deterministic model. The interval and fuzzy set concept
are less suited to model certain variabilities: the interval concept discards the avail-
able information about the likelihood distribution, while the fuzzy set concept re-
places the objective probability density function by a subjective possibility density
function.

Uncertain variabilities with a known range and an unknown likelihood distribution
are best modelled using intervals, because the interval concept does not need the
unknown likelihood distribution. Uncertain variabilities with an unknown range but
a known likelihood distribution are generally best modelled using the probabilis-
tic concept, since only in this case the available information about the likelihood
distribution is included.

Invariable uncertainties are best modelled using the interval or fuzzy set approach.
The interval approach requires the least information and consequently leaves the
least room for misinterpretation as less subjective information is included. The
fuzzy set approach is a valuable tool to study the large scale sensitivity of the re-
sults to the input interval widths. In both cases, it is important to be aware that the
results obtained using subjective information should be interpreted as such. The
probabilistic approach is less suited to model invariable uncertainties since the re-
sults can not be interpreted in a frequentist manner due to the use of subjective
information. Usually, the limited objective value of the results does not justify the
high computational cost that inevitable accompanies a probabilistic analysis.

2.4.2 Based on the design stage

The non-deterministic concept to use can also be guided by the design stage Moens
and Vandepitte (2006).

In an initial design stage, when different concepts are compared or when the most
appropriate concept is chosen, many design decisions are still open. Some proper-
ties have been defined but for some other only expert knowledge (or expert guesses)
are available. Most if not all non-determinism is caused by uncertainty rather than
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by variability, which makes the non-probabilistic approach better suited than the
probabilistic approach. The fuzzy set concept is especially useful, since it handles
the linguistic expert knowledge in a mathematically consistent manner and since it
allows to study the effect of the interval widths.

As the design evolves, more and more decisions are made and more information is
available, the uncertainty decreases. As tolerances are defined, the range of the un-
certain parameters is known. Since the details of the actual production process are
often still unknown, the likelihood distribution within this range is not yet known.
In this stage, mainly interval methods are suited for non-deterministic analysis.

In the final design stages, when the design is finished and decisions about the pro-
duction processes are made, most numerical analyses are validation and reliability
analyses. Variability is the most important source of non-determinism. Conse-
quently, the probabilistic approach is best suited for non-deterministic analyses in
this stage.

From this overview, it is clear that the non-deterministic concepts complement each
other. Of course, the transition from uncertainty to variability is gradual. The
choice of the modelling method depends on the details of the actual design and the
personal preference and experience of the analyst too.

3 Implementation strategies for interval and fuzzy numerical analysis

The introduction of the interval and fuzzy set concept in numerical analysis has led
to the development of a number of interval and fuzzy numerical analysis proce-
dures. Most of the developed methods are based on the interval concept. Using the
α-cut strategy, these methods can be applied to the fuzzy set concept too. Some
methods are especially designed for the solution of fuzzy numerical analysis prob-
lems.

Consider a deterministic numerical analysis y = f (x), subject to multiple inputs and
resulting in multiple outputs. Using the interval concept, the deterministic input
vector x is replaced by an interval input vector xI. In this case, the exact solution
set is defined as

〈y〉=
{

y | y = f (x)∧ x ∈ xI} , (15)

that is, the set 〈y〉 which contains all vectors y which result from applying the deter-
ministic numerical analysis to all vectors x contained in the interval input vector xI.
In general, the elements of the output vector y are interdependent, as they are related
through the deterministic numerical model and analysis and the non-deterministic
inputs. Therefore, the solution set can adopt any shape in the multidimensional
output space. In practice, the calculation of this exact solution set is extremely
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difficult. A closed form of this solution set can only be calculated if the determinis-
tic numerical analysis function f is described by an explicit analytical expression,
which is in general not the case.

Therefore, most research focused on the calculation of a conservative hypercubic
approximation of the exact solution set, thus ignoring the interdependency between
the output quantities. This results in a separate interval range for each individual
output quantity. This conservative hypercubic approximation contains solutions
that are not part of the exact solution. Consequently, these points do not corre-
spond to the solution of a physical system. To reduce the number of non-physical
solutions, interval numerical analysis methods aim for the smallest conservative
hypercubic approximation.

Several implementation strategies for interval numerical analysis have been pro-
posed. Based on their solution strategy, they can be divided in two categories. The
interval arithmetic based solution strategies approximate the smallest hypercubic
approximation of the exact solution set from the outside, using interval arithmetic
or related methodologies. The global optimisation based solution strategies on the
other hand approximate the smallest hypercubic approximation of the exact solu-
tion set from the inside, using optimisation techniques. The next sections discuss
both categories in more detail. An even more extensive overview of available meth-
ods, albeit somewhat focused on the finite element method, can be found in [Moens
and Vandepitte (2006)] and [Moens, De Munck, Farkas, De Gersem, Desmet, and
Vandepitte (2008)]. For some applications, a combination of the interval arithmetic
strategy and the global optimisation strategy can be beneficial. Moens, De Munck,
and Vandepitte (2007) propose such a method for envelope frequency response
function analysis.

3.1 Interval arithmetic based solution strategies

Interval arithmetic is the calculus that defines the addition, subtraction, multipli-
cation and division of intervals. For two intervals xI and yI, these operations are
defined as follows:

xI + yI =
[
x+ y,x+ y

]
(16)

xI− yI =
[
x− y,x− y

]
(17)

xI · yI =
[
min

(
xy,xy,xy,xy

)
,max

(
xy,xy,xy,xy

)]
(18)

xI/yI =

{
xI ·
[

1
y ,

1
y

]
if 0 6∈ yI

undefined if 0 ∈ yI
(19)

The main drawback of interval arithmetic is that it introduces conservatism, that



An Efficient Response Surface Based Optimisation Method 133

is an overestimation of the width of the output interval, because the dependencies
between the intervals are neglected.

The interval arithmetic approach to the solution of an interval numerical analysis
method consists of the direct translation of the deterministic numerical analysis
procedure to an equivalent interval arithmetic procedure. Each algebraic operation
of the deterministic procedure is replaced by its interval counterpart. Thus, the
interval arithmetic approach is founded entirely on the interval calculus described
above.

As the interval arithmetic approach is founded on the interval calculus described
above, it suffers from the problem illustrated above. Each mathematical operation
in which the dependency between uncertain parameters, whether direct or indi-
rect through intermediate results, is neglected, causes conservatism on the result.
This overestimation of the exact range accumulates through the interval procedure,
causing a huge amount of conservatism on the final result of the interval arithmetic
numerical analysis. This can only be avoided by taking into account the depen-
dency between the non-deterministic parameters. For the practical application of
interval arithmetic approaches in numerical analysis however, it is nearly impossi-
ble to track and manage the various parameter dependencies throughout the entire
procedure. Consequently, the interval results are severely overestimated and from
a practical point of view useless for anything but simple academic examples.

From a numerical point of view however, the interval arithmetic approach is ap-
pealing, as the interval arithmetic approach is computationally very efficient. As a
result, a substantial research effort is dedicated to the further development of the
interval arithmetic approach for the solution of numerical analysis problems, par-
ticularly of finite element problems. This research mainly focuses on the parameter
dependency problem. On the one hand, it is attempted to limit the conservatism in
the interval matrix assembly phase, for example by using the element-by-element
approach proposed by Muhanna and Mullen (2001). On the other hand, the solu-
tion of the resulting set of interval equations gets quite some attention, for example
of Vroman, Deschrijver, and Kerre (2007), who developed a parametric method
for the solution of a set of interval equations that contains an explicit dependency
of the interval coefficients of the system. So far, the application of these methods
is limited to small systems with a limited number of non-deterministic parameters
due to its high computational cost.

Manson (2005) proposes affine arithmetic, a more versatile extension of interval
arithmetic that keeps track of the dependencies between operands and sub-formulae
as a solution to reduce the conservatism of the classical interval arithmetic ap-
proach.
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3.2 Global optimisation based solution strategies

Global optimisation based solution strategies actively search in the non-
deterministic input interval space for the combination that results in the minimum
or maximum value of an output quantity [McWilliam (2001)]. As such, the global
optimisation approach can be interpreted as a search for the worst case scenario,
hence the alternative name anti-optimisation approach. All outputs of the numer-
ical analysis are considered independently. For each output quantity of interest, a
separate global minimisation and global maximisation are performed. In mathe-
matical form, the result vector yI is described as

yI =


yI

1
yI

2
...

yI
n

 , (20)

where

y
i
= min

x∈xI
fi(x), (21)

yi = max
x∈xI

fi(x), (22)

xI is the vector defining the input interval space and fi(x) is the ith output of the
deterministic numerical analysis. Note that each function evaluation required by the
optimisation procedure requires the solution of a deterministic numerical analysis.

The global optimisation approach results in the exact interval. Because the interde-
pendence between the non-deterministic parameters is implicitly taken into account
by performing deterministic numerical analyses for a given set of deterministic val-
ues for the non-deterministic parameters, the global optimisation approach does not
suffer from conservatism. On the other hand, the number of global optimisations re-
quired to solve a full interval or fuzzy numerical analysis problem and the possibly
computationally expensive objective function make the global optimisation based
approach computationally expensive. Furthermore, the behaviour of the objective
function with respect to the non-deterministic parameters can generally not be pre-
dicted. To be applicable to all interval and fuzzy numerical analysis problems, the
global optimisation procedure should consider the deterministic numerical anal-
ysis as a black box function. This eliminates the use of dedicated optimisation
procedures such as, for example, convex optimisation. Fortunately, most outputs
resulting from real life engineering problems tend to exhibit a relatively smooth
behaviour with respect to typical non-deterministic model parameters [De Gersem,
Moens, Desmet, and Vandepitte (2005)]. This smooth behaviour facilitates the
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determination of the extrema. Because global optimisation based strategies yield
physically correct results, unlike interval arithmetic based strategies, they are more
and more acknowledged as the standard approach to solve interval numerical anal-
ysis problems.

Despite the smooth behaviour of typical objective functions, the computational cost
of the global optimisation based approach remains high. Hence, most research on
this method focuses on the reduction of its computational cost. In this domain, two
different approaches can be distinguished: direct optimisation and response surface
based optimisation.

Direct optimisation approaches. Several general black box optimisation algo-
rithms can be applied to interval and fuzzy numerical analysis. Rao [Rao and
Sawyer (1995); Rao and Berke (1997); Rao and Chen (1998)], one of the pio-
neers in fuzzy finite element modelling, uses a directional search based algorithm to
solve the optimisation problem. Several authors [Biondini, Bontempi, and Malerba
(2004); Catallo (2004); Köylüoǧlu and Elishakoff (1998); Möller, Graf, and Beer
(2000)] use various other general purpose optimisation algorithms.

Recently, Degrauwe (2007) introduced the innovative gradual-α-decreasing or
GαD algorithm in the context of fuzzy finite element analysis. It is proposed as
an efficient method to solve the interval problems at different levels in the fuzzy
solution procedure. The approach exploits the high similarity between the optimi-
sation problems that need to be solved, as well as the smoothness that is generally
observed in the behaviour of typical FE output quantities with respect to varying
physical parameters. The approach is essentially an iterative search for global op-
tima in a search space, the size of which is gradually increasing when the mem-
bership level is decreasing. By keeping track of the optima reached in previous
optimisations on subspaces of the current iteration, the method gradually builds
search paths along which the local optima of the objective function are situated.
The search for the global optimum can then be limited to the observation of the
intersection of these search paths with the bounding box at the analysed level.

The method starts from the crisp solution at the midpoint of the interval parameter
space. This point is also the starting point for all search paths. In an iterative proce-
dure, the interval problem is solved at decreasing levels, using a local optimisation
approach. If no local optima are detected, the vertex points at the corresponding
level represent the positions of the extreme objective function values inside the do-
main, and are added to the search paths. If at a certain level, a local optimum is
detected on the vertex, i.e. through a sign switch of the local derivative at that
point, a new search path is initiated. This path will follow the location of this local
optimum throughout the next steps of the procedure where the search domain is
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increasing. This is achieved by performing an additional local optimisation step,
with starting values chosen at the local optimum of the previous iteration.

Response surface optimisation approaches. Response surface based optimisa-
tion approaches consist of two steps. In the first step, they create approximations
of the objective functions, based on function evaluations in well-chosen points. In
the second step, these approximations or response surfaces are used to find the
optimum of the objective function. In engineering applications, especially in the
context of modelling the behaviour of a physical system based on measurements,
this approach is also known as design of experiments (DOE). Some authors limit
the term DOE to linear regression based response surfaces.

The vertex method [Dong and Shah (1987)] is in fact the simplest form of response
surface, as it performs a linear interpolation between the response points obtained
at the vertices of the search domain. This approach needs 2n deterministic function
evaluations to evaluate an interval function with n interval inputs. It has long been
very popular for the implementation of interval numerical methods [Abdel-Twab
and Noor (1999); Chen and Rao (1997); Kulpa, Pownuk, and Skalna (1998); Wasfy
and Noor (2000)] and is the basis for the transformation method for fuzzy analysis
developed by Hanss (2002). The transformation method performs a vertex analysis
at each membership level of interest, and thus requires 2n · l deterministic function
evaluations to evaluate a fuzzy function with n fuzzy inputs at l membership lev-
els. It is clear that the accuracy of both the vertex method and the transformation
method is limited by the few observation points. However, if the behaviour of the
objective function with respect to the uncertain parameters can be guaranteed to be
monotonic, these approaches yield the exact solution.

Several variants of the transformation method exist. If the objective function is
not monotonic, the extended transformation method of Hanss (2003), which essen-
tially adds more observation points to the search domain, can be applied. In its
basic form, this method requires 3n · l deterministic function evaluations to evaluate
a fuzzy function with n fuzzy inputs at l membership levels. Donders, Vandepitte,
Van de Peer, and Desmet (2005) proposed the short transformation method, which
reduces the computational cost of the standard transformation method by only per-
forming a full vertex analysis at the lowest membership level of interest. This
variant of the transformation method requires 2n +2 · (l−1) deterministic function
evaluations to evaluate a fuzzy function with n fuzzy inputs at l membership levels.

Local expansion approaches approximate the objective function of an optimisation
procedure using a higher-order expansion scheme, generally around the midpoint
of the intervals at the analysed level. This approximated objective function is then
used to perform the many objective function evaluations generally required to per-
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form an interval analysis.

Massa, Tison, and Lallemand (2006) use higher-order Taylor series constructed at
the level midpoints to represent the objective function behaviour with respect to the
uncertain parameters. In the proposed TEEM (Taylor expansion with extrema man-
agement), this approximation is not used to find the exact optimum at each level.
It is included in a procedure that searches for extrema in the interval domains at
each level by observation of the function evaluations in the vertices as well as the
local derivatives in these points, which are used to detect possible non-monotonic
influences. The Taylor expansion is introduced in this procedure to speed up the
evaluation of the exact objective function and its derivatives in the vertex points.
As the number of required function evaluations increases exponentially with the
number of uncertainties, the time for a single function evaluation indeed is cru-
cial for the efficiency of the procedure. Later, this method was extended to use
Padé approximates (approximates derived by expanding a function as a ratio of two
power series and determining both the numerator and denominator coefficients) in
the context of modal analysis [Massa, Tison, and Lallemand (2008)].

In general, a response surface is a solution of the problem in which one tries to
determine a continuous function f based on a limited number of function evalu-
ations f (xi). In general, these function evaluations do not uniquely identify the
continuous function f ; multiple response surfaces are consistent with the available
data. When using a response surface based optimisation approach, one should first
solve two problems: constructing a response surface f̃ based on the available data
f (xi) (model estimation) and estimating the error ε on the response surface (model
appraisal) [Queipo, Haftka, Shyy, Goel, Vaidyanathan, and Tucker (2005)]. For
application in the framework of interval numerical analysis, the main challenge is
to construct accurate response surface approximations of the output quantities of
interest, but still limiting the number of response points, as each response point re-
quires a possibly expensive deterministic numerical analysis. A dedicated response
point selection procedure designed for optimisation is required to enable the anal-
ysis of industrially sized models. This paper focuses on the response surface based
approach and proposes a novel algorithm based on Kriging response surfaces.

The application of response surface methods, including the novel algorithm pro-
posed in this paper, is not limited to interval and fuzzy numerical analysis. Panda
and Manohar (2008) for example use a response surface method for stochastic reli-
ability analysis and Jiang and Han (2007) uses response surfaces (approximations)
for uncertain optimisation.
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4 A Kriging response surface based optimisation method

This section introduces a response surface based optimisation algorithm for interval
and fuzzy numerical analysis. The algorithm, based on Kriging, takes advantage
of the special properties of the optimisation problem. This section starts with an
overview of the procedure. Next, the procedure is developed for the optimisation
of one objective function. Finally, the procedure is extended to multiple objective
functions.

4.1 Overview of the procedure

This algorithm approximates the objective functions by a Kriging response surface,
as described in [Matheron (1963); Sacks, Welch, Mitchell, and Wynn (1989); Jones,
Schonlau, and Welch (1998); Lophaven, Nielsen, and Sondergaard (2002a,b)].
Kriging response surfaces are especially suited to model deterministic computer
codes because of their flexibility to approximate many different and complex func-
tions [Schonlau (1997); Martin and Simpson (2005)] and because they interpolate
the response points.

The general idea of this procedure is that to minimise and maximise a function
accurately using a response surface, the response surface should approximate the
function well in the regions where the minimum and maximum are expected. Ap-
proximation uncertainties and errors outside the regions containing the minima and
maxima do not affect the optimisation error.

The procedure starts by generating a small space filling design, evaluating the ob-
jective functions in these response points and creating the initial Kriging response
surfaces based on these function evaluations. In the second step of the algorithm,
these response surfaces are iteratively improved by selecting the most promising
response points from a large space filling design, evaluating the objective func-
tions only in these few most promising response points and updating the Kriging
response surfaces. Thus, the initial response surfaces are only improved in regions
where a minimum or a maximum can be expected. This second step is repeated
until no more improvement is possible. Finally, the optima of the objective func-
tions are determined using the response surfaces. Because of the low computational
cost of a single evaluation of the response surface and because the response surface
can have several local minima and maxima, a global optimisation on the response
surface is advisable.
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4.2 Procedure for the optimisation of a single objective function

4.2.1 Construction of the initial response surface.

In the first step of the procedure, a small space filling design (for example a Latin
hypercube design) is generated and the objective function is evaluated at these re-
sponse points by the deterministic solver. Using this information, the initial re-
sponse surface is created. Since this response surface will be improved in the
second step, one should not use too many response points. The author achieved
good results with five times the number of uncertain parameters. Additional points
are best selected by the adaptive procedure in the next step instead of being ran-
domly selected in this step. In the authors experience, the procedure is not very
sensitive to the regression and correlation models of the Kriging response surfaces.
On average, a constant regression term and a Gaussian or generalised exponential
correlation function yield excellent results.

Especially when the objective function has more than two or three parameters, the
best results are achieved by using a space filling design that fills a ten to twenty
percent larger area than the largest area that will be used in the actual optimisa-
tion. This reduces extrapolation, which introduces a much larger approximation
error than interpolation. When using such an extended initial space filling design,
significantly less response points are required to achieve the same accuracy of the
final response surface.

4.2.2 Iterative improvement of the response surface.

In the second step of the procedure, a large space filling design is calculated. These
points are not yet response points; only the few most promising points from this
set will become real response points for which a deterministic numerical analysis
will be performed. For each of these candidate response points, the function value
and the expected error on the function value are estimated using the constructed
response surface and the maximum improvement or MI is calculated as

MI =
min

(
f̃ (x)

)
−
(

f̃ (xnew)−∆ f̃ (xnew)
)

min
(

f̃ (x)
) (23)

for minimisation and

MI =

(
f̃ (xnew)+∆ f̃ (xnew)

)
−max

(
f̃ (x)

)
max

(
f̃ (x)

) (24)

for maximisation. In these formulae, f̃ is an approximation of an output parame-
ter, min( f̃ (x)) is the current minimum value of the approximation, f̃ (xnew) is the
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x

f (x)

f̃ (x)

f̃ (x)+∆ f̃ (x)

f̃ (x)−∆ f̃ (x)

min
(

f̃ (x)
)

f̃ (xnew)−∆ f̃ (xnew)
MI (unscaled)

xnew

Figure 3: Visualisation of the (unscaled) maximum improvement (MI) in an ar-
bitrary point xnew in a minimisation problem. The solid line shows the current
approximation of the objective function and the dashed lines show the upper and
lower bound defined by the mean squared error of the approximation.

expected value of the approximation in the candidate response point and ∆ f̃ (xnew)
is the error range on the approximation in this point. The choice of ∆ f̃ (xnew) in-
fluences the behaviour of the optimiser: a larger value places more emphasis on
reducing uncertainty while a smaller value favours the improvement of approxi-
mately found minima or maxima. In general, an error range of 3σ , where σ is
given by the Kriging response surface, is a good compromise between efficiency
and performance. Thus, the maximum improvement gives an indication of the
possible improvement in this candidate response point. If an improvement in this
candidate response point is unlikely, the maximum improvement will be negative.
The maximum improvement is normalised (scaled). Although this scaling is not
necessary for the optimisation of a single objective function, it helps monitoring
the progress of the response surface improvement procedure.

Fig. 3 illustrates the maximum improvement in an arbitrary point xnew in a one-
dimensional minimisation problem. Note that the maximum improvement is not
scaled, that is, it is defined by the numerator of (23).

The candidate response points which have the highest MI and which satisfy a mini-
mum distance requirement are selected and are added to the response point set. The
minimum distance criterion is necessary to prevent the selection of response points
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close to each other for which the region of improvement overlaps. The application
of the rather crude minimum distance criterion can be avoided by selecting only
one new response point in each iteration. In this case, the information given by
the new response point is included in the selection procedure for the next response
point. In practice, the construction of the Kriging response surfaces is rather ex-
pensive, so selecting the new response points in groups and applying the minimum
distance criterion gives a better overall performance. The authors achieved good
results by adding response points in groups of one to two times the number of un-
certain model parameters and a minimum distance of ten to twenty percent of the
uncertain parameter range.

Finally, the objective function is evaluated in the new response points and the Krig-
ing response surfaces are updated with the new information. The objective func-
tion is only evaluated in these new response points; for all other candidate response
points, only cheap response surface evaluations are necessary.

This second step of generating a large set of candidate response points and select-
ing the most promising points is repeated until a stopping criterion is met. Ideally,
one should continue the procedure until no more improvement can be made, that is,
until one does not find any more points with a maximum improvement greater than
zero. Implicitly, the choice of ∆ f̃ (xnew) influences this stopping criterion. Alterna-
tively, this procedure can be used when an optimal approximation of the objective
function is needed within a limited computational cost, since it is possible to stop
the improvement after a given number of function evaluations and use the response
surfaces improved to that point. In addition, it is possible to estimate the error made
by prematurely terminating the algorithm by investigating the approximation error
estimates. It is not possible to give a general applicable estimate of the total number
of response points required since this number is highly dependent on the behaviour
of the objective functions. It is clear that more response points are necessary to
approximate oscillating functions with several local optima than to approximate
smooth monotonous functions.

4.2.3 Optimisation.

Because of the low computational cost of a single evaluation of the response surface
and because the response surface can have several local minima and maxima, a
global optimisation on the response surface is advisable.

In general, one wants to optimise the function using the expected value given by
the Kriging response surface. In some applications, where more conservatism is
not a problem, but underestimating the maximum or overestimating the minimum
should be avoided, one can choose to optimise the confidence intervals on the ap-
proximation instead of the expected value of the approximation. 99.6% confidence
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bounds on the result for example are obtained by minimising f̃ −3σ f̃ or maximis-
ing f̃ + 3σ f̃ . Although, due to the nature of response surfaces, it is impossible to
absolutely guarantee conservatism, it is possible to increase the confidence on the
determined bounds to an arbitrary level.

4.3 Extension to multiple objective functions

As already mentioned before, optimisation based interval and fuzzy numerical anal-
yses generally require a large amount of optimisations. Each of these optimisation
procedures is performed using the procedure described above, but two properties
of the optimisation problems can be used to significantly reduce the total computa-
tional cost compared to the computational cost of individual optimisations:

• When a response point is added to a response surface, a deterministic nu-
merical analysis is performed to evaluate that objective function. Since this
deterministic numerical analysis evaluates not just this objective function but
all objective functions, this response point can be added to the response sur-
face of all objective functions without increasing the computational cost.

• Since the response surface of an objective function at a higher membership
level is a subset of the response surface at a lower membership level, only the
response surface at the lowest membership level of interest is constructed.
All optimisations are done on that response surface; only the bound con-
straints are different.

With these properties and improvements in mind, the optimisation procedure can
be extended efficiently to multiple objective functions.

The discussion is guided by the example shown in Fig. 4 in which two objective
functions, a convex one and a non-convex one, are simultaneously modelled for
minimisation and maximisation. Fig. 4(a) shows surface plots of the two objective
functions: the left plot shows the convex objective function while the right plot
shows the non-convex objective function.

4.3.1 Construction of the initial response surfaces.

In the single objective function procedure, an initial response surface is constructed
based on a small space-filling design. In the multi-objective case, this space filling
design is based on the lowest membership level of interest and the response sur-
faces for all objective functions are based on the same response points. Since the
deterministic solver returns all results of interest at once, the computational cost in
the multi-objective case is equal to the computational cost in the single-objective
case.
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(a) Surface plots of the two objective functions.

1

2

1

2

(b) Initial response points on contour plots of the two objective functions.
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(c) Unselected (grey) and selected (black) candidate response points on contour plots
of the two objective functions

Figure 4: Illustration of the response point selection process of the response surface
based optimisation method described in section 4 on an example with two objective
functions and two uncertain parameters.
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Fig. 4(b) shows the initial response points on contour plots of the two example
objective functions. Note that the same response points are used for both objective
functions.

4.3.2 Iterative improvement of the response surfaces.

As in the single-objective case, a large space-filling design of candidate response
points is calculated. For each candidate response surface point, the average maxi-
mum improvement or AMI is calculated as

AMI = ∑
k

max

(
min

(
f̃k (x)

)
−
(

f̃k (xnew)−∆ f̃k (xnew)
)

min
(

f̃k (x)
) ,0

)2
 (25)

for minimisations and

AMI = ∑
k

max

((
f̃k (xnew)+∆ f̃k (xnew)

)
−max

(
f̃k (x)

)
max

(
f̃k (x)

) ,0

)2
 (26)

for maximisations. This average maximum improvement is a measure for the pos-
sible average improvement of the different response surfaces in this candidate re-
sponse point. The core of the formulae is equal to the maximum improvement of the
single-objective case. To acquire the average maximum improvement, the max(·,0)
operator is added to eliminate negative values and the sum of the squared positive
maximum improvements is taken. This formula results in a good balance between
large improvements for a single objective function and small improvements for
multiple objective functions. As in the single-objective case, it is possible to define
an alternative score based on the expected improvement.

As in the single-objective case, the candidate response points which have the high-
est MI and which satisfy a minimum distance requirement are selected and are
added to the response point set. All objective functions are evaluated in these new
response points and the Kriging response surfaces are updated with the new infor-
mation.

Fig. 4(c) shows the unselected candidate response points (grey) and the selected
candidate response points which are added to the set of response points (black) on
contour plots of the two objective functions. Note again that for both objective
functions, the candidate response points and the selected candidate response points
are the same. In this simple example, it is clear that the two response points in the
upper left corner are selected because they improve both objective functions around
their maximum, the upper point in the lower right corner is selected mainly because
it improves the approximation of the convex objective function and the lower point
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in the lower right corner is selected mainly because it improves the minimum of the
non-convex objective function.

In this example, the minima and maxima of both objective functions are located in
the same regions. If this is not the case, the procedure is still very efficient, but it
is much more difficult to visualise the selection process because the response point
selection is highly dependent on the estimated accuracy of the Kriging response
surfaces near the local optima. If the response surface of an objective function
is relatively accurate around its optima, this objective function will be almost ex-
cluded from the selection process.

In fuzzy analyses, all membership levels of interest should be taken into account
since a point, which is certainly not a minimum or maximum at the lowest mem-
bership level, can be a minimum or a maximum at a higher membership level. This
approach yields the fuzzy average maximum improvement

AMI =∑
α

∑
k

max

(
min

(
f̃k (x)

)
−
(

f̃k (xnew)−∆ f̃k (xnew)
)

min
(

f̃k (x)
) ,0

)2
 (27)

for minimisations and

AMI =∑
α

∑
k

max

((
f̃k (xnew)+∆ f̃k (xnew)

)
−max

(
f̃k (x)

)
max

(
f̃k (x)

) ,0

)2
 (28)

for maximisations, where ∑α is the sum over the membership levels of which the
point is a member.

Note that in this formula, the AMIs at the different membership levels of interest
are simply added; no correction is made to scale the AMI for points that belong to
several membership levels of interest. This places a high emphasis on points which
could be a minimum or a maximum at several membership levels of interest. In
practice, this is beneficial since the accuracy of the approximation in these points
is very important for the accuracy of the final result.

4.3.3 Optimisation.

The optimisation step of the Kriging based optimisation method does not introduce
new information. The minimisations and maximisations of the different objective
functions at the different membership levels of interest can be performed in any
order (or even parallel if multiple processors are available).
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3n

Figure 5: Simplified finite element model of the cable stayed bridge.

5 Applications

5.1 Transient dynamic analysis of a cable stayed bridge model

This section illustrates the applicability of the proposed method on a numerical
example.

The considered example is a model of a cable stayed bridge, based on the pedestrian
bridge over the Canal du Centre in Obourg (Belgium) [Walther, Houriet, Isler, and
Moïa (1988)]. The total span of this bridge is 134 m. The deck slab is made of
precast prestressed concrete and has a double T cross-section. The overall width
and height of the cross-section are 1.8 m respectively 0.6 m; the web thickness and
flange thickness are 0.2 m respectively 0.3 m. The pylon is A-shaped, where each
arm has a rectangular cross-section of 0.8 m by 0.6 m. This pylon extends 20 m
above the bridge deck and 10 m below it. The deck is supported by stranded steel
cables consisting of 37 strands of 12.7 mm each.

The bridge is symmetric along the longitudinal axis. Only one half of the bridge
and a single plane of cables are modelled for this analysis. The deck slab and
the pylon are modelled using beam elements. The cables are modelled using bar
elements. Fig. 5 shows the finite element model of this bridge.

Two uncertain parameters are defined on the model: parameter p1 defines the devi-
ation of the stiffnesses of concrete and steel from their nominal value and parameter
p2 defines the deviation of the densities of concrete and steel from their nominal
value. Both parameters have a maximum deviation of ±5%, resulting in fuzzy val-
ues (0.95/1.00/1.05). The coupling of the properties of concrete and steel have
no physical basis; rather it is convenient to limit the number of uncertain parame-
ters to two to be able to plot the response surfaces to illustrate the behaviour of the
different methods.

The bridge is subject to a sudden vertical load of 100 kN for 0.1 s on the bridge deck
at node 3, denoted 3n in the figure. The transient vertical displacement of node 3,
resulting from this sudden vertical load, is then computed from 0 s to 2 s in 0.01 s
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Figure 6: Vertical load on the bridge deck at node 3 as a function of the time.

increments (201 time steps). The deterministic transient vertical displacement is
computed using Wilson θ method [Wilson, Farhoomand, and Bathe (1972)], which
is an implicit integration method. To compute the displacement at a certain time,
it has to be computed at all earlier time steps too. Although it is not necessary
to calculate later time steps, the function is always computed at all time steps, to
enable the reuse of function evaluations.

The deterministic algorithm is translated to an interval algorithm using the global
optimisation based approach. In this approach, the range of the displacement d3 of
node 3 is determined, taking into account that the uncertain parameters p can vary
within their intervals pI. This range 〈d3〉 of this displacement is determined by a
minimisation and a maximisation over the uncertainty interval pI:

〈d3〉=
[

min
p∈pI

d3,max
p∈pI

d3

]
. (29)

A single interval analysis requires 402 optimisations (a minimisation and a maximi-
sation at each time step). This interval analysis is applied at six membership levels
(the support and 0.2,0.4, . . . ,1.0), requiring five interval analyses at the support
and at the membership levels 0.2,0.4,0.6 and 0.8 and one deterministic analysis at
membership level 1.0. In total, 2010 optimisations and one deterministic analysis
are required.

The optimisations are performed using four different optimisation algorithms: MCS

[Huyer and Neumaier (1999); Neumaier (2009)] (a MATLAB global optimisation
algorithm based on a multilevel coordinate search; note that this algorithm has
no relation with Monte Carlo sampling, which is often also abbreviated as MCS),
FMINCON [The Mathworks (2008)] (a MATLAB local optimisation algorithm), the
Kriging response surface based optimisation method described in section 4 and
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a linear regression response surface based optimisation algorithm [De Munck,
Moens, Desmet, and Vandepitte (2008)].

To reduce the computational cost of the optimisations using the global optimisation
algorithm MCS and the local optimisation algorithm FMINCON, all function eval-
uations of the objective function are stored in a database to enable the optimiser
to reuse them for future optimisations without performing the same finite element
analysis again. For the local optimisation algorithm FMINCON, this database is
also used to start optimisations from the point with the best function value found
so far – the lowest function value for minimisations and the highest function value
for maximisations. All optimisations are performed from the highest to the lowest
membership level.

The linear regression based optimisation algorithm is applied using a quadratic
response surface and using a fourth order response surface. The results of the linear
regression based optimisation algorithm using the quadratic response surface are
denoted linreg2 in the result graphs while the results of the linear regression based
optimisation algorithm using the fourth order response surface are denoted linreg4.

Fig. 7 to 9 show the upper and lower bound on the transient dynamics response
of node 3 at the support and at membership levels 0.4 and 0.8, calculated using
the different optimisation algorithms. From these graphs, it is clear that the global
optimisation method, the local optimisation method and the Kriging based opti-
misation method yield the same results, except for a small difference in the lower
bound around t = 1.9 s at the support. The linear regression based method how-
ever, is somewhat less accurate until around t = 1.2 s and has significant errors
from there on. Although the error is smaller for the fourth order response surface
than for the quadratic response surface – which is clearly visible from t = 1.5 s on
– the error is still too large for practical applications.

To examine the cause of the increasing error of the solution computed using the
linear regression based optimisation method, Fig. 10(a) shows d3, the displacement
at node 3, as a function of p1 and p2, the two uncertain parameters, at t = 0.25 s
(left) and at t = 1.85 s (right). At t = 0.25 s, the behaviour of d3 is very smooth.
At t = 1.85 s, the behaviour is less smooth, with two distinct peaks. Because
the uncertain parameters influence the eigenfrequencies of the bridge model, the
distance between the peaks can increase or decrease, depending on the value of the
uncertain parameters. In the beginning of the simulation, this causes the response
to be a bit more up or down the slope, as illustrated in the left figures at t = 0.25 s.
As the time increases, the uncertainty on the eigenfrequencies causes more and
more uncertainty on the exact response: the response can be on one peak or on the
next peak or in the valley in between. This is clearly illustrated on the right figures
at t = 1.85 s. If the simulation is extended beyond t = 2 s, even more peaks will
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Figure 7: Bounds on the transient response at the support, computed using the
discussed algorithms.
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Figure 8: Bounds on the transient response at membership level 0.4, computed
using the discussed algorithms.
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appear in a single response.

Fig. 10(b) shows the quadratic approximation of the displacement of node 3 at
t = 0.25 s (left) and at t = 1.85 s (right) created and used by the linear regression
based optimisation method. The approximated response at t = 0.25 s is a good
approximation of the real response. However, it is obvious that a quadratic response
surface cannot approximate the shape of the real response at t = 1.85 s.

To approximate the shape of the response at t = 1.85 s, at least a fourth order
polynomial is required. Fig. 10(c) shows the fourth order approximations created
and used by the linear regression based optimisation method. Because the fourth
order polynomial has more parameters than the quadratic polynomial. At t = 0.25 s,
the quadratic approximation was accurate, and the fourth order approximation does
not change much. At t = 1.85 s however, the fourth order response surface is a
much better approximation, although the difference with the real response is still
too large to be neglected.

Fig. 11 shows the response surface created and used by the Kriging based opti-
misation method. These response surfaces are almost equal to the exact surfaces
shown in Fig. 10(a). The contour plots in Fig. 11 show the response points used to
create these response surfaces. Note that the same response points are used for all
objective functions, not only for the two objective functions illustrated here.

Fig. 14 shows the fuzzy transient response of node 3, assembled from the interval
responses at the support and at membership levels 0.2,0.4, . . . ,1.0 computed us-
ing the Kriging response surface based optimisation method. The fuzzy responses
computed using the global and local optimisation methods are not distinguishable
from the fuzzy response computed using the Kriging response surface based op-
timisation method and are not reproduced here. Fig. 12 and 13 show the fuzzy
transient response of node 3, assembled from the interval responses computed us-
ing the linear regression based optimisation method using a quadratic respectively
fourth order response surface. The same remarks made for the interval responses
apply to the fuzzy responses: the accuracy of the linear regression based method is
good up to around t = 1.2 s, but is problematic from there on.

Until now, only the accuracy of the results is discussed. For practical applications,
especially on industrially sized models, the computational cost is also very impor-
tant. Tab. 1 shows the number of objective function evaluations (finite element
analyses) and, for the response surface based methods, the number of approxima-
tion function evaluations.

The computational cost of the direct optimisation methods is prohibitively high.
Although the database with function values proves to be efficient, reducing the
number of objective function evaluations by 75%, the global and local optimisation
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Figure 9: Bounds on the transient response at membership level 0.8, computed
using the discussed algorithms.

Table 1: Comparison of the computational cost of the solution of the transient
dynamic finite element problem using different optimisation algorithms.

Optimisation algorithm Function evaluations
Goal function Approximation

MCS

Without database 207689
With database 47475
FMINCON

Without database 13195
With database 3363
Linear regression based algorithm
2nd order response surface 13 174915
4th order response surface 25 180715
Kriging based algorithm 30 183815
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Figure 10: Surface plots of the displacement at t = 0.25s (left) and at t = 1.85s
(right) as a function of the uncertain model parameters p1 and p2.
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Figure 11: Surface and contour plots of Kriging approximations of the displace-
ment at t = 0.25s (left) and at t = 1.85s (right) as a function of the uncertain model
parameters p1 and p2. The response points used to construct the Kriging approx-
imations are marked on the contour plots. Note that the same response points are
used for both objective function approximations.
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Figure 12: Fuzzy transient response computed using the linear regression based
optimisation algorithm and a full quadratic model.
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Figure 13: Fuzzy transient response computed using the linear regression based
optimisation algorithm and a full fourth order model.
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Figure 14: Fuzzy transient response computed using the Kriging response surface
based optimisation algorithm.

methods still require 47475 respectively 3363 objective function evaluations. All
response surface based methods on the other hand prove to be computationally
cheap, requiring 13 to 30 function evaluations. Considering the flexibility regarding
the shape of the response, the accuracy of the results and the computational cost,
the Kriging based optimisation method is clearly the best choice for this problem.

5.2 Harmonic dynamic analysis of a benchmark model

In this section, the two-dimensional reference model illustrated in Fig. 15 is subject
to a harmonic analysis, using the Kriging based optimisation approach described in
section 4.

The reference model is a two-dimensional beam model with 27 DOFs. It has 10 res-
onant frequencies between 20 Hz and 60 Hz. The model is originally designed for
the validation of model updating procedures [Caesar, Eckert, and Hoppe (1995)].
It is an excellent test for the optimisation procedure because a single function eval-
uation is very fast (a modal analysis takes about 1 second on a 3 GHz Pentium
IV system), but the model is extremely vulnerable to eigenfrequency crossover,
resulting in objective functions that are very difficult to optimise.
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Figure 15: Two-dimensional reference model.

Table 2: Uncertainties in the reference model.
Property Value

length element 9 (0.45/0.5/0.55) m
length elements (3+6) (0.49/0.50/0.59) m
length elements (2+5) (0.41/0.50/0.51) m
lumped mass node 3 (150/180/200) kg
lumped mass node 9 (320/360/400) kg
area element 6 (4/4.5682/5) ·10−4 m
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Table 3: Comparison of the computational cost of the harmonic analyses of the
two-dimensional reference model in terms of the number of objective function eval-
uations.

Method Function evaluations
Transformation method 321
Linear regression based optimisation method 69
Kriging based optimisation method 60
Monte Carlo method 501

The model is subject to 6 uncertainties: the length of element 9, the length of
elements 3 and 6, the length of elements 2 and 5, the lumped mass at node 3, the
lumped mass at node 9 and the cross-sectional area of element 6. All uncertainties
are fuzzy numbers with a triangular shape function. The exact values are specified
in Tab. 2.

A fuzzy FRF, composed of five interval FRFs at the support and at membership
levels 0.2, 0.4, 0.6 and 0.8 and a deterministic FRF at membership level 1.0, is
calculated between the vertical DOFs of nodes 3 and 4. These interval FRFs are
computed from 15 Hz to 55 Hz in 0.25 Hz increments, taking into account the first
ten modes.

The harmonic analysis requires 1610 optimisations (the maximisation and min-
imisation of the response at 161 frequencies, repeated at five membership levels).
These optimisations are performed using a linear regression based optimisation
method and using the Kriging based optimisation method. Due to the difficult be-
haviour of the model, the computational cost of a reference solution using a global
optimiser or using a local optimiser, as computed for the application in section 5.1,
proved to be computationally infeasible. Instead, a transformation method analysis
and a small Monte Carlo analysis of 501 uniformly distributed samples are per-
formed to verify the results, although it should be noted that this reference solution
is not guaranteed to be conservative, because most objective functions are non-
monotonous. Tab. 3 gives the number of function evaluations required for each of
the solution strategies. A single function evaluation takes about 1 s on a 3 GHz
Pentium IV system.

Fig. 16 shows the interval FRFs at the support, computed using the transformation
method (triangles), the linear regression based optimisation method (plus signs)
and the Kriging based optimisation method (circles). The interval spanned by the
Monte Carlo and vertex samples is shaded. The linear regression based optimisa-
tion method performs well up to about 33 Hz. At higher frequencies, it is much
less accurate. The explanation for this is equivalent to the explanation of the gradu-
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Figure 16: Comparison of the interval FRFs of the two-dimensional reference
model at the support.
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Figure 17: Fuzzy FRF of the two-dimensional reference model, computed using
the transformation algorithm.



An Efficient Response Surface Based Optimisation Method 159

20 30 40 50
−9

−8.5

−8

−7.5

−7

−6.5

−6

frequency [Hz]

||l
og

10
(X

Z
,4

/F
Z

,3
)|

|

 

 

m
em

be
rs

hi
p 

le
ve

l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 18: Fuzzy FRF of the two-dimensional reference model, computed using
the linear regression based optimisation algorithm.
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Figure 19: Fuzzy FRF of the two-dimensional reference model, computed using
the Kriging response surface based optimisation algorithm.
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ally poorer accuracy of the transient dynamic response of the example discussed in
section 5.1. The optimisation in the frequency domain is very similar to the optimi-
sation in the time domain and as the frequency increases, dispersion increases and
more and more peaks and valleys enter the space defined by the uncertain param-
eters. As such, the dynamic response becomes more and more difficult to model,
which first affects the linear regression based method with its less flexible response
surface shape. The Kriging based optimisation method uses more flexible response
surfaces and is not or at least much less affected by this problem and yields accurate
results over the full frequency range. The figures at the other membership levels
confirm these conclusions and are therefore not reproduced.

Fig. 17, 18 and 19 show the fuzzy FRFs computed with the transformation method,
the linear regression based optimisation method and the Kriging based optimisation
method. The same remarks given for the interval FRF above, apply.

Based on the number of function evaluations required, the Kriging based optimisa-
tion method would be the most appropriate optimisation method for the calculation
of an interval or fuzzy frequency response function of this model.

6 Conclusions

Non-deterministic approaches are gaining momentum in the field of numerical
modelling techniques. The ability to include non-deterministic properties is of
great value for a design engineer. It enables realistic reliability assessment that
incorporates the uncertain aspects of the design. Furthermore, the design can be
optimised for robust behaviour under varying external influences. In this context,
interval and fuzzy approaches are becoming increasingly popular for the analysis
of numerical models that incorporate uncertainty in their description.

This paper presents a novel method for efficient and accurate interval and fuzzy
numerical analysis. The method is based on the global optimisation approach and
uses Kriging response surfaces and an adaptive response point selection algorithm
to search for the minima and maxima of all objective functions at once.

The application of the method on a transient dynamic finite element analysis of a
cable stayed bridge and on a harmonic dynamic finite element analysis of a bench-
mark model shows its superior efficiency compared to the classical local and global
optimisation algorithms.
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