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Modeling of Particle Debonding and Void Evolution in
Particulated Ductile Composites

B.R. Kim1 and H.K. Lee1,2

Abstract: Damage characteristic of particulated ductile composites is a complex
evolutionary phenomenon that includes particle debonding and void evolution with
the accumulation of the plastic straining of the ductile matrix. In this paper, a
micromechanical elastoplastic damage model for ductile matrix composites con-
sidering gradually incremental damage (particle debonding and void evolution) is
proposed to predict the overall elastoplastic behavior and damage evolution in the
composites. The constitutive damage model proposed in an earlier work by the
authors [Kim and Lee (2009)] considering particle debonding is extended to ac-
commodate the gradually incremental damage and elastoplastic behavior of the
composites. On the basis of the ensemble-averaged effective yield criterion, a mi-
cromechanical framework for predicting the effective elastoplastic damage behav-
ior of ductile composites is derived in the present study. A series of numerical sim-
ulations including parametric tests are carried out to illustrate stress-strain response
of the proposed micromechanical framework. Furthermore, comparisons between
the present predictions and experimental data available in the literature are also
made to illustrate and assess the predictive capability of the proposed model.

Keywords: Gradually incremental damage, Particle debonding, Void evolution,
Elastoplastic damage behavior, Particulated ductile composites

1 Introduction

Particulated ductile composites consist of particles dispersed in a ductile matrix,
and the applied load in the composites is shared by the particles and the matrix
[Markgraaff (1996)]. Due to the variety of matrices and dispersed inclusions, par-
ticulated ductile composites can be manufactured to satisfy a wide range of material
properties such as the elastic modulus, strength, and tensile properties.
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However, due to their heterogeneous characteristics, particulated ductile compos-
ites include phases having different material properties, interfaces between the
phases, and defects (e.g., microcracks, voids). As a result, these composites have
complicated damage mechanisms such as debonding of the matrix-particle inter-
face, brittle fracture of the reinforcing particles, and ductile failuring of the matrix
[Drabek and Böhm (2005)]. Although an extensive series of experiments are re-
quired in applications of particulated ductile composites, it is time-consuming and
difficult to elucidate their mechanical behavior thoroughly due to the aforemen-
tioned complex mechanisms [Hussain and Adams (2004); Zong, Zhang, Wang,
and Zuo (2007)]. Therefore, the development of a constitutive model that consid-
ers both elastoplastic stress-strain relationships as well as the effect of dominant
damage mechanisms is essential for an accurate prediction of the behavior of par-
ticulated ductile composites.

Various micromechanical approaches have been developed for estimation of me-
chanical behavior of particulated ductile composites. These approaches can be
classified as 1) the effective field approximation (e.g., Eshelby’s inclusion method,
Mori-Tanaka method, self-consistent method, differential scheme) and 2) discrete
microgeometries approximation such as unit cell based model [Aboudi (1989);
Böhm and Han (2001); Böhm, Han, and Eckschlager (2004); Li and Wongsto
(2004); Pahr and Böhm (2008)], embedding approach [Dong and Schmauder (1996)],
windowing methods [Hazanov and Huet (1994); Khisaeva and Ostoja-Starzewski
(2006)], and other approaches based on finte element method [Takashima, Naka-
gaki, and Miyazaki (2007); Haasemann, Kästner, and Ulbricht (2009)]. The details
of these micromechanical approaches can be found in Böhm (1998).

Recently, in a preceding work [Kim and Lee (2009)], the authors of this study
proposed a damage model that incorporated a cumulative step-stress concept [Re-
liaSoft (2003)] into the Weibull statistical function for a more realistic simulation
of evolutionary particle debonding in composites. The Weibull damage approach
has been used for predictions of the interfacial failure or damage in composites.

Zhao and Weng (1995) and Ju and Lee (2000, 2001) proposed a damage model
based on the Weibull statistical function to describe the evolutionary interfacial
debonding in particle or fiber-reinforced composites. The internal stress of inclu-
sion, denoted by σ̄σσ p, was chosen to be the controlling factor of the function, which
was required to initiate particle debonding. For simplicity, σ̄σσ p was assumed to
be the internal stress of (original) perfectly bonded inclusions. However, in mi-
croscale particle debonding, subsequent damage states can be affected by current
and previous damage states. Additionally, these damage states accumulate [Relia-
Soft (2003); Kim and Lee (2009)]. The cumulative interfacial damage model is
recapitulated in Appendix I; the details can be also found in Kim and Lee (2009).
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With the accumulation of the plastic straining of the ductile matrix, the voids nu-
cleated by the cumulative interfacial damage between particles and the matrix may
grow. The void evolution including void nucleation and growth is the dominant
damage factor for predicting the elastoplastic behavior of particulated ductile com-
posites [Huber, Brechet, and Pardoen (2005); Bonfoh and Lipinski (2007)]. Nu-
merous studies of the void evolution in composite materials have been done by
many researchers [McClintock (1968); Rice and Tracey (1969); Brown and Em-
bury (1973); Gurson (1977); Tvergaard (1996); Agarwal, Gokhale, Graham, and
Horstemeyer (2003); Huber, Brechet, and Pardoen (2005); Bonfoh and Lipinski
(2007)].

The present study aims to extend the micromechanical framework of our preced-
ing work [Kim and Lee (2009)] to accommodate the overall elastoplastic behavior
of particulated ductile composites together with the gradually incremental damage
considering cumulative particle debonding and void evolution. The influence of the
gradually incremental damage on the elastic and elastoplastic responses of the com-
posites is also investigated. Micromechanical formulations combining the effective
elastic moduli of composites proposed by the authors [Kim and Lee (2009)] and
the elastoplastic formulation of the ductile matrix under arbitrary three-dimensional
(3D) loading/unloading histories are proposed to predict the effective elastoplastic
behavior of particulated ductile composites. All particles in particulated ductile
composites are assumed to be randomly dispersed elastic spheres that are non-
interacting and initially bonded perfectly in a ductile matrix.

As loads or deformations increase, some perfectly bonded particles are assumed
to lose their load-carrying capacity along the debonded direction and become par-
tially debonded particles in the initial (first) damage state. It is assumed that some
partially debonded particles are regarded as equivalent, transversely isotropic in-
clusions after particle debonding between particles and the ductile matrix [Ju and
Lee (2001)]. Furthermore, as loads or deformations further increase, some par-
tially debonded particles are assumed to lose all of their load-carrying capacity
and finally become completely debonded. It is also assumed that the completely
debonded particles are replaced by the voids having the same volume fraction (see
also, Bonfoh and Lipinski (2007)). By Kim and Lee (2009), a comparison between
noncumulative and cumulative damage models was carried out to investigate the
influence of the cumulative (interfacial debonding) damage on the interfacial dam-
age evolution in composites. Here, the values of the internal stress of the particles
σ̄σσ p and the Weibull parameter S0 are changed as the damage state evolves in both
damage models.

The present study focuses on the gradually incremental damage behavior and elasto-
plastic behavior of particulated ductile composites. A series of numerical simula-
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tions including parametric tests are carried out to illustrate stress-strain response
of the proposed micromechanical framework. Furthermore, comparisons between
the present predictions and experimental data available in the literature are made to
illustrate and assess the predictive capability of the proposed model.

2 Effective elastoplastic behavior of particulated ductile composites

Several studies to characterize the damage in particulated ductile composites have
proposed the use of the Weibull statistics for damage evolution. Studies for as-
sessing the vulnerability of reinforcing particles to brittle fracturing have been con-
ducted by Wallin, Saario, and Törrönen (1987), Lewis and Withers (1995), Antret-
ter and Fischer (1998), Ghosh and Moorthy (1998), LLorca and González (1998)
and Han, Eckschlager, and Böhm (2001). However, due to the superior material
properties of particles compared with the matrix, the damage in the matrix and the
interface between particles and the matrix rather than the damage of the particles
has to be treated preferentially for the characterization of the mechanical behav-
ior of particulated ductile composites [Inem and Pollard (1993); Tohgo and Weng
(1994); Rajan, Pillai, and Pai (1998); Evans (1999); Chen, Huang, and Mai (2003);
Liu, Sun, and Ju (2004)]. From this viewpoint, this study focuses on the ductile
damage such as particle debonding and void evolution in particulated ductile com-
posites. In particular, a cumulative interfacial damage model and a void evolution
model are employed for a more realistic simulation of gradually incremental dam-
age in particulated ductile composites.

For the formulation of the elastoplastic damage response of particulated ductile
composites, let us consider an initially perfectly bonded two-phase composite con-
sisting of an elastoplastic matrix (phase 0) with an elastic bulk modulus κ0 and an
elastic shear modulus µ0, and perfectly bonded elastic spherical particles (phase 1)
with a bulk modulus κ1 and an elastic shear modulus µ1 subjected to a uniaxial
tensile loading. As loads or deformations increase, evolutionary damage between
particles and the matrix in the composite may occur.

In the present derivation, it is assumed that the composite undergoes a two-step
damage process as follows: some perfectly bonded particles lose their load-carrying
capacity along the debonded direction and become partially debonded particles
(phase 2) in the initial (first) damage state and some partially debonded particles
lose their total load-carrying capacity and finally become completely debonded par-
ticles in the final damage state as loads or deformations continue to increase [Kim
and Lee (2009)]. Here, the completely debonded particles are regarded as voids
(phase 3) having the same volume fraction. A schematic description of the gradu-
ally incremental damage in particulated ductile composites subjected to a uniaxial
tension is shown in Fig. 1.
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Figure 1: A schematic description of the gradually incremental damage in particu-
lated ductile composites subjected to a uniaxial tension

The cumulative damage model proposed by Kim and Lee (2009) recapitulated in
Appendix I is employed here to model the particle debonding. The volume fraction
of the r-phase inclusion according to the cumulative particle debonding between
perfectly bonded or partially debonded particles and the matrix are also formulated
in Appendix I. The volume fraction of voids (the completely debonded particles)
initially nucleated by particle debonding is assumed to increase as the voids grow.
Since the volume fraction of voids is governed by void nucleation and void growth
rates, the incremental form of volume fraction of voids can be expressed as [cf.,
Bonhof and Lipinski (2007)]

∆φ3 = ∆φ
n
3 +∆φ

g
3 (1)

where ∆φ n
3 and ∆φ

g
3 denote the incremental form of volume fraction of voids due to

their nucleation and growth, respectively. Following Eq. (21) in Appendix I, ∆φ n
3

reads

∆φ
n
3 = (φ3)i+1− (φ3)i (2)

in which the subscript i denotes the iteration number of stress increment. In addi-
tion, ∆φ

g
3 can be expressed as [cf., Bonhof and Lipinski (2007)]

∆φ
g
3 = (1−φ)∆ε

p
ii (3)

where φ is the (original) volume fraction of the particles and ε
p
ii denotes the ii

components of the overall plastic strain.

The elastic strain ε̄εε
e of the composite can be directly obtained by using the fol-

lowing constitutive relation between the macroscopic stress σ̄σσ and the elastic strain
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ε̄εε
e:

σ̄σσ = C∗ : ε̄εε
e (4)

where the effective stiffness of the four-phase composite C∗ was explicitly derived
by Kim and Lee (2009) as

C∗ = F̃i jkl(c1,c2,c3,c4,c5,c6) (5)

in which the parameters c1, . . . ,c6 can be found in Eqs. (19)-(24) of Kim and Lee
(2009) and details of the transversely isotropic fourth-rank tensor F̃ can be found
in Ju and Lee (2001).

For the elastoplastic behavior of the ductile matrix of particulated ductile compos-
ites, the J2-type von-Mises yield criterion with isotropic hardening law is adopted.
Accordingly, the following yield criterion is valid [see, e.g., Ju and Tseng (1996);
Ju and Lee (2000); Lee and Pyo (2008)].

F(σσσ , ēp) = H(σσσ)−K2(ēp)≤ 0 (6)

where σσσ and ēp are the stress and the equivalent plastic strain at any point in the
matrix, respectively. In addition, K(ēp) signifies the isotropic hardening function
of the matrix and H(σσσ) ≡ σσσ : Id : σσσ is the square of the deviatoric stress norm in
which Id denotes the deviatoric part of the fourth-rank identity tensor I [Ju and Lee
(2000)].

The ensemble average of H(x|ϖ) over all possible realizations in which x is in the
ductile matrix, denoted by H(x|ϖ) = σσσ(x|ϖ): Id : σσσ(x|ϖ) [Ju and Chen (1994);
Ju and Tseng (1996); Ju and Lee (2000, 2001); Ju and Sun (2001); Lee and Pyo
(2008)], can be evaluated by collecting and summing up all the current stress norm
perturbations produced by any inclusions centered at x(1)

q (q=1-3) in q-phase inclu-
sions and averaging over all possible locations of x(1)

q . Accordingly, the ensemble
average of H(x|ϖ) can be recast into a more simplified form [cf., Ju and Lee (2000,
2001)]:

〈H〉m (x)∼= H0 +
N1

V

∫
r̂1

dr̂1

∫
A(r̂1)

{
H(r̂1)−H0}dA+

N2

V

∫
r̂2

dr̂2

∫
A(r̂2)

{
H(r̂2)−H0}dA+

N3

V

∫
r̂3

dr̂3

∫
A(r̂3)

{
H(r̂3)−H0}dA+ · · · (7)

Here, H0 = σσσ0: Id : σσσ0, where σσσ0 is the far-field stress, is the square of the far-
field stress norm in the matrix, and Nq is the total numbers of q-phase inclusions



Modeling of Particle Debonding and Void Evolution 259

dispersed in a representative volume V . In addition, A(r̂q) is a spherical surface of
radius r̂q (q=1-3) with r̂q = x−xq and r̂q ≡

∥∥r̂q
∥∥.

By using the two identities in Ju and Chen (1994) and the five identity groups and
inner product of the fourth-rank tensor in Ju and Lee (2001), the ensemble-averaged
current stress norm at any point in the matrix can be derived after a series of lengthy
derivations as

〈H〉m (x) = σσσ
0: T :σσσ0 = σ̄σσ : T̄ : σ̄σσ (8)

where σσσ0 and σ̄σσ signify the far-field stress and the macroscopic stress, respectively.
From the relation between σσσ0 and σ̄σσ expressed as σσσ0 = P : σ̄σσ [Ju and Lee (2000,
2001)], the relation between the positive definite fourth-rank tensors T and T̄ is
defined as

T̄≡ PT ·T ·P (9)

in which the components of the positive definite fourth-rank tensor T, P, and T̄ read

Ti jkl = T1ñiñ jñkñl +T2(δikñ jñl +δil ñ jñk +δ jkñiñl +δ jl ñiñk)+T3δi jñkñl+
T4δkl ñiñ j + T5δi jδkl + T6(δikδ jl + δilδ jk) (10)

Pi jkl = P1ñiñ jñkñl +P2(δikñ jñl +δil ñ jñk +δ jkñiñl +δ jl ñiñk)+P3δi jñkñl+
P4δkl ñiñ j + P5δi jδkl + P6(δikδ jl + δilδ jk) (11)

T̄i jkl = T̄1ñiñ jñkñl + T̄2(δikñ jñl +δil ñ jñk +δ jkñiñl +δ jl ñiñk)+ T̄3δi jñkñl+
T̄4δkl ñiñ j + T̄5δi jδkl + T̄6(δikδ jl + δilδ jk) (12)

in which the parameters T1, . . . ,T6 for fourth-rank tensor T and the parameters
P1, . . . ,P6 for fourth-rank tensor P are given in Appendices II and III, respectively.
The components of the fourth-rank tensor T̄ can be derived by replacing (Pp

1 , . . . ,Pp
6 )

and (T p
1 , . . . ,T p

6 ) in Eqs. (61)-(66) of Ju and Lee (2001) with (P1, . . . ,P6) and
(T1, . . . ,T6) in Appendices III and II, respectively.

According to Ju and Lee (2000, 2001), the ensemble-averaged current stress norm
for any point x in the four-phase composite can be defined as√
〈H〉(x) = (1−φ1)

√
σ̄σσ : T̄ : σ̄σσ (13)

where φ1 is the volume fraction of current perfectly bonded fibers. Accordingly,
the effective yield function for the four-phase composite given in Eq.(6) becomes

F̄ = (1−φ1)2
σ̄σσ : T̄ : σ̄σσ −K2(ēp) (14)
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In addition, the following simple power-law type isotropic hardening function is
adopted here.

K(ēp) =

√
2
3
{σy +h(ēp)q} (15)

where σy denotes the initial yield stress, and h and q signify the linear and expo-
nential isotropic hardening parameters, respectively [see also, Ju and Lee (2000,
2001)]. The effective ensemble-averaged plastic strain rate ˙̄ε p and the effective
equivalent plastic strain rate ˙̄ep required for obtaining the ensemble-averaged cur-
rent stress norm are defined in Eqs. (69) and (70) of Ju and Lee (2001), respectively.
Details of the elastoplastic stress-strain relation under uniaxial tension can also be
found in Ju and Lee (2001) and Lee and Simunovic (2001).

3 Predictions of elastoplastic damage response of particulated ductile com-
posites

To illustrate the proposed micromechanical framework, the elastoplastic response
of SiC particulate reinforced Al-Cu matrix composites (20% in particle volume
fractions) is predicted using the proposed model. The constituent properties and
plastic parameters of the composites are adopted from those used in Ju and Lee
(2000) as follows: Em=55.8 GPa, νm=0.32, Ep=397 GPa, νp=0.2; σy=87.8 MPa,
h=972 MPa, q=0.55, where the subscripts m and p denote the matrix and parti-
cles, respectively. The predicted stress-strain response of the particulated ductile
composites is shown in Fig. 2 and can be divided into four parts as:

(a) The linear part OA in the stress-strain curve reflects the elastic behavior of
particulated ductile composites where no significant damage occurs.

(b) The AB part illustrates a nonlinear behavior of the composites caused by par-
ticle interfacial debonding as shown in the evolution curve for partially debonded
particles in the figure.

(c) The BC part in the stress-strain curve, distinguished from the AB part, indicate
that the void growth initiated at the starting point of plastic behavior (point B)
and the void nucleation by particle interfacial debonding have an influence on the
nonliear behavior of the composites.

(d) The CD part in the stress-strain curve corresponds to the plastic behavior fol-
lowing the isotropic hardening law/flow rule and ductile damage caused by the void
evolution.

A series of parametric tests for the gradually incremental damage and elastoplas-
tic behavior of the composites are conducted next. In this simulation, the value
of the Weibull parameter (S0)1 related to the first damage state is fixed to be:
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Fig. 2. The predicted stress-strain curve of particulated ductile composites  
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Figure 2: The predicted stress-strain curve of particulated ductile composites

(S0)1=1.09*σy, whereas various values of the Weibull parameters (S0)2 related to
the second damage state are considered ((S0)2=2*(S0)1, 3*(S0)1, 4*(S0)1, 5*(S0)1)
in order to examine the influence of (S0)2 on the elastoplastic response of the com-
posites. Fig. 3 shows the predicted stress-strain curves of the composites and the
corresponding damage evolution curves. As noted in Kim and Lee (2009), it is
shown from Fig. 3(a) that the Weibull parameter (S0)2 has a significant influence
on the damage evolution in particulated ductile composites and partially debonded
particles rapidly become completely debonded particles as (S0)2 value continues
to increase. This phenomenon can be clearly observed in the damage evolution
curves in Fig. 3(b). Fig. 4 shows the variation of the normalized elastic moduli
E/E0 according to the gradually incremental damage. Here, E0 and E denote the
initial Young’s modulus and the current Young’s modulus due to the gradually in-
cremental damage in particulated ductile composites, respectively. It is also clear
that the gradually incremental damage shown in Fig. 3 results in the degradation of
the elastic modulus. Sharp degradation occurs as (S0)2 value continues to increase.

A parametric test on the Weibull parameter M is also carried out. The predicted
stress-strain curves and corresponding damage evolution curves are presented in
Figs. 5 and 6, respectively. The initiation and termination of the particle debonding
for each M value are marked on the stress-strain curves to clearly illustrate the
region affected by the particle debonding (“particle debonding region”) in Fig. 5.
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Fig. 3. The stress-strain curves of particulated ductile composites predicted by the 
proposed gradually incremental damage model (a) and the corresponding damage 
evolution curves (b) 
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Figure 3: The stress-strain curves of particulated ductile composites predicted by
the proposed gradually incremental damage model (a) and the corresponding dam-
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Figure 5: The predicted stress-strain curves of particulated ductile composites with
various M values ((S0)1=1.09*σy, (S0)2=2*(S0)1, h=200MPa, q=0.1)

It is observed from Figs. 5 and 6 that the particle debonding region grows as the M
value decreases.

Another parametric test on the plastic parameters h and q is conducted to identify
the influence of those parameters on the elastoplastic behavior of the composites.
The predicted stress-strain curves of the composites with various h and q values are
exhibited in Fig. 7. It is shown, as expected, that the stress-strain curves increase as
h value increases, whereas the stress-strain curves decrease as the q value increases.
The influence of the q value on the elastoplastic response is shown to be more
pronounced than that of the h value due to the different nature of these parameters.

4 Characteristics of the nonlinear stress-strain response of particulated duc-
tile composites

The characteristics of the nonlinear stress-strain response of particulated ductile
composites are thoroughly investigated in this section. A comprehensive under-
standing of the characteristics of the nonlinear stress-strain response, mainly due to
damage and ductility, in particulated ductile composites is essential for an accurate
characterization of particulated ductile composites. In this section, the influence
of the initiation and termination of particle debonding on the effective elastoplastic
behavior of the composites is investigated for a better understanding of the charac-
teristics of the nonlinear stress-strain response of the composites. Only the particle



Modeling of Particle Debonding and Void Evolution 265

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.000 0.003 0.006 0.009 0.012

Strain

V
ol

um
e 

fr
ac

tio
n 

of
 p

ar
tic

le
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.000 0.003 0.006 0.009 0.012

Strain

V
ol

um
e 

fr
ac

tio
n 

of
 p

ar
tic

le
s

 
(a) M=1.0                            (b) M=2.0 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.000 0.003 0.006 0.009 0.012

Strain

V
ol

um
e 

fr
ac

tio
n 

of
 p

ar
tic

le
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.000 0.003 0.006 0.009 0.012

Strain

V
ol

um
e 

fr
ac

tio
n 

of
 p

ar
tic

le
s

 
(c) M=3.0                            (d) M=4.0 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.000 0.003 0.006 0.009 0.012

Strain

V
ol

um
e 

fr
ac

tio
n 

of
 p

ar
tic

le
s

 
(e) M=5.0  

 

Perfectly bonded particles 

Voids 

Perfectly bonded particles 

Voids 

Perfectly bonded particles 

Voids 

Perfectly bonded particles 

Voids 

Voids 

Perfectly bonded particles 

ε11 ε11 

ε11 ε11 

ε11 

Partially debonded particles Partially debonded particles 

Void nucleation 

Void growth 

Void nucleation 

Void growth 

Partially debonded particles 

Void nucleation 

Void growth 

Partially debonded particles 

Void nucleation 

Void growth 

Partially debonded particles 

Void nucleation 

Void growth 

Figure 6: The damage evolution curves corresponding to the predicted stress-strain
curves in Fig. 5
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Figure 7: The predicted stress-strain curves of particulated ductile composites with
various h and q values

debonding and ductility of the matrix, two dominant factors affecting the nonlin-
ear behavior of the composites, are considered in this simulation. The values of
the Weibull parameters (S0)1 and the plastic parameters h and q are fixed to be:
(S0)1=1.09*σy, h=700 MPa, and q=0.5, for simplicity. Two different values of the
Weibull parameter (S0)2 related to the second damage state and the Weibull parame-
ter M are used: (S0)2=10*(S0)1, M=7; (S0)2=2*(S0)1, M=5 for a clear representation
of the two different nonlinear stress-strain responses of the composites.

A two-step nonlinear stress-strain response, comprising the particle debonding re-
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Fig. 8. Two different nonlinear stress-strain responses in particulated ductile 
composites: (a) two-step nonlinear stress-strain response and (b) three-step 
nonlinear stress-strain response 
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gion and the plastic region, along with a three-step nonlinear stress-strain response
comprising the particle debonding region, the particle debonding and plastic re-
gion, and the plastic region, are observed, as shown in Fig. 8. In both two-step
and three-step nonlinear stress-strain response cases, the initial nonlinear stress-
strain response is primarily due to the particle debonding between particles and the
matrix. When (S0)2=10*(S0)1, the evolution of partially debonded particles into
voids accelerates, resulting in a rapid saturation of partially debonded particles into
completely debonding particles even prior to the initiation of the plastic response
(two-step stress-strain response), as shown in Fig. 8(a).

In contrast, a three-step nonlinear stress-strain response is observed when the value
of the Weibull parameter (S0)2 is low (Fig. 8(b)). It can thus be summarized that
accurate characterization of Weibull parameters is desirable for a realistic perfor-
mance prediction of particulated ductile composites since the Weibull parameter
(S0)2 influences the effective elastoplastic behavior of ductile matrix composites.

5 Experimental comparison

To highlight the applicability of the present model for predicting the elastoplastic
incremental damage behavior of particulated ductile composites, the present pre-
dictions are compared with experimental data available in the literature [Papazian
and Adler (1990); Llorca, Needleman, and Suresh (1991)]. The mechanical behav-
ior of SiC particulate-reinforced aluminum alloy matrix composites under uniaxial
tension is predicted and the results are compared with the experimental data re-
ported by Papazian and Adler (1990). The material properties of the composites are
adopted according to Papazian and Adler (1990) as follows: Em=73 GPa, νm=0.33,
and Ep=485 GPa, νp=0.2, φ=20%, and σy=230 MPa. As the Weibull parame-
ters and plastic parameters were not reported in Papazian and Adler (1990), these
parameters are estimated in accordance with the experimental data reported in Pa-
pazian and Adler (1990) as: h=1072 MPa, q=0.11, (S0)1=445 MPa, (S0)2=2*(S0)1,
and M=3.0.

Fig. 9(a) shows a comparison of stress-strain curves between the present predic-
tions using the gradually incremental damage model and the experimental data
[Papazian and Adler (1990)]. The stress-strain curves beyond ε11=0.015 are not
displayed due to the small-strain constraint of the proposed model [Ju and Lee
(2000)]. The evolution of the volume fractions of perfectly bonded particles, par-
tially debonded particles, and voids corresponding to the present predictions in Fig.
9(a) are shown in Fig. 9(b). The evolution curve of the normalized elastic moduli
is also plotted in Fig. 9(b). Fig. 9(a) shows that the stress-strain curve predicted
by the proposed gradually incremental damage model is in good quantitative agree-
ment with the experimental data.
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The present prediction is also compared with the experimental data of Llorca,
Needleman, and Suresh (1991) to further assess the predictive capability of the
proposed model. The uniaxial stress-strain behavior of an Al-Cu matrix contain-
ing SiC particles is predicted and the results are compared with the experimental
data [Llorca, Needleman, and Suresh (1991)]. The material properties of the com-
posites are adopted in accordance with Llorca, Needleman, and Suresh (1991) as:
Em=71.8 GPa, νm=0.33, and Ep=450 GPa, νp=0.17, φ=13%, and σy=170 MPa.
In accordance with the experimental data documented in Llorca, Needleman, and
Suresh (1991), the Weibull and plastic parameters are estimated to be: (S0)1=380
MPa, (S0)2=2*(S0)1, and M=5.0 (for particle debonding); h=512 MPa and q=0.15
(for plastic behavior).

Based on the above Weibull and plastic parameters, the comparison of stress-strain
curves between the present predictions and the experimental data [Llorca, Needle-
man, and Suresh (1991)] is made and the results are shown in Fig. 10(a). The
incremental damage evolution curves and evolution curve of the normalized elastic
moduli corresponding to the predicted stress-strain curve in Fig. 10(a) are shown
in Fig. 10(b). The stress-strain curve in Fig. 10(a) predicted by the gradually in-
cremental damage model is shown to have a good correlation with the experimen-
tal data on dilute particulated ductile composites. Good agreements between the
present prediction and experimental data verify the predictive capability of the pro-
posed micromechanical elastoplastic model considering the gradually incremental
damage.

6 Concluding remarks

A micromechanical elastoplastic damage model for ductile matrix composites con-
sidering gradually incremental damage (particle debonding and void evolution) has
been proposed to predict the overall elastoplastic behavior and damage evolution in
the composites. The constitutive damage model [Kim and Lee (2009)] considering
particle debonding is extended to accommodate the gradually incremental damage
and elastoplastic behavior of the composites. Based on the ensemble-averaged ef-
fective yield criterion, a micromechanical framework for predicting the effective
elastoplastic damage behavior of ductile composites is derived in the present study.
A series of numerical simulations and comparisons between the present predictions
and experimental data available in the literature are made to illustrate and assess the
predictive capability of the proposed model. The findings of the present study can
be summarized as follows:

1) As loads or deformations continue to increase, damage induced by particle
debonding in composites is accumulated and affects the behavior of composites.
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Fig. 10. Comparison of stress-strain curves between the present prediction and 
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Particulated ductile composites

F1 [(σp)1] F2 [(σp)2] F3 [(σp)3] Fn [(σp)n]

Cumulative interfacial damage

Fn [(σp)n] : Weibull damage function in nth step  *

 
Figure 11: The schematic description of the gradually incremental damage model
[cf., Fig. 2 of Kim and Lee (2009)]

2) The voids nucleated by the cumulative interfacial damage between particles and
the matrix grow with the accumulation of plastic deformation. This phenomenon
causes the progressive damage behavior of ductile matrix composites.

3) The Weibull damage parameters (e.g., (S0)2) have a significant influence on the
damage evolution in composites, resulting in different nonlinear stress-strain re-
sponses.

4) Various damage phenomena in ductile matrix composites are simulated using the
proposed model by varying values of the Weibull damage parameters and plastic
parameters.

The present study has demonstrated the capability of the proposed micromechani-
cal framework for predicting the elastoplastic damage behavior of composites. The
proposed micromechanical elastoplastic model is shown to be suitable for the per-
formance prediction of particle-reinforced ductile matrix composites with gradu-
ally incremental damage. However, a unified experimental and numerical study
should be carried out to calibrate the model parameters of the proposed model.
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Appendix I Recapitulation of cumulative damage model [Kim and Lee (2009)]

The cumulative damage model proposed by Kim and Lee (2009) is recapitulated
for completeness of the proposed incremental damage model. In phenomenological
aspect of gradually evolutionary damage, the subsequent damage states are affected
by the current and previous damage states and these damage states are accumulated
as illustrated in Fig. 11. Following Kim and Lee (2009), the cumulative damage
model for the gradually incremental damage can be expressed as [Kim and Lee
(2009)]

F1[(σ̄p)1] = 1− exp

{
−
[
(σ̄p)1

(S0)1

]M
}

(16)

Fn[(σ̄p)n] = 1− exp

{
−
[
[(σ̄p)n− (σ̄p)n−1]+ (σeq)n−1

(S0)n

]M
}

(n = 2, . . . ,N) (17)

with

(σeq)n−1 = [(σ̄p)n−1− (σ̄p)n−2]
[

(S0)n

(S0)n−1

]
+(σeq)n−2 (18)

where (σeq)n−1 is the equivalent stress for the nth damage step. Considering the
proposed damage model, the current volume fraction of each phase (completely
debonded particles, partially debonded particles, and perfectly bonded particles)
for the proposed incremental damage model can be expressed as

φ3 = φ

[
1− exp

{
−
[
(σ̄p)1

(S0)1

]M
}]
·

[
1− exp

{
−
[
[(σ̄p)2− (σ̄p)1]+ (σeq)1

(S0)2

]M
}]
(19)

φ2 = φ

[
1− exp

{
−
[
(σ̄p)1

(S0)1

]M
}]
−φ3 (20)

φ1 = φ −φ2−φ3 (21)



278 Copyright © 2009 Tech Science Press CMES, vol.47, no.3, pp.253-281, 2009

with

(σeq)1 = (σ̄p)1

[
(S0)2

(S0)1

]
(22)

where φ is the original particle volume fraction, φr is the r-phase volume fraction,
and (S0)1, (S0)2, and M are the Weibull parameters. In addition, σ̄p is the (averaged)
internal stress and (·)r denotes the r-phase. Details of the cumulative damage model
can be found in Kim and Lee (2009).

Appendix II Parameters T1, . . . ,T6 in Eq. (10)

The parameters T1, . . . ,T6 in Eq. (10) are the components of the fourth-rank tensor
F̃i jkl(T1, . . . ,T6) and take the form:

T1 =
φ2

35
{

840µ0(ξ2 +5ξ4)+2880µ
2
0 (7ξ

2
1 +56ξ1ξ2 +28ξ

2
2 +22ξ2ξ4 +42ξ1ξ6+

26ξ2ξ6 +30ξ4ξ6)−13440µ
2
0 [(3ξ

2
1 +24ξ1ξ2 +12ξ

2
2 +24ξ2ξ4 +18ξ2ξ5 +18ξ1ξ6+

26ξ2ξ6 +10ξ4ξ6)+2ν0(−3ξ2ξ4 +9ξ2ξ5 +4ξ2ξ6 +2ξ4ξ6)]+
5600

3
µ

2
0 [5(5ξ

2
1 +

40ξ1ξ2 +32ξ
2
2 +6ξ1ξ3 +24ξ2ξ3 +9ξ

2
3 +40ξ2ξ4 +48ξ2ξ5 +24ξ1ξ6 +44ξ2ξ6)+

10ν0(−ξ
2
1 8ξ1ξ2 +8ξ

2
2 +6ξ1ξ3 +24ξ2ξ3 +9ξ

2
3 −8ξ2ξ4 +12ξ2ξ5−12ξ1ξ6 +8ξ2ξ6+

12ξ4ξ6)+ν
2
0 (19ξ

2
1 +152ξ1ξ2 +136ξ

2
2 +30ξ1ξ3 +120ξ2ξ3 +45ξ

2
3 −28ξ2ξ4−

120ξ2ξ5 + 84ξ1ξ6−104ξ2ξ6−60ξ4ξ6)]} (23)

T2 =
φ2

35
{1260µ0ξ2 +1440 µ

2
0 ξ2(153ξ2 +194ξ6)+6720µ

2
0 ξ2[−(67ξ2 +6ξ6)+

2ν0(ξ2−54ξ6)]+5600µ
2
0 ξ2[40(2ξ2 +ξ6)−10ν0(9ξ2 +10ξ6)+

ν
2
0 (61ξ2 + 178ξ6)]} (24)

T3 =
φ2

35
{
−4200µ0ξ2 +2880µ

2
0 (7ξ1ξ4 +17ξ2ξ4−7ξ1ξ6−13ξ2ξ6+ 6ξ4ξ6)+

13440µ
2
0 [(−3ξ1ξ4 +9ξ2ξ5 +3ξ1ξ6−7ξ2ξ6−4ξ4ξ6)+ν0(−3ξ2ξ4 +9ξ2ξ5+

32ξ2ξ6 +2ξ4ξ6)]+
5600

3
µ

2
0 [5(5ξ1ξ4 +3ξ3ξ4 +3ξ1ξ5−12ξ2ξ5 +9ξ3ξ5−2ξ1ξ6+

6ξ2ξ6 +6ξ3ξ6 +12ξ4ξ6)+10ν0(−ξ1ξ4 +3ξ3ξ4 +3ξ1ξ5 +6ξ2ξ5 +9ξ3ξ5 +4ξ1ξ6+

6ξ3ξ6−12ξ4ξ6)+ν
2
0 (19ξ1ξ4 +90ξ2ξ4 +15ξ3ξ4 +15ξ1ξ5 +120ξ2ξ5 +45ξ3ξ5−

4ξ1ξ6−48ξ2ξ6 + 30ξ3ξ6 + 72ξ4ξ6)]} (25)
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T4 =
φ2

35
{
−4200µ0ξ4 +2880µ

2
0 (7ξ1ξ4 +17ξ2ξ4−7ξ1ξ6−13ξ2ξ6+ 6ξ4ξ6)+

13440µ
2
0 [(−3ξ1ξ4 +9ξ2ξ5 +3ξ1ξ6−7ξ2ξ6−4ξ4ξ6)+ν0(−3ξ2ξ4 +9ξ2ξ5+

32ξ2ξ6 +2ξ4ξ6)]+
5600

3
µ

2
0 [5(5ξ1ξ4 +3ξ3ξ4 +3ξ1ξ5−12ξ2ξ5 +9ξ3ξ5−2ξ1ξ6+

6ξ2ξ6 +6ξ3ξ6 +12ξ4ξ6)+10ν0(−ξ1ξ4 +3ξ3ξ4 +3ξ1ξ5 +6ξ2ξ5 +9ξ3ξ5 +4ξ1ξ6+

6ξ3ξ6−12ξ4ξ6)+ν
2
0 (19ξ1ξ4 +90ξ2ξ4 +15ξ3ξ4 +15ξ1ξ5 +120ξ2ξ5 +45ξ3ξ5−

4ξ1ξ6−48ξ2ξ6 + 30ξ3ξ6 + 72ξ4ξ6)]} (26)

T5 =−1
3

+
φ2

35
{
−20160µ

2
0 (ξ 2

4 −2ξ4ξ6 +2 ξ
2
6 )+

5600
3

µ
2
0 [5(5ξ

2
4 +6ξ4ξ5 +9ξ

2
5−

4ξ4ξ6 +12ξ5ξ6−4ξ
2
6 )+10ν0(−ξ

2
4 +6ξ4ξ5 +9ξ

2
5 +8ξ4ξ6 +12ξ5ξ6 +8ξ

2
6 )+

ν
2
0 (19ξ

2
4 +30ξ4ξ5 +45ξ

2
5 −8ξ4ξ6 +60ξ5ξ6−8ξ

2
6 )]}+

200
3

(1−2ν0)2
[

φ1

(3α1 +2β1)2 +
φ3

(3α3 +2β3)2

]
−

2(23−50ν0 + 35ν
2
0 )
[

φ1

β 2
1

+
φ3

3β 2
3

]
(27)

T6 =
1
2

+
φ2

35
{
−2100µ0ξ6 +99360µ

2
0 ξ6+ 6720µ

2
0 ξ

2
6 (−31+2ν0)+

5600µ
2
0 ξ

2
6 (40−50ν0 + 33ν

2
0 )
}

+ 2(23−50ν0 +35ν
2
0 )
[

φ1

β 2
1

+
φ3

β 2
3

]
(28)

with

α1 =2(5ν0−1)+10(1−ν0)
(

κ0

κ1−κ0
− µ0

µ1−µ0

)
,

β1 =2(4−5ν0)+15(1−ν0)
µ0

µ1−µ0

(29)

α3 = 2(5ν0−1), β3 = 5ν0−7 (30)

where ν0 denotes the Poisson’s ratio in the matrix, and the parameters ξ1, . . . ,ξ6 are
given by [Ju and Lee (2001)]

ξ1 =

−η2η3η4 +(η1η2 +4η2
2 )η5+

(2η1η2 +8η2
2 +4η2η3 +4η2η4 +3η3η4−3η1η5−2η1η6)η6

8η6(η2 +η6)[−η3η4 +(η1 +4η2)η5+
(η1 +4η2 +η3 +η4 +3η5 +2η6)η6]µ0

(31)
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ξ2 =
−η2

8η6(η2 +η6)µ0
(32)

ξ3 =
−η3η4 +(η1 +4η2)η5−2η3η6

8η6[−η3η4 +(η1 +4η2)η5 +(η1 +4η2 +η3 +η4 +3η5 +2η6)η6]µ0
(33)

ξ4 =
[−9η3η4 +9(η1 +4η2)η5 +6(η1 +4η2)η6]κ0−4(η1 +4η2 +3η4)η6µ0

72η6[−η3η4 +(η1 +4η2)η5 +(η1 +4η2 +η3 +η4 +3η5 +2η6)η6]κ0µ0

(34)

ξ5 =

[9η3η4−9(η1 +4η2)η5−6(η1 +4η2 +η4 +3η5 +2η6)η6]κ0+
4(η1 +4η2 +η4 +2η6)η6µ0

72η6[−η3η4 +(η1 +4η2)η5 +(η1 +4η2 +η3 +η4 +3η5 +2η6)η6]κ0µ0

(35)

ξ6 =
1

8η6µ0
(36)

in which

η1 =−60(1−ν0)
µ1

µ0−µ1
· 3κ0κ1(µ0−µ1)+ µ0µ1(κ0−κ1)

3κ0κ1(µ0−µ1)+4µ0µ1(κ0−κ1)
(37)

η2 = 15(1−ν0)
µ1

µ0−µ1
(38)

η3 = 60(1−ν0)
µ0µ1

µ0−µ1
· κ1µ0−κ0µ1

3κ0κ1(µ0−µ1)+4µ0µ1(κ0−κ1)
(39)

η4 = 30(1−ν0)
µ1

µ0−µ1
· 3κ0κ1(µ0−µ1)−2µ0µ1(κ0−κ1)

3κ0κ1(µ0−µ1)+4µ0µ1(κ0−κ1)
(40)

η5 = 2(5ν0−1)−60(1−ν0)
µ0µ1

µ0−µ1
· κ1µ0−κ0µ1

3κ0κ1(µ0−µ1)+4µ0µ1(κ0−κ1)
(41)

η6 = 2(4−5ν0)−15(1−ν0)
µ0

µ0−µ1
(42)
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Appendix III Parameters P1, . . . ,P6 in Eq. (11)

The parameters P1, . . . ,P6 in Eq. (11) are the components of the fourth-rank tensor
F̃i jkl(P1, . . . ,P6) and take the form:

P6 =
1

4Γ6
, P2 =− Γ2

4Γ6(Γ2 +Γ6)
(43)

{
P1
P4

}
= D−1

{
−2P6Γ1−4P2(Γ1 +2Γ2 +Γ3)
−2P6Γ4−4P2(Γ4 +Γ5)

}
,

{
P3
P5

}
= D−1

{
−2P6Γ3
−2P6Γ5

}
(44)

with

D≡
[

Γ1 +4Γ2 +Γ3 +2Γ6 Γ1 +4Γ2 +3Γ3
Γ4 +Γ5 Γ4 +3Γ5 +2Γ6

]
(45)

where the coefficients Γ1, . . . ,Γ6 read

Γ1 =

φ1(−7+5ν0)[−η2η3η4 +(η1η2 +4η2
2 )η5+

(2η1η2 +8η2
2 +4η2η3 +4η2η4 +3η3η4−3η1η5 +2η1η6)η6]

2η6(η2 +η6)[−η3η4 +(η1 +4η2)η5 +(η1 +4η2 +η3 +3η5 +2η6)η6]
(46)

Γ2 =
φ2η2(−7+5ν0)

2η6(η2 +η6)
(47)

Γ3 =

φ2[(7−5ν0){η3η4− (η1 +44η2)η5}+
2(1−5ν0)(η1 +4η2)η6 +20(1−2ν0)η3η6]

2η6[−η3η4 +(η1 +4η2)η5 +(η1 +4η2 +η3 +3η5 +2η6)η6]
(48)

Γ4 =
φ2(−7+5ν0)[−η3η4 +(η1 +4η2)η5}−2η4η6]

2η6[−η3η4 +(η1 +4η2)η5 +(η1 +4η2 +η3 +3η5 +2η6)η6]
(49)

Γ5 =
[(−7+5ν0)α1 +2(1−5ν0)β1]φ1

β1(3α1 +2β1)
+

φ2(−7+5ν0)[−η3η4 +(η1 +4η2)η5}−2η4η6]
2η6[−η3η4 +(η1 +4η2)η5 +(η1 +4η2 +η3 +3η5 +2η6)η6]

+

[(−7+5ν0)α3 +2(1−5ν0)β3]φ3

β3(3α3 +2β3)
(50)

Γ6 =
1
2

+(7−5ν0) ·
[

φ1

2β1
− φ2

2η6
+

φ3

2β3

]
(51)




