
Copyright © 2009 Tech Science Press CMES, vol.48, no.1, pp.83-105, 2009

Effects of the Rayleigh Number and the Aspect Ratio on
2D Natural Convection Flows

Alfredo Nicolás1, Blanca Bermúdez2 and Elsa Báez3

Abstract: Numerical results of natural convection flows in two-dimensional cav-
ities, filled with air, are presented to study the effects on the characteristics of the
flows as some parameters vary: the Rayleigh number Ra and the aspect ratio A of
the cavity. This kind of thermal flows may be modeled by the unsteady Boussinesq
approximation in stream function-vorticity variables. The results are obtained with
a simple numerical scheme, previously reported for isothermal/mixed convection
flows, based mainly on a fixed point iterative process applied to the non-linear ellip-
tic system that results after time discretization. The evolution of the flows, mainly
flows converging to a steady state, depends on the variation of the parameters in
the range: 105 ≤ Ra ≤ 107, 1

4 ≤ A ≤ 4. The study is complemented with the cor-
responding heat transfer through the Nusselt numbers as well as the time Tss when
the steady state of the flow is reached; in connection with Tss, the flow at different
times less than Tss is reported for Ra = 106 with A = 1, some findings become into
light about transient phenomenon. The validation of the results is given through
mesh size and time-step independence studies complemented with the correspond-
ing independence of some characteristics of the flow; then, the validation process
is not depending on the comparison with other works using different dimensionless
forms.

Keywords: unsteady Boussinesq approximation, Rayleigh number, aspect ratio,
heat transfer

1 Introduction

The study on natural convection flows in inclosures is usually divided into two
main classes, those heated from below and those heated from the side; the lat-
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ter class being the differentially heated cavity. This configuration models many
engineering applications; to name a few: energy storage systems, nuclear reactor
insulation, ventilation of buildings, and cooling of electronic devices; recent appli-
cations can also be found in greenhouses’ design, Rico-García et al. (2008). It has
then, considerable practical and theoretical importance becoming a classical prob-
lem in the convective heat transfer and fluid mechanics literature, Le Quéré and
Alziary Roquefort (1985).

The unsteady Boussinesq approximation for viscous incompressible fluid flow ther-
mally coupled in a gravitational system, from which the natural convection phe-
nomenon is a particular case, is based on the fact that temperature variations are
small enough to imply that density variations are negligible except for the buoyancy
force in the momentum equation, leading to an incompressible structure. That is to
say, considering the density ρ as constant except in the term ρg, with g the gravita-
tional force and ρ , from the state equation, given linearly by ρ = ρ0[1−β (T−T0)],
where T is the temperature and β = − 1

ρ0
( ∂ρ

∂T )P the constant coefficient of thermal
expansion, the density change due to changes in pressure is neglected, ρ0 and T0
denote reference density and temperature respectively; the dissipation of mechan-
ical energy is neglected; and other fluid properties, such as dynamic viscosity µ ,
the thermal diffusivity η , and the specific heat cp are assumed to be constants;
Gunzburger (1989), Landau and Lifshitz (1989). Moreover, in this work the 2D
formulation in stream function and vorticity variables is considered; then, the in-
compressibility condition is automatically satisfied and the pressure is avoided to
be computed.

Concerning the numerical method, after a convenient second order time discretiza-
tion, a non-linear system of elliptic equations is obtained which is solved through an
iterative fixed point process. Then, at each iteration, uncoupled, well-conditioned,
symmetric linear elliptic problems have to be solved for which very efficient solvers
exist regardless of the space discretization. This numerical method, previously re-
ported in Nicolás and Bermúdez (2005) for mixed convection and in Baéz and
Nicolás (2006) for natural convection in tilted cavities, has turned out to be robust
enough to study the effects on the characteristics of natural convection flows in two-
dimensional cavities, filled with air, as some parameters vary: the Rayleigh number
Ra and the aspect ratio A of the cavity (A=ratio of the height to the width). Actually,
the following facts reinforce the robustness of the numerical method: it can handle
flows like in Arefmanesh et al. (2008) where a meshless local Petrov-Galerking
(MLPG) method is used, some of them in connection with mixed convection just
mentioned, Nicolás and Bermúdez (2005); it works well for moderate and high
Reynolds numbers when is restricted to the isothermal case, Nicolás and Bermúdez
(2004) as well as, with some modification, for the formulation in velocity and vor-
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ticity variables, Nicolás and Bermúdez (2007); it can also be adapted to deal with
Darcy natural convection flows in porous media, as in Báez and Nicolás (2006),
to obtain results that can agree with those in Kosec and Ŝarler (2008) where a
mesh-free Local Radial Basis Function Collocation Method (LRBFCM) approach
is used in the primitive variables formulation. To solve the mathematical system
that involves elliptic and parabolic problems the spatial discretization process in-
volves finite difference uniform meshes, until the boundary, then none adaptive
refinement is required as in Bourantas (2009) where mesh-free methods based on
point collocation (PC) techniques are used. Among natural convection problems
involving more complex phenomenon, solid-liquid phase change in a more com-
plex geometry, the one in Avila and Solorio (2009) can be mentioned. To have
efficient solvers for problems, as the one presented here, can be the basis to handle
inverse problems, like the one for a simpler conduction problem that is stated in
Marin (2008).

It can be pointed out that to solve nonlinear problems, of which the one that is
solved in this work is a particular one, recent Meshless methods like meshless local
Petrov-Galerking (MLPG) belong to one of the most progressively developed part
of the computational mechanics and they are increasingly applied to many fields
of engineering and sciences. Actually, the MLPG methods were first published by
Atluri and Zhu (1998). Since then, this kind of methodology has been continu-
ously being applied in other kind of nonlinear problems using the Moving Least
Square (MLS) approximation, radial basis function (RBF), partition of unity (PU)
as trial functions, point collocation and meshless finite volume methods, the local
boundary integral equation (LBIE) method, and Galerkin techniques as well as lo-
cal weak-forms; to name some works on this direction: Li and Atluri (2008), Atluri
et al. (2006), (1) and (3). Moreover, a more complete presentation of these meth-
ods, including several applications and more general nonlinear problems, can be
found in Atluri et al. (2009), Atluri (2005), Atluri (2004), Atluri and Shen (2002).

To be specific, the goal of this paper is to undertake this study as the parameters
mentioned vary in the range: 105 ≤ Ra≤ 107 and 1

4 ≤ A≤ 4. The study is comple-
mented with the corresponding heat transfer through the Nusselt numbers, local and
global. The time Tss when the steady state of the flow is reached is also reported,
an issue that is not usually considered when the unsteady problem is solved; in
this way, the time length of the transient stage is determined. For Ra = 106 and
A = 1, with Tss known, the flow at different times less than Tss is reported; with this
example we are given the analogous situation given in Saeid and Pop (2004) for
porous media flows, on this regard some findings become into light about transient
phenomenon.

The results, mainly flows converging to a steady state, are accompanied with a
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validation process through mesh size and time-step independence studies comple-
mented with the corresponding independence of some parameters of the flow; an-
other source of self-validation is given by flows at different times before Tss is
reached. Then, the results are not depending on the comparison with other works
that use different dimensionless forms. However, a comparison will be made with
some works, among others: De Vahl Davis (1983), Le Quéré and Alziary Roque-
fort (1985). The first one in connection with Ra = 105, 106, and the second one
with Ra = 107; all of them with A = 1, and all these results also agree with those
in Ho-Minh et al. (2009), where the unsteady problem in stream function and vor-
ticity variables, like here, is solved using a Galerkin-RBF approach. It should be
noted that in this work besides flows in the square cavity, A = 1, attention is also
focussed on concentric annulus flows while ours on A = 1, A 6= 1 and on the cor-
responding heat transfer; another difference among both works is the way to build
the boundary condition for the vorticity, concerning rectangular cavities.

Hereafter, the paper is organized in sections as follows: 2. Mathematical model
and numerical method, 3. Results and discussion, 4. Conclusions.

2 Mathematical model and numerical method

Let Ω ⊂ RN (N = 2,3) be the region of the flow of a unsteady thermal viscous in-
compressible fluid flow, and let Γ its boundary. Under the well known hypothesis of
the Boussinesq approximation, this kind of flows is modeled by the dimensionless
system

ut −∇2u+∇p+(u ·∇)u = Ra
Pr θe (a)

∇ ·u = 0 (b)
θt − 1

Pr ∇2θ +u ·∇θ = 0 (c)
(1)

in Ω, t > 0; where u, p and θ are the velocity, pressure, and temperature of the flow
respectively, e is the unitary vector in the gravitational direction. The dimensionless
parameters Ra and Pr are the Rayleigh and Prandtl numbers given respectively by
Ra = β l3κgρ2

0
µ3cp

(Tl −T0), Pr = κ/µcp, where T0 and T1 are reference temperatures,
T0 < T1, which may be the temperature of the lateral sides when the flow region
is a rectangular cavity, l is the reference length of the region, ν (= µ

ρo
) the cine-

matic viscosity, and g the gravitational constant. The dimensionless temperature θ

is given by θ = T−T0
Tl−T0

. The system must be supplemented with initial conditions
u(x,0) = u0(x) and θ(x,0) = θ0(x) in Ω; and boundary conditions, for instance
u = f and Bθ = 0 on Γ, t ≥ 0, where B is a temperature boundary operator that can
involve Dirichlet, Neumann or mixed type boundary conditions.

Restricting the equations (1a-c) to a bi-dimensional region Ω, taking the curl in
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both sides of equation (1a) and taking into account

u1 = ∂ψ

∂y , u2 =− ∂ψ

∂x , (2)

which follow from (1b), with ψ the stream function and (u1,u2) = u; the compo-
nent in the direction k = (0,0,1) gives the scalar system

∇2ψ =−ω (a)
ωt −∇2ω +u ·∇ω = Ra

Pr
∂θ

∂x (b)
θt − γ∇2θ +u ·∇θ = 0 (c)

(3)

in Ω, t > 0; where γ = 1/Pr and ω is the vorticity which, from ωk = ∇× u =
−∇2ψk, gives (3a) and ω = ∂u2

∂x −
∂u1
∂y as well. Then, system (3) turns out to

be the Boussinesq approximation in stream function and vorticity variables. The
incompressibility condition (1b), by (2), is automatically satisfied and the pressure
p has been eliminated.

This work is concerned with natural convection in rectangular cavities, then the
equations are set in Ω = (0,a)× (0,b); a > 0, b > 0. To construct the boundary
condition for ω , which is not a trivial task to deal with, various alternatives have
been proposed, see for instance Peyret and Taylor (1983). Here the alternative in
Nicolás and Bermúdez (2004), extended to natural convection problems in rectan-
gular cavities, is used: by Taylor expansion of ψ on the boundary and using (3a),
the following O(h2

x) (the first two) and O(h2
y) (the last two) relations are obtained

ω(0,y, t) =− 1
2h2

x
[8ψ(hx,y, t)−ψ(2hx,y, t)]

ω(a,y, t) =− 1
2h2

x
[8ψ(a−hx,y, t)−ψ(a−2hx,y, t)]

ω(x,0, t) =− 1
2h2

y
[8ψ(x,hy, t)−ψ(x,2hy, t)]

ω(x,b, t) =− 1
2h2

y
[8ψ(x,b−hy, t)−ψ(x,b−2hy, t)]

(4)

where hx and hy denote the size of the spatial discretization in X and Y directions.
It should be observed that the boundary values for ω are given by values in Ω and
t > 0, still unknown, of the stream function ψ . This problem will be solved within
a fixed point iterative process.

The local Nusselt number Nu measures the heat transfer at each point on the wall
where the temperature is specified and the global Nusselt number Nu measures the
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average heat transfer on the wall. These non-dimensional parameters are defined
by:

local Nusselt number,
Nu(x) =− ∂θ

∂y |y=0,b or Nu(y) =− ∂θ

∂x |x=0,a;

global Nusselt number,

Nu |y=0,b= 1
A

∫ a
0 Nu(x)dx or

Nu |x=0,a= 1
A

∫ b
0 Nu(y)dy.

Once the time derivatives of ω and θ in (3) are approximated by the second order
approximation

ft(x,(n+1)∆t)≈ 3 f n+1−4 f n + f n−1

2∆t
(5)

where n ≥ 1, x ε Ω, ∆t > 0 is the time step, and f r ≈ f (x,r∆t), at each time level
t = (n+1)∆t the semi-discrete system, in Ω, with its corresponding boundary con-
ditions on Γ, reads

∇2ψn+1 =−ωn+1, ψn+1|Γ = 0

αωn+1−∇2ωn+1 +un+1 ·∇ωn+1 = Ra
Pr (

∂θ

∂x )n+1 + fω , ωn+1|Γ = ω
n+1
bc

αθ n+1− γ∇2θ n+1 +un+1 ·∇θ n+1 = fθ , Bθ n+1|Γ = 0,
(6)

where α = 3
2∆t , fω = 4ωn−ωn−1

2∆t , and fθ = 4θ n−θ n−1

2∆t ; ωbc denotes the boundary con-
dition of ω given in (4) and the components u1 and u2 of u, in terms of ψ , are
given by (2). After renaming (ψn+1,ωn+1,θ n+1) by (ψ,ω,θ), a non-linear elliptic
system of the following form is obtained

∇2ψ =−ω, ψ|Γ = 0 (a)
αω−∇2ω +u ·∇ω = Ra

Pr
∂θ

∂x + fω , ω|Γ = ωbc (b)
αθ − γ∇2θ +u ·∇θ = fθ , Bθ |Γ = 0. (c)

(7)

To obtain (ω1,θ 1,ψ1) in (6), a first order approximation for the time derivatives
may be applied through a subsequence with a smaller time step; a stationary system
of the form (7) is also obtained.

Denoting

Rω(ω,ψ)≡ αω−∇
2
ω +u ·∇ω− Ra

Pr
∂θ

∂x
− fω ,
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Rθ (θ ,ψ)≡ αθ − γ∇
2
θ +u ·∇θ − fθ .

Then, system (7) is equivalent, in Ω, to

∇2ψ =−ω, ψ|Γ = 0
Rθ (θ ,ψ) = 0, Bθ |Γ = 0
Rω(ω,ψ) = 0, ω|Γ = ωbc.

(8)

To solve (8), at each time level (n+1)∆t, the following fixed point iterative process
is applied, in Ω,

With {θ 0,ω0}= {θ n,ωn} given, solve until convergence on θ and ω

∇
2
ψ

m+1 =−ω
m, ψ

m+1|Γ = 0,

θ
m+1 = θ

m−ρθ (αI− γ∇
2)−1Rθ (θ m,ψm+1),

Bθ
m+1|Γ = 0, ρθ > 0,

ω
m+1 = ω

m−ρω(αI−∇
2)−1Rω(ωm,ψm+1),

ω
m+1|Γ = ω

m+1
bc , ρω > 0

(9)

and take (ωn+1,ψn+1,θ n+1) = (ωm+1,ψm+1,θ m+1).
It should be noted that the construction of the ω boundary condition ωbc in (4),
given implicitly by unknown values of ψ in Ω, is performed as part of the iterative
process in (9).

Finally, system (9) is equivalent to

∇
2
ψ

m+1 =−ω
m, ψ

m+1|Γ = 0

(αI− γ∇
2)θ m+1 = (αI− γ∇

2)θ m−ρθ Rθ (θ m,ψm+1),

Bθ
m+1|Γ = 0, ρθ > 0

(αI−∇
2)ωm+1 = (αI−∇

2)ωm−ρωRω(ωm,ψm+1),

ω
m+1 |Γ = ω

m+1
bc , ρω > 0.

(10)

Therefore, at each iteration three uncoupled linear elliptic problems associated with
the operators ∇2, αI− γ∇2, and αI−∇2 have to be solved, in Ω.

For the space discretization of elliptic problems, like those in (10), either finite
differences or finite elements may be used, as far as rectangular domains are con-
cerned; in either case efficient solvers exist. For the finite element case, variational
formulations have to be chosen and then restrict them to finite dimensional finite
elements spaces, like those in Gunzburger (1989) and Glowinski (2003). For the
specific results in the next Section, the second order approximation of the Fish-
pack solver, Adams et al. (1980), is used. Then, such second order approximation
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in space combined with the second order approximation in (5) for the first deriva-
tives in time, the approximation with second order central differences at the interior
points, and with (5) on the boundary, for all the first space derivatives, including
those that appear in the local Nusselt number Nu(y), and de second order trape-
zoidal rule to calculate the global Nusselt number Nu imply that the whole discrete
problem relies on second order discretizations only.

3 Results and discussion

The numerical experiments take place in rectangular cavities Ω = (0,a)× (0,b);
a, b > 0. For natural convection all the walls of the cavity are solid and fixed,
then, by viscosity, the boundary condition for u is 0 everywhere on Γ, by (2) ψ is
constant and this constant can be chosen to be zero. The boundary condition for ω ,
as commented before, is given by (4) whereas the one for θ , given implicitly in the
boundary operator B, is

θ = 1 on Γ|x=0,

θ = 0 on Γ|x=a
∂θ

∂n = 0 on Γ|y=0,b,

meaning that the horizontal walls are adiabatic and on the vertical walls the temper-
ature is constant, and heating occurs on the left wall. In terms of the dimensionless
temperature θ = T−T0

Tl−T0
in (1c) and (7c) it can be seen that on the left wall a di-

mensional temperature T equals T1 is being specified and on the right wall T = T0.
The cavities are supposed to be filled with air, implying that the Prandtl number
Pr is given by Pr = 0.71; then, from hereafter the flows will be depending on the
Rayleigh number Ra and on the aspect ratio A only.

Denoting by Tss the time where the asymptotic, time limit, steady state of the flow is
reached, Tss is computed according to the point-wise discrete L∞ absolute criterion
on the closure of the cavity Ω

ψ: ||ψn+1
hx,hy−ψn

hx,hy||∞, θ : ||θ n+1
hx,hy−θ n

hx,hy||∞,

since, by definition, Tss is the time when the solution, of the unsteady problem,
does not change any more at any spatial point occupied by the fluid, Nicolás and
Bermúdez (2005). We remark that so far the time Tss is not usual to be reported
when the unsteady problem is solved, at least not in terms of the strict definition of
the steady state as we do; actually, we started to work on this topic once we heard
it from Saeid and Pop (2004), for flows in porous media, and because of the work
in Nicolás and Bermúdez (2005), in connection with mixed convection flows, and
later on in Báez and Nicolás (2006) for porous media and homogeneous fluids.
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The results, which are converged flows to a steady state, are reported through the
streamlines and the isotherms; unless otherwise stated, they correspond to ten val-
ues obtained by default using Mathematica 6. For the dimensionless temperature θ

such values start from 0.09 close to the cold right wall, which is 0.9 divided by 10,
and then they increase a multiple integer until reach the value 0.9 close to the hot
left wall; if some additional clarification were needed the values for the streamlines
would be mentioned. The mesh size is denoted by (hx,hy) and by h only if hx = hy,
and the time step by ∆t; they will be indicated in each case under study.

To support that the flows are correct, mesh size and time-step independence studies
are made in terms of the point-wise discrete L∞ relative error on the closure of the
cavity Ω∆t fixed : || fhx1,hy1;∆t− fhx2,hy2;∆t ||∞

|| fhx1,hy1;∆t ||∞ ,

{hx,hy}fixed : || fhx,hy;∆t1− fhx,hy;∆t2||∞
|| fhx,hy;∆t1||∞

The study on the characteristics of the flow, as mentioned in the Introduction, con-
siders variation of the parameters in the range: 105 ≤ Ra ≤ 107, 1

4 ≤ A ≤ 4. The
description of the results follows.

With A = 1, Figure 1 pictures the streamlines (left) and isotherms (right) of the
flow for Ra = 106, Figure 2 the flow for Ra = 107, and Figure 3 the heat transfer
through the local Nusselt numbers of these flows. These results are obtained with
h = 1

64 and ∆t = 0.00001. It is worth to observe that the streamlines for Ra = 107

in Figure 2 are obtained with the contour values given by {-42, -40, -38, -35.75,
-34, -31, -27, -22, -16, -12, -8, -4} which give a shape very close to the one given in
Le Quéré and Alziary Roquefort (1985) with the contour values {5, 10, 15, 20, 22,
24, 26, 28, 30}, where the unsteady problem in primitive variables, with a different
dimensionless form, is solved; this means that within a different scale the flow has
the "same shape". It is worth to mention that the results in Figures 1 and 2 agree
perfectly with the ones in Ho-Minh et al. (2009) and so does a preliminary result
for Ra = 108 with A = 1.

To better understand the effect on the flow as Ra increases, we add that the contour
values of the streamlines, by default, in Figure 1 are {-2.1,-4.2,-6.3,-8.4,-10.5,-
12.6,-14.7,-16.8,-18.9,-21} going from the boundary toward the center of the cav-
ity, which are multiple integers of -21 divided by 10, whereas the corresponding
default values in Figure 2 are multiple integers of -38 divided by 10; in this latter
case the main difference with the 12 values shown in Figure 2 is that the small
inner cells do not appear. On the other hand, comparing the values -2.1 and -21
for Ra = 106 with -3.8 and -38 for Ra = 107 it is implied that the gradient of ψ is
bigger for Ra = 107 since ψ = 0 on the boundary and that ψ enlarges more toward
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Figure 1: Streamlines and isotherms for Ra = 106

with A = 1: h = 1
64

Figure 2: Streamlines and isotherms for Ra = 107

with A = 1: h = 1
64 ; with Le Quéré’s contour values

Figure 3: Local Nusselt Number for Ra = 106 and
Ra = 107 with A = 1: h = 1

64

Figure 4: Streamlines for Ra = 106 with A = 2, 3
and 4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

Figure 5: Isotherms for Ra = 106 with A = 2, 3 and
4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

11

Figure 1: Streamlines and isotherms for Ra = 106 with A = 1: h = 1
64

Figure 1: Streamlines and isotherms for Ra = 106

with A = 1: h = 1
64

Figure 2: Streamlines and isotherms for Ra = 107

with A = 1: h = 1
64 ; with Le Quéré’s contour values

Figure 3: Local Nusselt Number for Ra = 106 and
Ra = 107 with A = 1: h = 1

64

Figure 4: Streamlines for Ra = 106 with A = 2, 3
and 4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

Figure 5: Isotherms for Ra = 106 with A = 2, 3 and
4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

11

Figure 2: Streamlines and isotherms for Ra = 107 with A = 1: h = 1
64 ; with Le

Quéré’s contour values

the center of the cavity.

For Ra = 106, the flows with A = 2, 3, and 4 are shown in Figure 4 through the
streamlines and in Figure 5 through their isotherms; Figure 6 displays the graph
of the heat transfer of the corresponding local Nusselt numbers. Subsequently,
Figures 7, 8, 9, and 10 show the corresponding flows and heat transfer for the same
Rayleigh number but with aspect ratios A = 1

2 , 1
3 , and 1

4 . The contour values of
the streamlines in Figure 4, with A = 4, the third right one, are multiple integers
of -60 divided by 10, the two inner small cells have the contour value -54 which
coincides with the one of the second streamline from the center of the cavity; for the
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Figure 1: Streamlines and isotherms for Ra = 106

with A = 1: h = 1
64

Figure 2: Streamlines and isotherms for Ra = 107

with A = 1: h = 1
64 ; with Le Quéré’s contour values

Figure 3: Local Nusselt Number for Ra = 106 and
Ra = 107 with A = 1: h = 1

64

Figure 4: Streamlines for Ra = 106 with A = 2, 3
and 4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

Figure 5: Isotherms for Ra = 106 with A = 2, 3 and
4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

11

Figure 3: Local Nusselt Number for Ra = 106 and Ra = 107 with A = 1: h = 1
64

corresponding situation in Figure 9 with A = 1
4 , the streamlines are multiple integers

of -26 divided by 10 and the small cells along with the innermost streamline have
the same contour value -26, which clearly means that the innermost streamline in
the case A = 1

3 , Figure 8, has broken down into two pieces. All these flows with
A 6= 1 are obtained with a uniform mesh that results increasing proportionally the
number of points as the length, vertical or horizontal, is enlarged with respect to
the basic mesh size h = 1

64 with A = 1. For instance, with A = 3 the mesh is given
by (hx,hy) = ( 1

64 ,
3

192) whereas (hx,hy) = ( 4
256 ,

1
64) with A = 1

4 ; about the time step,
∆t = 0.00001 works for all these cases.

A discussion on the results follows:

i) To justify the flows for Ra = 106 are correct we performed a mesh size indepen-
dence study considering the meshes 1) h = 1

32 , 2) h = 1
64 , 3) h = 1

96 with A = 1
whereas 1) (hx,hy) = ( 1

32 ,
3

96), 2) (hx,hy) = ( 1
64 ,

3
192), 3) (hx,hy) = ( 1

96 ,
3

288) with
A = 3; both cases with ∆t = 0.00001 fixed. On this regard, Table 1 shows the dis-
crepancies (Dis.) for the stream function ψ and temperature θ with A = 1 and Table
2 the corresponding ones with A = 3. Then, from these Tables the right flows are
those obtained with the basic mesh size h = 1

64

ii) The previous mesh size independence study is complemented with a time-step
independence study; to this end, Table 3 displays the discrepancies with time steps
∆t = 0.00001 and ∆t = 0.000001 with A = 1 and A = 3, both cases with h = 1

64
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Figure 1: Streamlines and isotherms for Ra = 106

with A = 1: h = 1
64

Figure 2: Streamlines and isotherms for Ra = 107

with A = 1: h = 1
64 ; with Le Quéré’s contour values

Figure 3: Local Nusselt Number for Ra = 106 and
Ra = 107 with A = 1: h = 1

64

Figure 4: Streamlines for Ra = 106 with A = 2, 3
and 4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

Figure 5: Isotherms for Ra = 106 with A = 2, 3 and
4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

11

Figure 4: Streamlines for Ra = 106 with A = 2, 3 and 4: hx = 1
64 ; hy = 2

128 , hy = 3
192

and hy = 4
256

Table 1: Mesh independence: Ra = 106, A = 1

mesh Dis. ψ Dis. θ

1 vs 2 2.03% 1.94%
1 vs 3 2.48% 2.22%
2 vs 3 0.45% 0.25%

Table 2: Mesh independence: Ra = 106, A = 3

mesh Dis. ψ Dis. θ

1 vs 2 5.99% 1.96%
1 vs 3 7.23% 2.23%
2 vs 3 1.24% 0.30%

fixed; it can be seen that the discrepancies are very small, and it is not necessary
to use a smaller time step because it is known that for more complicate problems
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Figure 1: Streamlines and isotherms for Ra = 106

with A = 1: h = 1
64

Figure 2: Streamlines and isotherms for Ra = 107

with A = 1: h = 1
64 ; with Le Quéré’s contour values
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Ra = 107 with A = 1: h = 1
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Figure 4: Streamlines for Ra = 106 with A = 2, 3
and 4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256

Figure 5: Isotherms for Ra = 106 with A = 2, 3 and
4: hx = 1

64 ; hy = 2
128 , hy = 3

192 and hy = 4
256
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Figure 5: Isotherms for Ra = 106 with A = 2, 3 and 4: hx = 1
64 ; hy = 2

128 , hy = 3
192

and hy = 4
256

like mixed convection, Nicolás and Bermúdez (2005), the discrepancies are even
smaller. Then, the time step ∆t = 0.00001 is enough to get the right flows, taking
into consideration that with ∆t bigger the method blows up.

Table 3: Time step independence: Ra = 106; ∆t = 10−5, 10−6

A Dis. ψ Dis. θ

1 5.8×10−4% 5.2×10−4%
3 9.9×10−4% 7.8×10−4%

iii) To reinforce the correctness of the flows, with such mesh size and ∆t, in Tables
4 and 5 various quantities are displayed with the finer meshes generated by h = 1

64
and h = 1

96 . Those quantities are: the minimum value of the stream function ψmin

(which equivalently can be given as the maximum value of |ψ|), the global Nusselt
number Nu which measures the average heat transfer from the hot wall (left one)
into the fluid, and the time Tss when the steady state of the flow is reached; the
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Figure 6: Local Nusselt Number for Ra = 106: A =
2, 3 and 4

Figure 7: Streamlines(above) and isotherms(below)
for Ra = 106 with A = 1

2 : hx = 2
128 , hy = 1

64

Figure 8: Streamlines(above) and isotherms(below)
for Ra = 106 with A = 1

3 : hx = 3
192 , hy = 1

64

Figure 9: Streamlines(above) and isotherms(below)
for Ra = 106 with A = 1

4 : hx = 4
256 , hy = 1

64
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Figure 9: Streamlines(above) and isotherms(below)
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Figure 7: Streamlines(above) and isotherms(below)
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Figure 8: Streamlines(above) and isotherms(below)
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Figure 9: Streamlines(above) and isotherms(below)
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Figure 8: Streamlines(above) and
isotherms(below) for Ra = 106 with
A = 1

3 : hx = 3
192 , hy = 1

64

discrepancies shown by these Tables say that no significant difference is observed
with the finer mesh h = 1

96 . Then, under this additional criterion, the values with
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Figure 6: Local Nusselt Number for Ra = 106: A =
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Figure 9: Streamlines(above) and isotherms(below) for Ra = 106 with A = 1
4 : hx =

4
256 , hy = 1
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Table 4: Ra=106; h=1/64, dt=0.00001: Various quantities

A ψmin Nu Tss
1
4 -29.182 31.528 0.943
1
3 -26.860 24.654 0.858
1
2 -24.677 17.275 0.499
1 -23.589 9.177 0.255
2 -39.544 8.153 0.288
3 -53.311 7.446 0.348
4 -66.687 7.004 0.402

Table 5: Ra=106; h=1/96, dt=0.00001: Various quantities

A ψmin Nu Tss
1
4 -29.244 30.845 1.004
1
3 -26.924 24.093 0.775
1
2 -24.702 16.856 0.531
1 -23.617 8.933 0.271
2 -39.577 7.983 0.304
3 -53.368 7.325 0.366
4 -66.687 7.004 0.403
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the basic mesh size h = 1
64 , given in Table 4, can be chosen as representatives to

describe the flow.

Table 6: Ra=105; h=1/24, dt=0.0001: Various quantities

A ψmin Nu Tss
1
3 -15.650 12.042 1.247
1
2 -14.532 8.81 0.849
1 -13.478 4.946 0.428
2 -21.589 4.627 0.514
3 -30.060 4.319 0.59

Table 7: Various Ra’s with A = 1
Ra ψmin Tss Nu NuV d

106 -23.589 0.255 9.064 9.035
107 -42.603 0.169 20.015 *
105 -13.478 0.428 4.946 4.716

iv) In order to make a comparison about the behavior of the flow as Ra increases,
Table 6 displays the characteristics of the flow for Ra = 105 with various aspect
ratios A and Table 7 for Ra = 106 and 107 with A = 1, supplemented with some
characteristics for Ra = 105, some of them already displayed in Table 6; it must be
noted in passing that the results in Table 6 for Ra = 105, contrary to the results in
Tables 4 and 5, were obtained with the basic mesh size h = 1

24 and ∆t = 0.0001.

Then, with all the above information at hand, we may say that the characteristics
of the flow depend on either as Ra increases or as the aspect ratio varies in the
following way:

A) With A = 1 and varying Ra, Table 7: |ψmin| and the global Nusselt number Nu
increase, and Tss decreases, as Ra increases. Table 7, last two columns, also shows
that the increase of Nu agrees with the increase of NuV d , within the most close
mesh size, given in De Vahl Davis (1983), where ∗ means that such value is not
reported; in connection with this and with Table 6, for Ra = 105, NuV d = 4.716.

B) For Ra = 106 fixed and varying A, Table 4: |ψmin| and Tss increase as either A
decreases from 1 to 1

4 or A increases from 1 to 4, and the global Nusselt number
Nu decreases as A increases from 1

4 to 4; it must be noted that |ψmin| increase more
when A increases from 1 to 4 than when A decreases from 1 to 1

4 , Nu increases
more when A decreases from 1 to 1

4 than what it decreases when A increases from
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1 to 4, and Tss increases more when A decreases from 1 to 1
4 than what it increases

when A increases from 1 to 4. Qualitatively speaking all these features occur with
the finer mesh in Table 5 and in Table 6 for Ra = 105.

C) On the other hand, let us see the congruence of the local Nusselt number Nu(y)
with respect to Nu in A) and B): In A), Figure 3 shows that the graph of Nu(y) for
Ra = 107 is above the one of Ra = 106, then Nu, given by integral of N(y) on the
same interval, must be bigger for Ra = 107; this relation, not shown here, also holds
for Ra = 106 and Ra = 105. In B), Figure 6 shows that Nu(y) is not decreasing as
A varies from 2 to 4, then Nu must increase since the interval of integration also
increases; the graph of Nu(y) in Figure 10 has a relation similar to the one in Figure
3 as A decreases from 1

2 to 1
4 , then Nu must increase. About the maximum value

of Nu(y) and how close to y = 0 is reached are self-explanatory in Figures 3, 6
and 10, which tell us where the maximum heat transfer occurs. Moreover, that the
maximum of Nu(y) when A decreases from 1

2 to 1
4 be significant bigger, above 35

in Figure 10, than when A increases from 2 to 4, below 23 in Figure 6, implies that
Nu must be bigger in the first situation, as it has already been stated before.

Figure 10: Local Nusselt Number for Ra = 106: A =
1
2 , 1

3 , 1
4

Figure 11: Ra = 106: T = 0.016, streamlines (left),
isotherms (right)

Figure 12: Ra = 106: T = 0.064, streamlines (left),
isotherms (right)

Figure 13: Ra = 106: T = 0.128, streamlines (left),
isotherms (right)

Figure 14: Local Nusselt Number for Ra = 106: T =
0.016 (1), 0.064 (2) and 0.128 (3)

13

Figure 10: Local Nusselt Number for Ra = 106: A = 1
2 , 1

3 , 1
4

Last but not least, in connection with the analogous study in Saeid and Pop (2004)
for flows in porous media, for Ra = 106 with A = 1 a sequence of results are shown
at different times T ’s before the time when the steady state is reached, given by



100 Copyright © 2009 Tech Science Press CMES, vol.48, no.1, pp.83-105, 2009

Figure 10: Local Nusselt Number for Ra = 106: A =
1
2 , 1

3 , 1
4

Figure 11: Ra = 106: T = 0.016, streamlines (left),
isotherms (right)

Figure 12: Ra = 106: T = 0.064, streamlines (left),
isotherms (right)

Figure 13: Ra = 106: T = 0.128, streamlines (left),
isotherms (right)

Figure 14: Local Nusselt Number for Ra = 106: T =
0.016 (1), 0.064 (2) and 0.128 (3)

13
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Figure 12: Ra = 106: T = 0.064, streamlines (left), isotherms (right)

Tss = 0.255 in Table 4. To this end, Figures 11, 12, and 13 display respectively the
flow, streamlines (left) and isotherms (right), at times T = 0.016, 0.064, and 0.128
which correspond approximately to 1

16 , 1
4 , and 1

2 of Tss; it is pointed out that the
flow at 3

4 of Tss looks the same as the one at 1
2 of Tss in Figure 13. The contour

values of the isotherms, as before, vary from 0.09 to 0.9; about the contour values
of the stream function we have: in Figure 11, they vary from -3, the closest one to
the boundary, to -30, the innermost streamline, we recall that -3 is -30 divided by
10, as it was explained before; in Figure 12 they vary from -2.1 to -21; in Figure
13 they vary also from -2.1 to -21, which are the same at the bigger time 3

4 of Tss,
and surprisingly they are the same at Tss, as it was commented on the description
of Figure 1.
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Figure 13: Ra = 106: T = 0.128, streamlines (left), isotherms (right)
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Figure 14: Local Nusselt Number for Ra = 106: T = 0.016 (1), 0.064 (2) and 0.128
(3)

On the other hand, the isotherms in Figure 11 show that, little time after the heat-
ing begins, the hot fluid that rises from the bottom, and close to the hot left wall,
has spread to occupy more than the upper half of the cavity; at the same time,
the streamlines show a recirculation of the flow almost on the same part of cav-
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ity starting close to the upper corner. At a later time, Figure 12, the isotherms
show that practically the whole fluid has been warmed up, ascending near the hot
left wall to the top and falling, by cooling, towards the bottom near the cold right
wall (less warm than the fluid). The streamlines equally indicate that the flow has
been extended throughout the cavity; although the intensity of its motion has been
diminished as the contour values of the streamlines indicate. At a time latter, Fig-
ure 13, the flow already exhibits all the characteristics that will be preserved up to
Tss = 0.255.

The heat transfer along the hot wall, measured through the local Nusselt number, for
these three times, is displayed in Figure 14; the respective graphics indicate that the
heat transfer at any time is higher in the low part of the hot wall and it diminishes
towards the high part of this wall. This agrees very well with the fact that the
isotherms are closer each other at the low part of the hot left wall which indicates
a higher variation of the temperature, in the horizontal direction, and they are more
separated about the end of the wall, as Figures 11, 12 and 13 show. Moreover,
since the initial temperature is zero, the heat transfer is greater at a time near zero
and diminishes as time increases, as it can be seen in Figure 14, because as long as
the temperature of the fluid increases its difference with the hot wall diminishes. It
can also be observed in Figure 14 that the smallest difference between the graphics
corresponds to the times 1

4 and 1
2 of Tss, and the graphics for later times are equal to

the one at 1
2 of Tss. The respective values of the global Nusselt number, at the times

we are discussing on, are given by Nu=13.689, 9.499, 9.186, and at 3
4 of Tss is given

by 9.177; they are reinforcing what it was commented previously: they diminish
and tend to the respective value Nu=9.177 at Tss. Then, the local and global Nusselt
numbers are tending, from above, to the ones given at Tss, Table 4 and Figure 3.
Clearly this is another source of validation of the flow for Ra = 106 with A=1; a
notorious findings here are: the convergence of these thermal characteristics of the
flow to those at Tss is monotone, from above, and like what it occurs in porous
media, Saeid and Pop (2004), the characteristics on the motion, and other thermic
ones, that are preserved start about 1

2 of Tss.

4 Conclusions
2D numerical results on natural convection have been presented to study the effects
on the characteristics of flows as some parameters, the Rayleigh number Ra and the
aspect ratio A of a cavity, vary. The results are obtained with a numerical method
previously reported for mixed convection to solve the unsteady Boussinesq approx-
imation in stream function and vorticity variables. The validation of the results is
carried out through mesh size and time-step independence studies complemented
with the corresponding independence of some parameters of the flow; in this way,
the validation process is not depending on the comparison with other works that
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use other dimensionless forms. The effects on the characteristics are considered for
flows converging to a steady state as Ra and A vary in the range 105 ≤ Ra ≤ 107

and 1
4 ≤ A ≤ 4, in cavities filled with air. For the dimensionless form we are con-

sidering our systematic study on such effects on the characteristics of the flows
shows several aspects on the motion and on the heat transfer, given by the Nusselt
numbers, which are worth to be considered at the end of the transient stage and
even during such stage as it is shown by the study of the case for Ra = 106 with
A = 1. For instance, for the former case, the activity of the flow is stronger, motion
and global heat transfer, as long as Ra increases since |ψmin| and the global Nusselt
number Nu increase but the flow reaches its steady state faster since Tss decreases;
for the latter case, at times during the transient stage the convergence of some ther-
mal characteristics of the flow to those at Tss is not oscillatory but monotonic. From
this study several guidelines are at hand to make an analogous study for higher Ra’s
and bigger or smaller A’s. Previous results for higher Ra’s, with A within the same
range that is considered here, show a significant restriction on the mesh size and
the time step: a finer mesh size and a smaller time step have to be used; besides,
it seems that some of these flows appear to be time-dependent which leads to long
time computations. Other source of research is to consider a smaller Ra and A large
enough, tall cavities, to make a study in connection with cat’s eyes.
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