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An iterative MFS algorithm for the Cauchy problem
associated with the Laplace equation

Liviu Marin1

Abstract: We investigate the numerical implementation of the alternating itera-
tive algorithm originally proposed by Kozlov, Maz′ya and Fomin (1991) in the case
of the Cauchy problem for the two-dimensional Laplace equation using a meshless
method. The two mixed, well-posed and direct problems corresponding to every
iteration of the numerical procedure are solved using the method of fundamen-
tal solutions (MFS), in conjunction with the Tikhonov regularization method. For
each direct problem considered, the optimal value of the regularization parameter is
chosen according to the generalized cross-validation (GCV) criterion. An efficient
regularizing stopping criterion which ceases the iterative procedure at the point
where the accumulation of noise becomes dominant and the errors in predicting the
exact solutions increase, is also presented. The iterative MFS algorithm is tested for
Cauchy problems associated with the Laplace operator in various two-dimensional
geometries to confirm the numerical convergence, stability and accuracy of the
method.

Keywords: Laplace Equation; Inverse Problem; Cauchy Problem; Iterative Method
of Fundamental Solutions (MFS); Regularization.

1 Introduction

In most boundary value problems in heat transfer, the thermal equilibrium equation,
i.e. the Laplace equation, has to be solved with the appropriate initial and bound-
ary conditions for the temperature and/or normal heat flux, i.e. Dirichlet, Neumann,
Robin or mixed boundary conditions. These problems are called direct problems
and their existence and uniqueness have been well established. However, there are
other engineering problems which do not belong to this category. For example, the
thermal conductivities and/or the heat sources are unknown, the geometry of a por-
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tion of the boundary is not determined or the boundary conditions are incomplete,
either in the form of under- and over-specified boundary conditions on different
parts of the boundary or the solution is prescribed at some internal points in the
domain. These problems are referred to as inverse problems

A classical example of an inverse problem for the Laplace equation is the Cauchy
problem. In this case, the boundary of the solution domain, the thermal conduc-
tivities and/or the heat sources are all known, while the boundary conditions are
incomplete. More precisely, both Dirichlet and Neumann conditions are prescribed
on a part of the boundary, while on the remaining portion of the boundary no bound-
ary conditions are given. It is well known that Cauchy problems are generally ill-
posed [Hadamard (1923)], in the sense that the existence, uniqueness and stability
of their solutions are not always guaranteed. Consequently, a special numerical
treatment of these problems is required.

There are numerous important contributions in the literature, as well as various
approaches, to the theoretical and numerical solutions of the Cauchy problem as-
sociated with the Laplace equation. The method of quasi-reversibility, in conjunc-
tion with a finite-difference method (FDM) and Carleman-type estimates, were em-
ployed by Klibanov and Santosa (1991) to solve this inverse problem.
Kozlov, Maz′ya and Fomin (1991) proposed an alternating iterative algorithm for
the stable solution of this problem, which was implemented using the boundary
element method (BEM) by Lesnic, Elliott and Ingham (1997). Ang, Nghia and
Tam (1998) reformulated the Cauchy problem as an integral equation problem and
solved the latter by using the Fourier transform, together with the Tikhonov regular-
ization method. Reinhardt, Han and Hào (1999) proved that the standard five-point
FDM approximation to the Cauchy problem for the Laplace equation satisfies some
stability estimates and hence it turns out to be a well-posed problem, provided that
a certain bounding requirement is fulfilled. As a result of a variational approach to
the Cauchy problem, the conjugate gradient method, in conjunction with the BEM,
was proposed by Hào and Lesnic (2000) in order to obtain a stable solution. On
using Green’s formula, Cheng, Hon, Wei and Yamamoto (2001) transformed the
original problem into a moment problem and they also provided an error estimate
for the numerical solution. Hon and Wei (2001) converted the Cauchy problem into
a classical moment problem whose numerical approximation can be achieved and
also provided a convergence proof based on Backus-Gilbert algorithm. Cimetière,
Delvare, Jaoua and Pons (2001) reduced the Cauchy problem for the Laplace equa-
tion to solving a sequence of optimization problems under equality constraints us-
ing the finite element method (FEM). The minimization functional consists of two
terms that measure the gap between the optimal element and the over-specified data
and the gap between the optimal element and the previous optimal element (regu-
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larization term), respectively. This method was later implemented using the BEM
by Delvare, Cimetière and Pons (2002). Cimetière, Delvare, Jaoua and Pons (2002)
reduced the solution of harmonic Cauchy problems to the resolution of a fixed point
process, while the authors implemented numerically the proposed method by em-
ploying both the BEM and the FEM. Jourhmane, Lesnic and Mera (2004) devel-
oped three relaxation procedures in order to increase the rate of convergence of
the algorithm of Kozlov, Maz′ya and Fomin (1991), at the same time selection cri-
teria for the variable relaxation factors having been provided. Bourgeois (2005)
approached the Cauchy problem for the Laplace equation by the mixed formula-
tion of the method of quasi-reversibility, which finally led to a C 0 FEM. Andrieux,
Baranger and Ben Abda (2006) introduced an energy-like error functional and con-
verted the inverse problem into an optimization problem. In order to improve the
reconstruction of the normal derivatives, Delvare and Cimetière (2008) extended
the method originally proposed by Cimetière, Delvare, Jaoua and Pons (2001) to a
higher-order one, which was implemented using the BEM. On assuming the avail-
able data to have a Fourier expansion, Liu (2008f) applied a modified indirect Tre-
fftz method to solve the Cauchy problem for the Laplace equation.

The method of fundamental solutions (MFS) is a simple but powerful technique
that has been used to obtain highly accurate numerical approximations of solu-
tions to linear partial differential equations. Like the BEM, the MFS is appli-
cable when a fundamental solution of the governing PDE is explicitly known.
Since its introduction as a numerical method by Mathon and Johnston (1977),
it has been successfully applied to a large variety of physical problems, an ac-
count of which may be found in the survey papers [Fairweather and Karageorghis
(1998); Golberg and Chen (1999); Fairweather, Karageorghis and Martin (2003);
Cho, Golberg, Muleshkov and Li (2004)].

The ease of implementation of the MFS and its low computational cost make it
an ideal candidate for inverse problems as well. For these reasons, the MFS, in
conjunction with various regularization methods (e.g. the Tikhonov regulariza-
tion method, Morozov’s discrepancy principle, singular value decomposition), have
been used increasingly over the last decade for the numerical solution of inverse
problems. For example, the Cauchy problem associated with the heat conduction
equation [Hon and Wei (2002); Hon and Wei (2003); Hon and Wei (2004); Hon and
Wei (2005); Mera (2005); Dong, Sun and Meng (2007); Wei, Hon and Ling (2007);
Ling and Takeuchi (2008); Marin (2008); Young, Tsai, Chen and Fan (2008);
Shigeta and Young (2009); Wei and Li (2009); Wei and Zhou (2009)], linear
elasticity [Marin and Lesnic (2004); Marin (2005a)], steady-state heat conduction
in functionally graded materials (FGMs) [Marin (2005b)], Helmholtz-type equa-
tions [Marin (2005c); Marin and Lesnic (2005a); Jin and Zheng (2006)], Stokes
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problems [Chen, Young, Tsai and Murugesan (2005)], the biharmonic equation
[Marin and Lesnic (2005b)] etc. have been successfully addressed by employing
the MFS.

To the best of our knowledge, the MFS has not, as yet, been applied iteratively to the
numerical solution of inverse problems. Therefore, we have decided to use the MFS
in an iterative manner for solving stably the Cauchy problem in two-dimensional
steady-state heat conduction (Laplace equation). More precisely, we investigate
the numerical implementation of the alternating iterative algorithm originally pro-
posed by Kozlov, Maz′ya and Fomin (1991) using the MFS. At every iteration, two
mixed, well-posed and direct problems are solved using the MFS, in conjunction
with the Tikhonov regularization method. For each of the aforementioned direct
problems, the optimal value of the regularization parameter is chosen according to
the generalized cross-validation (GCV) criterion. An efficient regularizing stopping
criterion which ceases the iterative procedure at the point where the accumulation
of noise becomes dominant and the errors in predicting the exact solutions increase,
is also presented. The iterative MFS algorithm is then tested for Cauchy problems
associated with the Laplace operator in simply and doubly connected, convex and
concave domains, with smooth or piecewise smooth boundaries.

2 Mathematical formulation

Consider an open bounded domain Ω⊂ Rd , where d is the dimension of the space
where the problem is posed, usually d ∈ {1,2,3}, occupied by an isotropic medium
and assume that Ω is bounded by a piecewise smooth curve ∂Ω, such that ∂Ω =
Γ1 ∪Γ2, where Γ1 6= /0, Γ2 6= /0 and Γ1 ∩Γ2 = /0. In this paper, we refer to steady
heat conduction applications in isotropic homogeneous media in the absence of
heat sources. Hence the function u(x) denotes the temperature at a point x ∈Ω and
satisfies the equation

∇
2u(x)≡

d

∑
i=1

∂i∂iu(x) = 0, x = (x1, . . . ,xd) ∈Ω, (1)

where ∂i ≡ ∂/∂xi. We now let n(x) be the unit outward normal vector at ∂Ω and
q(x) be the normal heat flux at a point x ∈ ∂Ω defined by

q(x)≡−∇u(x) ·n(x) =−
d

∑
i=1

∂iu(x)ni(x), x ∈ ∂Ω. (2)

In the direct problem formulation, the knowledge of the location, shape and size
of the entire boundary ∂Ω, the temperature and/or normal heat flux on the entire
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boundary ∂Ω gives the corresponding Dirichlet, Neumann, or mixed boundary con-
ditions which enable us to determine the unknown boundary conditions, as well as
the temperature distribution in the solution domain. A different and more interest-
ing situation occurs when both the temperature and normal heat flux are prescribed
on a part of the boundary, say Γ1, whilst no boundary conditions are supplied on
the remaining part of the boundary Γ2 = ∂Ω\Γ1. More precisely, we consider the
following Cauchy problem for steady heat conduction in an isotropic homogeneous
medium:

∇
2u(x) = 0, x ∈Ω, (3a)

u(x) = ũ(x), x ∈ Γ1, (3b)

q(x) = q̃(x), x ∈ Γ1, (3c)

where ũ and q̃ are prescribed Dirichlet and Neumann boundary conditions, respec-
tively.

A necessary condition for the Cauchy problem given by Eqs. (3a)− (3c) to be
identifiable is that meas(Γ1)≥meas(Γ2). This inverse problem is much more dif-
ficult to solve both analytically and numerically than the direct problem, since the
solution does not satisfy the general conditions of well-posedness. Although the
problem may have a unique solution, it is well known that this solution is unstable
with respect to small perturbations into the data on Γ1, see e.g. Hadamard (1923).
Thus the problem is ill-posed and we cannot use a direct approach, such as the
least-squares method, in order to solve the system of linear equations which arises
from the discretization of the partial differential equations (3a) and the boundary
conditions (3b) and (3c). Therefore, regularization methods are required in order
to solve accurately the inverse problem (3a)− (3c) for the Laplace equation.

3 Description of the algorithm

Kozlov, Maz′ya and Fomin (1991) proposed the following iterative algorithm for
the simultaneous reconstruction of the unknown temperature u

∣∣
Γ2

and normal heat
flux q

∣∣
Γ2

on the under-specified boundary:

Step 1. (i) If k = 1 then specify an initial boundary temperature guess on Γ2, namely
u(2k−1) ∈ H1/2(Γ2).
(ii) If k > 1 then solve the following mixed, well-posed, direct problem:

∇
2u(2k−1)(x) = 0, x ∈Ω, (4a)

u(2k−1)(x) = ũ(x), x ∈ Γ1, (4b)
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q(2k−1)(x) = q(2k−2)(x), x ∈ Γ2, (4c)

to determine u(2k−1)(x) for x ∈Ω and u(2k−1)(x) for x ∈ Γ2.

Step 2. Having constructed the approximation u(2k−1), k ≥ 1, the following mixed,
well-posed, direct problem:

∇
2u(2k)(x) = 0, x ∈Ω, (5a)

q(2k)(x) = q̃(x), x ∈ Γ1, (5b)

u(2k)(x) = u(2k−1)(x), x ∈ Γ2, (5c)

is solved in order to determine u(2k)(x) for x∈Ω and q(2k)(x)≡∇u(2k)(x) ·n(x) for
x ∈ Γ2.

Step 3. Repeat steps 1 and 2 until a prescribed stopping criterion is satisfied.

Let H1(Ω) be the Sobolev space and H1/2(∂Ω) be the space of traces on ∂Ω corre-
sponding to H1(Ω), see e.g. Lions and Magenes (1972). We denote by H1/2(Γi) the
space of functions from H1/2(∂Ω) that are bounded on Γi and by

(
H1/2(Γi)

)∗
the

dual space of H1/2(Γi), for i = 1,2. Kozlov, Maz′ya and Fomin (1991) showed that
if ∂Ω is smooth, ũ ∈ H1/2(Γ1) and q̃ ∈

(
H1/2(Γ1)

)∗
, then the alternating iterative

algorithm based on steps 1− 3 produces two sequences of approximate solutions{
u(2k−1)

}
k≥1 and

{
u(2k)

}
k≥1 which both converge in H1(Ω) to the solution u of

the Cauchy problem (3a)− (3c) for any initial guess u(1) ∈ H1/2(Γ2), provided
that a solution to this Cauchy problem exists. Furthermore, the alternating iterative
algorithm has a regularizing character. Also, the same conclusion holds if at the
step 1 one specifies an initial guess for the unknown normal heat flux on Γ2, i.e.
q(1) ∈

(
H1/2(Γ2)

)∗
, instead of an initial guess for the temperature, u(1) ∈H1/2(Γ2),

and we modify steps 1 and 2 accordingly.

It should be mentioned that, in general, this iterative method does not converge if
in the steps 1 and 2 of the algorithm the mixed problems are replaced by Dirichlet
or Neumann problems. In addition, the Neumann direct problem associated with
the Laplace equation is ill-posed owing to the non-uniqueness or non-existence of
solution with respect to whether the integral of the normal heat flux q over the
boundary ∂Ω vanishes or not, respectively.

At this stage, it should be noted that the well-posed, mixed, direct problems (4a)−
(4c) and (5a)− (5c) are boundary value problems and these are solved numeri-
cally using a meshless method, namely the MFS. In this case, neither a boundary
nor a domain discretization is required, as one would employ if using either the
BEM, or the FEM or a finite-difference method (FDM), respectively. Moreover,
the MFS determines simultaneously the boundary temperature and the normal heat
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flux, without the need of integrating or further finite differencing. Also, this mesh-
less method determines explicitly the temperature solution inside the solution do-
main, without the need of performing numerical or exact integration as required by
the BEM, or domain discretization or interpolation onto grid cells as required by
the FDM or FEM.

4 Method of fundamental solutions

4.1 MFS approximation

The fundamental solution G of the heat balance equation (1) or (3a) for two-
dimensional steady heat conduction in isotropic homogeneous media, i.e. the Laplace
equation, is given by, see e.g. Fairweather and Karageorghis (1998)

G(x,ξ) =
1

2π
log

1
‖x−ξ‖

, x ∈Ω, ξ ∈ R2 \Ω, (6)

where ξ is a singularity or source point. The main idea of the MFS consists of
approximating the temperature in the solution domain by a linear combination of
fundamental solutions with respect to M singularities ξ( j), j = 1, . . . ,M, in the form

u(x)≈ uM(c,ξ;x) =
M

∑
j=1

c j G(x,ξ( j)), x ∈Ω, (7)

where c = [c1, . . . ,cM]T and ξ ∈ R2M is a vector containing the coordinates of the
singularities ξ( j), j = 1, . . . ,M. On taking into account the definitions of the nor-
mal heat flux (2) and the fundamental solution for the two-dimensional Laplace
equation (6) then the normal heat flux, through a curve defined by the outward unit
normal vector n(x), can be approximated on the boundary ∂Ω by

q(x)≈ qM(c,ξ;x) =
M

∑
j=1

c j H(x,ξ( j)), x ∈ ∂Ω, (8)

where

H(x,ξ) =−∇xG(x,ξ) ·n(x) =
1

2π

(x−ξ) ·n(x)
‖x−ξ‖2 , x ∈ ∂Ω, ξ ∈ R2 \Ω. (9)

Next, we select the N1 MFS collocation points
{

x(i)
}N1

i=1 on the boundary Γ1 and

the N2 MFS collocation points
{

x(i)
}N1+N2

i=N1+1 on the boundary Γ2, such that the to-
tal number of MFS collocation points used to discretize the boundary ∂Ω of the
solution domain Ω is given by N = N1 +N2.



128 Copyright © 2009 Tech Science Press CMES, vol.48, no.2, pp.121-152, 2009

According to the MFS approximations (7) and (8), the discretized versions of the
the boundary value problems (4a)− (4c) and (5a)− (5c) recast as

A(1) c(2k−1) = b(2k−1), k > 1, (10)

and

A(2) c(2k) = b(2k), k ≥ 1, (11)

respectively. Here the components of the MFS matrices and right-hand side vectors
corresponding to Eqs. (10) and (11) are given by

A(1)
i j =

{
G(x(i),ξ( j)), i = 1, . . . ,N1, j = 1, . . . ,M,

H(x(i),ξ( j)), i = N1 +1, . . . ,N1 +N2, j = 1, . . . ,M,
(12a)

b(2k−1)
i =

{
ũ(x(i)), i = 1, . . . ,N1,

q(2k−2)(x(i)), i = N1 +1, . . . ,N1 +N2,
(12b)

and

A(2)
i j =

{
H(x(i),ξ( j)), i = 1, . . . ,N1, j = 1, . . . ,M,

G(x(i),ξ( j)), i = N1 +1, . . . ,N1 +N2, j = 1, . . . ,M,
(13a)

b(2k)
i =

{
q̃(x(i)), i = 1, . . . ,N1,

u(2k−1)(x(i)), i = N1 +1, . . . ,N1 +N2,
(13b)

respectively.

Each of Eqs. (10) and (11) represents a system of N linear algebraic equations with

M unknowns, namely the MFS coefficients c(2k−1) =
[
c(2k−1)

1 , . . . ,c(2k−1)
M

]T
and

c(2k) =
[
c(2k)

1 , . . . ,c(2k)
M

]T
, respectively. It should be noted that in order to uniquely

determine the solutions c(2k−1) ∈ RM and c(2k) ∈ RM to the systems of linear alge-
braic equations (10) and (11), respectively, the number N of MFS boundary collo-
cation points on the boundary ∂Ω and the number M of singularities must satisfy
the inequality M ≤ N. However, the systems of linear algebraic equations (10) and
(11) cannot be solved by direct methods, such as the least-squares method, since
such an approach would produce a highly unstable solution in the case of noisy
Cauchy data on Γ1.



An iterative MFS algorithm for harmonic inverse problems 129

4.2 MFS boundary collocation points and singularities

In order to implement the MFS, the location of the singularities has to be deter-
mined and this is usually achieved by considering either the static or the dynamic
approach. In the static approach, the singularities are pre-assigned and kept fixed
throughout the solution process, whilst in the dynamic approach, the singularities
and the unknown coefficients are determined simultaneously during the solution
process, see Fairweather and Karageorghis (1998). Thus the dynamic approach
transforms the inverse problem into a more difficult nonlinear ill-posed problem
which is also computationally much more expensive. The advantages and dis-
advantages of the MFS with respect to the location of the fictitious sources are
described at length in Heise (1978) and Burgess and Maharejin (1984).

Recently, Gorzelańczyk and Kołodziej (2008) thoroughly investigated the perfor-
mance of the MFS with respect to the shape of the pseudo-boundary on which the
source points are situated, proving that, for the same number of boundary collo-
cation points and sources, more accurate results are obtained if the shape of the
pseudo-boundary is similar to that of the boundary of the solution domain. There-
fore, we have decided to employ the static approach in our computations, at the
same time accounting for the findings of Gorzelańczyk and Kołodziej (2008).

5 Regularization

It is well-known that the MFS discretisation matrices A(i), i = 1,2, are severely
ill-conditioned. The accurate and stable solutions of Eqs. (10) and (11) are very
important for obtaining physically meaningful numerical results. It is the purpose
of this section to present a classical regularization procedure for obtaining stable
solutions to the systems of linear algebraic equations (10) and (11), as well as
details regarding the optimal choice of the regularization parameter.

5.1 Tikhonov regularization method

Several regularization techniques used for the stable solution of systems of linear
and nonlinear algebraic equations are available in the literature, such as the sin-
gular value decomposition [Hansen (1998)], the Tikhonov regularization method
[Tikhonov and Arsenin (1986)] and various iterative methods [Kunisch and Zou
(1998)]. Recently, Liu (2008a) proposed a new and robust numerical technique for
the stable solution of ill-posed systems of linear algebraic equations, namely the
Fictitious Time Integration Method (FTIM). This method consists of introducing
a fictitious time variable that plays the role of a regularization parameter, while
its filtering effect is better than that of the Tikhonov and exponential filters. The
FTIM was successfully applied to solving inverse vibration problems [Liu (2008b);
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Liu (2008c); Liu, Chang, Chang and Chen (2008)], nonlinear complementarity
problems [Liu (2008d)], large systems of nonlinear algebraic equations [Liu and
Atluri (2008a)], boundary value problems for elliptic partial differential equations
[Liu (2008e)] and inverse Sturm-Liouville problems [Liu and Atluri (2008b)]. Liu
and Atluri (2009) have recently shown that, when applied to solving an ill-posed
system of linear equations, the general FTIM may be viewed a special case of the
Tiknonov regularization method.

Consider the following system of linear algebraic equations

Ac = b, (14)

where N ≥M, A ∈ RN×M, c ∈ RM and b ∈ RN . Note that Eq. (14) may describe
each of the MFS systems of linear equations (10) and (11), provided that

A = A(1), c = c(2k−1), b = b(2k−1), k > 1, (15)

and

A = A(2), c = c(2k), b = b(2k), k ≥ 1, (16)

respectively. The Tikhonov zeroth-order regularized solution to the generically
written system of linear algebraic equations (14) is sought as, see Tikhonov and
Arsenin (1986)

cλ : Fλ (cλ ) = min
c∈RM

Fλ (c) , (17)

where Fλ represents the Tikhonov zeroth-order regularization functional given by,
see Tikhonov and Arsenin (1986)

Fλ (·) : RM −→ [0,∞), Fλ (c) =
∥∥Ac−b

∥∥2 +λ
2∥∥c
∥∥2

, (18)

and λ > 0 is the regularization parameter to be prescribed. Formally, the Tikhonov
regularized solution cλ of the problem (14) is given as the solution of the normal
equation(

ATA+λ
2IM

)
c = AT b, (19)

where IM ∈ RM×M is the identity matrix. If the Cauchy data on the over-specified
boundary Γ1 are noisy and hence the right-hand side of Eq. (14) is corrupted by
noise, i.e.∥∥bε−b

∥∥≤ ε, (20)
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then the following stability estimate holds, see Engl, Hanke and Neubauer (2000),

‖cε
λ
− cλ‖ ≤

ε

λ
, (21)

where

cλ = A† b, A† ≡
(

ATA+λ
2IM

)−1
AT. (22)

To summarize, the Tikhonov regularization method solves a constrained minimiza-
tion problem using a smoothness norm in order to provide a stable solution which
fits the data and also has a minimum structure.

5.2 Selection of the optimal regularization parameter

The performance of regularization methods depends crucially on the suitable choice
of the regularization parameter. One extensively studied criterion is the discrep-
ancy principle, see e.g. Morozov (1966). Although this criterion is mathematically
rigorous, it requires a reliable estimation of the amount of noise added into the
data which may not be available in practical problems. Heuristical approaches are
preferable in the case when no a priori information about the noise is available. For
the Tikhonov zeroth-order regularization method, several heuristical approaches
have been proposed, including the L-curve criterion, see Hansen (1998), and the
generalized cross-validation (GCV), see Wahba (1977). In this paper, we employ
the GCV criterion to determine the optimal regularization parameter, λopt, for the
Tikhonov zeroth-order regularization method, namely

λopt : G
(
λopt
)

= min
λ>0

G (λ ) . (23)

Here

G (·) : (0,∞)−→ [0,∞), G (λ ) =

∥∥Acλ −bε
∥∥2[

trace
(
IN−AA†)]2 , (24)

where cλ is given by Eq. (21) with b = bε.

6 Numerical results and discussion

In this section, we present the performance of the proposed numerical method,
namely the alternating iterative MFS described in Sections 3 and 4. To do so, we
solve numerically the Cauchy geometric problem given by Eqs. (3a)− (3c) for the
two-dimensional Laplace equation in the geometries described below.
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6.1 Examples

Example 1. (Simply connected convex domain with a piecewise smooth boundary)
We consider the following analytical solutions for the temperature and the normal
heat flux

u(an)(x) = cos(x1) cosh(x2)+ sin(x1) sinh(x2), x = (x1,x2) ∈Ω, (25a)

and

q(an)(x) = [−sin(x1) cosh(x2)+ cos(x1) sinh(x2)] n1(x)

+[cos(x1) sinh(x2)+ sin(x1) cosh(x2)] n2(x), x = (x1,x2) ∈ ∂Ω,
(25b)

respectively, in the rectangle Ω = (−r, r)×
(
−r
/

2, r
/

2
)
, where r = 1.0. Here Γ1 =

{r}×
(
−r
/

2, r
/

2
)
∪ [−r, r]×

{
±r
/

2
}

and Γ2 = {−r}×
(
−r
/

2, r
/

2
)
.

Example 2. (Simply connected convex domain with a smooth boundary) We con-
sider the following analytical solution for the temperature

u(an)(x) = x2
1−x2

2, x = (x1,x2) ∈Ω, (26a)

and the corresponding analytical normal heat flux

q(an)(x) = 2 [x1 n1(x)−x2 n2(x)] , x = (x1,x2) ∈ ∂Ω, (26b)

in the unit disk Ω =
{

x = (x1,x2)
∣∣ρ(x) < r

}
, where ρ(x) =

√
x2

1 +x2
2 is the radial

polar coordinate of x and r = 1.0. Here Γ1 =
{

x ∈ ∂Ω
∣∣0≤ θ(x)≤ 3π/2

}
and

Γ2 =
{

x ∈ ∂Ω
∣∣3π/2 < θ(x) < 2π

}
, where θ(x) is the angular polar coordinate of

x.

Example 3. (Doubly connected concave domain with a smooth boundary) We
consider the following analytical solutions for the temperature and the normal heat
flux

u(an)(x) = x1 x2, x = (x1,x2) ∈Ω, (27a)

and

q(an)(x) = x2 n1(x)+x1 n2(x), x = (x1,x2) ∈ ∂Ω, (27b)

respectively, in the annular domain Ω =
{

x = (x1,x2)
∣∣ rint < ρ(x) < rout

}
, where

rint = 2.0 and rout = 3.0. Here Γ1 =
{

x ∈ ∂Ω
∣∣ρ(x) = rout

}
and Γ2 =

{
x ∈ ∂Ω

∣∣ρ(x) = rint
}

.
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Example 4. (Simply connected concave domain with a smooth boundary) We con-
sider the analytical solutions for the temperature and normal heat flux given by Eqs.
(26a) and (26b), respectively, in the epitrochoid, see e.g. Liu (2008f),

Ω =
{

x = (x1,x2)
∣∣∣∣0≤ ρ(x) <

√
(a+b)2−2h(a+b)cos

(
aθ
/

b
)
+h2, θ ∈ [0,2π)

}
,

where a = 4.0 and b = h = 1.0. Here Γ1 =
{

x ∈ ∂Ω
∣∣0≤ θ(x)≤ 3π/2

}
and Γ2 ={

x ∈ ∂Ω
∣∣3π/2 < θ(x) < 2π

}
.

The inverse problems investigated in this paper have been solved using the uniform
distribution of both the MFS boundary collocation points x(i), i = 1, . . . ,N, and the
singularities ξ( j), j = 1, . . . ,M. Furthermore, the numbers of MFS boundary collo-
cation points N1 and N2 corresponding to the over- and under-specified boundaries
Γ1 and Γ2, respectively, as well as the distance dS between the physical boundary
∂Ω and the pseudo-boundary ∂ΩS on which the singularities are situated, were set
to:

(i) N1 = 97, N2 = 19 and dS = 2.0 in the case of Example 1;

(ii) N1 = 60, N2 = 20 and dS = 3.0 for Example 2;

(iii) N1 = 60, N2 = 40, and dS = 1.0 and dS = 3.0 for the inner and outer bound-
aries, respectively, in the case of Example 3;

(iv) N1 = N2 = 40 and dS = 4.0 for Example 4.

In addition, for Examples 1− 3 the number of singularities was taken to be equal
to that of the MFS boundary collocation points, i.e. M = N = N1 + N2, while for
Example 4 the number of singularities was taken to be M = N/2 = 40.

6.2 Initial guess

An arbitrary real valued function u(1) ∈ H1/2(Γ2) may be specified as an initial
guess for the unknown temperature on the under-specified boundary Γ2. In order to
improve the rate of convergence of the iterative algorithm, one may choose a real
valued function which ensures the continuity of the boundary temperature at the
common endpoints of the over- and under-specified boundaries Γ1 and Γ2, respec-
tively, and which is also linear with respect to either the Cartesian x2−coordinate
in the case of Example 1, or the angular polar coordinate θ for Examples 2 and
4, see e.g. Lesnic, Elliott and Ingham (1997), Mera, Elliott, Ingham and Lesnic
(2000), Marin, Elliott, Ingham and Lesnic (2001), Marin, Elliott, Heggs, Ingham,
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Lesnic and Wen (2003). More precisely, for Example 1 and Examples 2 and 4 the
following initial guesses for the unknown temperature on Γ2 may be chosen:

u(1)(x) =
x(2)

2 −x2

x(2)
2 −x(1)

2

u(an)(x(1))+ x2−x(1)
2

x(2)
2 −x(1)

2

u(an)(x(2)), x ∈ Γ2, (28a)

and

u(1)(x) =
θ
(
x(2))−θ(x)

θ
(
x(2))−θ

(
x(1)) u(an)

(
x(1)
)
+

θ(x)−θ
(
x(1))

θ
(
x(2))−θ

(
x(1)) u(an)

(
x(2)
)
,

x ∈ Γ2,

(28b)

respectively, where x(1) and x(2) are the common endpoints of the over- and under-
specified boundaries, i.e. Γ1∩Γ2 =

{
x(1),x(2)

}
.

However, in the general situation when the over- and under-specified boundaries
have no common points, as is the case of Example 3, one cannot use the proce-
dure described above. Therefore, in this case, the initial guess for the unknown
temperature on the under-specified boundary Γ2 is chosen as

u(1)(x) = 0, x ∈ Γ2. (29)

In this study, we have decided to use the initial guess (29). In this way, the most
general situations regarding the geometry of the solution domain are accounted for
and the robustness of the alternating iterative algorithm with respect to the initial
guess for the unknown temperature on Γ2 is also tested.

6.3 Convergence of the algorithm

If Ni MFS collocation points,
{

x(`)
}Ni

`=1, are considered on the boundary Γi ⊂ ∂Ω

then the root mean square error (RMS error) associated with the real valued func-
tion f (·) : Γi −→ R on Γi is defined by

RMSΓi( f ) =

√
1
Ni

Ni

∑
`=1

f
(
x(`))2

, (30)

In order to investigate the convergence of the algorithm, at every iteration, k ≥ 1,
we evaluate the following accuracy errors corresponding to the temperature and
normal heat flux on the under-specified boundary, Γ2, which are defined as relative
RMS errors, i.e.

eu(k) =
RMSΓ2

(
u(2k−1)−u(an))

RMSΓ2

(
u(an)) =

∥∥u(2k−1)∣∣
Γ2
−u(an)∣∣

Γ2

∥∥
2∥∥u(an)∣∣

Γ2

∥∥
2

, k ≥ 1, (31a)
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and

eq(k) =
RMSΓ2

(
q(2k)−q(an))

RMSΓ2

(
q(an)) =

∥∥q(2k)∣∣
Γ2
−q(an)∣∣

Γ2

∥∥
2∥∥q(an)∣∣

Γ2

∥∥
2

, k ≥ 1, (31b)
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Figure 1: The accuracy errors, eu and eq, as functions of the number of iterations,
k, obtained using exact Cauchy data on Γ1 and various numbers of MFS boundary
collocation points, namely N ∈ {56,116,176}, for Example 1.

where u(2k−1) and q(2k) are the temperature and normal heat flux on the boundary
Γ2 retrieved after k iterations by solving the well-posed, mixed, direct, boundary
value problems (4a)− (4c) and (5a)− (5c), respectively. The error in predicting
the temperature inside the solution domain, Ω, may also be evaluated, but it has
an evolution similar to that of the errors eu and eq given by Eqs. (31a) and (31b),
respectively, and hence this is not pursued herein.

Fig. 1 shows the accuracy errors eu and eq as functions of the number of iterations,
k, obtained using exact Cauchy data on the over-specified boundary, Γ1, and var-
ious numbers of MFS collocation points, i.e. N ∈ {56,116,176}, for the inverse
problem given by Example 1. It can be seen from this figure that both errors eu
and eq decrease even after a large numbers of iterations, e.g. k = 300, and as ex-
pected eu < eq for all MFS discretizations employed, i.e. normal heat fluxes are
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Figure 2: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using exact Cauchy data on
Γ1, k = 300 iterations and various numbers of MFS boundary collocation points,
namely N ∈ {56,116,176}, for Example 1.
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more inaccurate than temperatures. Furthermore, as N increases, the errors eu and
eq decrease showing that in the case of Example 1, N ≥ 116 ensures a sufficient
discretisation for the accuracy to be achieved.

The numerical solutions for the temperature u
∣∣
Γ2

and the normal heat flux q
∣∣
Γ2

obtained after k = 300 iterations for the Cauchy problem given by Example 1 are
presented in Figs. 2(a) and 2(b), respectively. From these figures, it can be seen
that the accuracy in predicting both the temperature distribution and normal heat
flux on the boundary Γ2 is very good. As expected, the errors in predicting the
normal heat flux q

∣∣
Γ2

are larger than the errors in predicting the temperature u
∣∣
Γ2

since the normal heat flux contains higher-order derivatives of the latter. Similar
results have also been obtained for the other examples investigated in this study, as
well as for the Cauchy problem with perturbed Neumann data on the over-specified
boundary Γ1, and therefore these are not presented herein.

From Figs. 1 and 2, it can be concluded that the MFS-based alternating iterative
algorithm described in Sections 3 and 4 produces an accurate and convergent nu-
merical solution for both the missing boundary temperature and normal heat flux
with respect to increasing the number of iterations, k, and the number of MFS
boundary collocation points, N, provided that exact input Cauchy data are used.
However, exact data are seldom available in practice since measurement errors al-
ways include noise in the prescribed boundary conditions and this is investigated
next.

6.4 Stopping criterion

Once the convergence with respect to increasing N of the numerical solution to
the exact solution has been established, we fix N = M = 116 and investigate the
stability of the numerical solution for Example 1. In what follows, the temperature,
u|Γ1 = u(an)|Γ1 , and/or the normal heat flux, q|Γ1 = q(an)|Γ1 , on the over-specified
boundary have been perturbed as

ũε|Γ1 = u|Γ1 +δu, δu = G05DDF(0,σu), σu = max
Γ1
|u|× (pu/100) , (32)

and

q̃ε|Γ1 = q|Γ1 +δq, δq = G05DDF(0,σq), σq = max
Γ1
|q|×

(
pq/100

)
, (33)

respectively. Here δu and δq are Gaussian random variables with mean zero and
standard deviations σu and σq, respectively, generated by the NAG subroutine
G05DDF [NAG Library Mark 21 (2007)], while pu% and pq% are the percentages
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Figure 3: The accuracy errors (a) eu, and (b) eq, as function of the number of
iterations, k, obtained using N = 116 MFS boundary collocation points and various
levels of noise added into the Dirichlet data on Γ1, namely pu ∈ {1%,3%,5%}, for
Example 1.
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of additive noise included into the input boundary temperature, u|Γ1 , and normal
heat flux, q|Γ1 , respectively, in order to simulate the inherent measurement errors.

Figs. 3(a) and 3(b) present the accuracy errors eu and eq, respectively, for various
levels of Gaussian random noise pu ∈ {1%,3%,5%} added into the temperature
data u|Γ1 . From these figures it can be seen that as pu decreases then eu and eq
decrease. However, the errors in predicting the temperature and the normal heat flux
on the under-specified boundary Γ2 decrease up to a certain iteration number and
after that they start increasing. If the iterative process is continued beyond this point
then the numerical solutions lose their smoothness and become highly oscillatory
and unbounded, i.e. unstable. Therefore, a regularizing stopping criterion must be
used in order to terminate the iterative process at the point where the errors in the
numerical solutions start increasing.

After each iteration, k, we evaluate the following convergence error which is asso-
ciated with the temperature on the over-specified boundary, Γ1, namely

Eu(k) =
RMSΓ1

(
u(2k)− ũε

)
RMSΓ1

(
ũε
) =

∥∥u(2k)∣∣
Γ1
− ũε

∣∣
Γ1

∥∥
2∥∥ũε

∣∣
Γ1

∥∥
2

, k ≥ 1, (34)

where u(2k) is the temperature on the boundary Γ1 retrieved numerically after k it-
erations by solving the well-posed, mixed, direct, boundary value problem (5a)−
(5c). This error Eu should tend to zero as the sequences

{
u(2k−1)

}
k≥1 and

{
u(2k)

}
k≥1

tend to the analytical solution, u(an), in the space H1(Ω) and hence they are expected
to provide an appropriate stopping criterion. Indeed, if we investigate the error Eu
obtained at every iteration for Example 1 for various levels of Gaussian random
noise added into the input temperature data u|Γ1 , we obtain the curves graphically
represented in Fig. 4. By comparing Figs. 3 and 4, it can be noticed that the conver-
gence error Eu, as well as the accuracy errors eu and eq, attain their corresponding
minimum at around the same number iterations. Therefore, for noisy Cauchy data
a natural stopping criterion ceases the MFS alternating iterative algorithm at the
optimal number of iterations, kopt, given by:

kopt : Eu(kopt) = min
k≥1

Eu(k). (35)

As mentioned in the previous section, for exact data the iterative process is con-
vergent with respect to increasing the number of iterations, k, since the accuracy
errors eu and eq keep decreasing even after a large number of iterations, see Fig.
1. It should be noted in this case that a stopping criterion is not necessary since
the numerical solution is convergent with respect to increasing the number of iter-
ations. However, even in this case the errors Eu, eu and eq have a similar behaviour
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Figure 4: The convergence error, Eu, as a function of the number of iterations, k,
obtained using N = 116 MFS boundary collocation points and various levels of
noise added into the Dirichlet data on Γ1, namely pu ∈ {1%,3%,5%}, for Example
1.

and the error Eu may be used to stop the iterative process at the point where the
rate of convergence is very small and no substantial improvement in the numerical
solution is obtained even if the iterative process is continued. Therefore, it can be
concluded that the regularizing stopping criterion proposed is very efficient in lo-
cating the point where the errors start increasing and the iterative process should be
ceased.

6.5 Stability of the algorithm

Based on the stopping criterion described in Section 6.4, the analytical and numer-
ical values for the temperature, u, and normal heat flux , q, on the under-specified
boundary Γ2, obtained using various levels of noise added into the temperature data
on the over-specified boundary Γ1 for Example 1, are illustrated in Figs. 5(a) and
5(b), respectively. From these figures it can be seen that the numerical solution
is a stable approximation for the exact solution, free of unbounded and rapid os-
cillations. It should also be noted from Figs. 5(a) and 5(b) that the numerical
solution converges to the exact solution as the level of noise, pu, added into the
input Dirichlet data decreases.
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Figure 5: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using N = 116 MFS bound-
ary collocation points and various levels of noise added into the Dirichlet data on
Γ1, namely pu ∈ {1%,3%,5%}, for Example 1.



142 Copyright © 2009 Tech Science Press CMES, vol.48, no.2, pp.121-152, 2009

0.75 0.8 0.85 0.9 0.95 1.0

/2

-1.0

-0.5

0.0

0.5

1.0

u

Analytical

pu = 1%

pu = 3%

pu = 5%

(a) Example 2: Temperatures on Γ2

0.75 0.8 0.85 0.9 0.95 1.0

/2

-2

-1

0

1

2

q

Analytical

pu = 1%

pu = 3%

pu = 5%

(b) Example 2: Normal heat fluxes on Γ2

Figure 6: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using N = 80 MFS boundary
collocation points and various levels of noise added into the Dirichlet data on Γ1,
namely pu ∈ {1%,3%,5%}, for Example 2.
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Figure 7: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using N = 100 MFS bound-
ary collocation points and various levels of noise added into the Neumann data on
Γ1, namely pq ∈ {1%,3%,5%}, for Example 2.
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Figure 8: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using N = 100 MFS bound-
ary collocation points and various levels of noise added into the Dirichlet data on
Γ1, namely pu ∈ {1%,3%,5%}, for Example 3.
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Figure 9: The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes q, on the under-specified boundary Γ2, obtained using N = 80 MFS boundary
collocation points and various levels of noise added into the Dirichlet data on Γ1,
namely pu ∈ {1%,3%,5%}, for Example 4.
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The proposed MFS-alternating iterative algorithm, in conjunction with the stopping
criterion (35), works equally well also for the Cauchy problem (3a)− (3c) associ-
ated with the Laplace equation in a simply connected convex domain with a smooth
boundary, such as the disk investigated in Example 2. Figs. 6(a) and 6(b) show the
numerical results for the temperature and normal heat flux on the boundary Γ2, ob-
tained using the stopping criterion (35), M = N = 80 and various amounts of noise
added into the Dirichlet data, namely pu ∈ {1%,3%,5%}, in comparison with their
corresponding analytical values, in the case of Example 2.

In the case of Example 2, very good results have also been retrieved for both the
unknown temperature, u

∣∣
Γ2

, and normal heat flux, q
∣∣
Γ2

, when using the stopping
criterion (35), M = N = 80 and various levels of noise added into the Neumann
data on Γ1, namely pq ∈ {1%,3%,5%}, and these are presented in Figs. 7(a)
and 7(b), respectively. By comparing Figs. 6 and 7 we can conclude that, as ex-
pected, the numerical results obtained using the proposed MFS alternating iterative
algorithm, in conjunction with the stopping criterion (35), are more sensitive to
perturbations in the normal heat flux on the over-specified boundary than to noisy
boundary temperature on Γ1.

Similar stable numerical results for both the unknown temperature, u
∣∣
Γ2

, and nor-
mal heat flux, q

∣∣
Γ2

, which are at the same time free of unbounded and rapid oscilla-
tions, have been obtained for the Cauchy problem (3a)− (3c) corresponding to the
Laplace equation in a doubly connected concave domain with a smooth boundary,
namely the annular domain considered in Example 3, and these are illustrated in
Figs. 8(a) and 8(b), respectively. The same conclusions have been obtained when
solving the Cauchy problem (3a)−(3c) corresponding to the Laplace equation in a
simply connected concave domain with a smooth boundary, such as the epitrochoid
considered in Example 4, and the analytical and numerical results for the unknown
temperature, u

∣∣
Γ2

, and normal heat flux, q
∣∣
Γ2

, are displayed in Figs. 9(a) and 9(b),
respectively.

From the numerical results presented in this section, it can be concluded that the
stopping criterion developed in Section 6.4 has a regularizing effect and the numer-
ical solution obtained by the iterative MFS described in this paper is convergent and
stable with respect to increasing the number of MFS boundary collocation points
and decreasing the level of noise added into the Cauchy input data, respectively.

7 Conclusions

In this paper, the alternating iterative algorithm of Kozlov, Maz′ya and Fomin
(1991) was implemented, for the Cauchy problem associated with the two-dimensional
Laplace equation, using a meshless method. The two mixed, well-posed and direct
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problems corresponding to every iteration of the numerical procedure were solved
using the MFS, in conjunction with the Tikhonov regularization method. For each
direct problem considered, the optimal value of the regularization parameter was
selected according to the GCV criterion. An efficient regularizing stopping crite-
rion which ceases the iterative procedure at the point where the accumulation of
noise becomes dominant and the errors in predicting the exact solutions increase,
was also presented. The MFS-based iterative algorithm was tested for Cauchy prob-
lems associated with the Laplace operator in simply and doubly connected, convex
and concave domains, with smooth or piecewise smooth boundaries.

From the numerical results presented in this study, it can be concluded that the
proposed method is consistent, accurate, convergent with respect to increasing the
number of MFS boundary collocation points and stable with respect to decreasing
the amount of noise added into the Cauchy data. One possible disadvantage of the
MFS-based iterative algorithm is related to the optimal choice of the regulariza-
tion parameter associated with the Tikhonov regularization method which requires,
at each step of the alternating iterative algorithm of Kozlov, Maz′ya and Fomin
(1991), additional iterations with respect to the regularization parameter. However,
this inconvenience can be overcome by introducing relaxation procedures in the
MFS iterative algorithm and this is currently being under investigation.

The implementation of the MFS in an iterative manner can be extended to the al-
ternating iterative method of Kozlov, Maz′ya and Fomin (1991) applied to two-
dimensional Cauchy problems associated with elliptic partial differential operators
whose fundamental solutions are available, such as the Navier-Lamé system of lin-
ear elasticity, the modified Helmholtz equation and steady-state anisotropic heat
conduction, as well as other iterative algorithms and similar three-dimensional in-
verse problems, but these are deferred as future work.
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