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Method

J. Sladek1, V. Sladek1, P.H. Wen2 and Y.C. Hon3

Abstract: The meshless local Petrov-Galerkin (MLPG) method is used to solve
the inverse heat conduction problem of predicting the distribution of the heat trans-
fer coefficient on the boundary of 2-D and axisymmetric bodies. Using this method,
nodes are randomly distributed over the numerical solution domain, and surround-
ing each of these nodes, a circular sub-domain is introduced. By choosing a unit
step function as the test function, the local integral equations (LIE) on the bound-
aries of these sub-domains are derived. To eliminate the time variation in the gov-
erning equation, the Laplace transform technique is applied. The local integral
equations are nonsingular and take a very simple form. The spatial variations of
the Laplace transforms of temperature and heat flux are approximated on the local
boundary and in the interior of the subdomain by means of the moving least-squares
(MLS) method. The truncated singular value decomposition (TSVD) is applied to
solve the ill-conditioned linear system of algebraic equations obtained from the
LIE after the MLS approximation. The Stehfest algorithm is then applied for the
numerical Laplace inversion, in order to retrieve the time-dependent solutions. The
effectiveness of the MLPG method for this inverse problem is demonstrated by
some numerical examples.
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1 Introduction

The heat transfer coefficient is a very important parameter in the analysis of heat
transfer problems. It is usually determined empirically from direct correlations of
experimental data. The success of these experiments is, however, often limited to
some range of flow parameters and to steady state conditions. As a result, many
investigators have developed various inverse schemes for determining this quan-
tity [Osman and Beck (1990), Kurpisz and Nowak (1995), Martin and Dulikravich
(1998), Duda and Taler (2000), Chantasiriwan (2000), Ling et al. (2003), Chen
and Wu (2006), Chen and Chou (2006)]. To solve the inverse heat conduction
problem (IHCP), only the temperatures at some interior points need to be mea-
sured; they are usually on the symmetric axes, if any, where there is vanishing
heat flux. The unknown temperature and heat flux at the exterior boundary are
computed utilizing the measured temperatures and prescribed heat fluxes on the
remaining part of the boundary of the analyzed domain. By solving this problem
instead, the errors introduced by the boundary or interior measurements are re-
duced due to the diffusive character of the heat conduction process. However, it
is well known that inverse problems are, in general, unstable [Hadamard (1923),
Ling and Atluri (2006)] in the sense that small measurement errors in the input
data may amplify significantly the errors in the solution. Many of the traditional
computational methods for well-posed direct problems fail to produce acceptable
solutions to such inverse problems. Several techniques have been proposed for
solving a one-dimensional IHCP [Beck et al. (1985), Chantasiriwan (1989), Lesnic
et al. (1996), Lesnic and Elliot (1999), Jonas and Louis (2000), Shen (1999), Hon
and Wei (2004)]. The methods which have been widely adopted for treating two-
dimensional IHCP’s include the boundary element [Chantasiriwan (2001), Kurpisz
and Nowak (1992), Mera et al. (2000)], finite difference [Guo and Murio (1991),
Khalidy (1998)] and finite elements [Hsu et al. (1992), Reinhardt (1991)] meth-
ods, the group preserving scheme [Chang et al. (2005), Liu (2006)], as well as the
Trefftz method [Liu (2008)] and the method of fundamental solutions [Hon and
Wei (2005)]. There remains a need for developing efficient and versatile numerical
schemes for analysing the multi-dimensional IHCP. Recently, Liu et al. (2009a)
have introduced a novel and general approach to resolve the ill-posedness of highly
ill-conditioned system of linear equations by utilizing a discrete solution of the
PDE of the Laplacian type. Pre/post conditioner is obtained for the Laplace equa-
tion through a boundary-collocation Trefftz method. Quality of the conditioner is
greatly enhanced by using multipole characteristic lengths in the Trefftz expansion.
A novel interpolation technique [Liu and Atluri (2009b)] has been developed also
to solve accurately some ill-posed linear problems, such as the numerical differen-
tiation of noisy data and computation of the inverse Laplace transform. Also Liu
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and Atluri (2009c) have applied the fictitious time integration method (FTIM) to
solve a system of ill-posed linear equations. The fictitious time plays there the role
of a regularization parameter, and its filtrating effect is better that of the Tikhonov
and the exponential filters.

In spite of the great success of the finite and boundary element methods as effective
numerical tools for the solution of boundary value problems on complex domains,
their shortcomings have spurred a growing interest in the development of new ad-
vanced computational methods. Meshless methods have emerged as a competitive
alternative to these classical discretization techniques due to their high adaptability
and the low cost in the preparation of input data for numerical analyses. Several
such methods have been proposed in the literature, see, e.g., [Belytschko et al.
(1996), Atluri (2004), Atluri and Zhu (1998), Sladek et al. (2006), Li et al. (2002),
Kansa (1990), Golberg and Chen (1998), Chen and Tanaka (2002)]. A more re-
cent and novel approach based on the local Petrov-Galerkin method [Atluri and
Shen (2002), Atluri et al. (2003)] has also been proposed for various boundary
value problems and to solve the heat conduction problems too [Sladek et al. (2004)
(2003a,b) (2005a,b)]. The analyzed domain can be divided into small sub-domains
with simple geometry. For each of these sub-domains, the fundamental solutions of
some simplified differential operators or a parametrix (Levi function) [Mikhailov
(2002)] can then be found. On the surface of each sub-domain, the local integral
equations (LIE) are expressed in the Laplace transform domain to eliminate the
time dependence variable of the governing equation for transient heat conduction
problems. The idea has been successfully applied to 2-D transient heat conduc-
tion analysis [Sladek et al. (2004) (2003a,b) (2005a,b)]. The authors have further
applied the approach to analyze transient heat conduction problems in axisymmet-
ric and isotropic functionally graded materials (FGM’s) [Sladek et al. (2003b)].
Recently, Sladek et al. [Sladek et al. (2003a,b) (2005a,b)] have also proposed
a meshless method based on the local Petrov-Galerkin approach to solve station-
ary and transient heat conduction problems in 2-D anisotropic FGM’s and for 3-D
problems [Sladek et al. (2008)]. The anisotropy increases the number of heat
conduction constants, which renders the derivation of fundamental solutions very
difficult to obtain even in a homogeneous case.

In this paper, the meshless local Petrov-Galerkin (MLPG) method is used to solve
transient inverse heat conduction problems in 2-D and axisymmetric bodies. For
the latter, axial symmetry of the geometry and boundary conditions reduces the
original 3-D boundary value problem to a 2-D problem about the radial plane. In
the MLPG approach here, nodes may be randomly scattered over the numerical
solution domain. Surrounding each of these nodes, a small circular sub-domain is
introduced. The Laplace transform technique is applied to eliminate the time vari-
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able in the governing differential equation; the original linear parabolic differential
equation is thereby converted into a linear elliptic one. A unit step function is cho-
sen as the test function to derive the local integral equations on the boundaries of
the sub-domains; these local integral equations (LIE’s) have a boundary-domain
integral form. In contrast to the global formulation based on boundary-domain
integral equations, the present boundary-domain integral formulation on local sub-
domains is much easier for numerical computations as the LIE’s are nonsingular
and they take a very simple form. The spatial variations of the Laplace trans-
forms of the temperature and heat flux on the sub-domain are approximated by the
moving least-squares (MLS) method. To solve the ill-conditioned linear system of
algebraic equations obtained from the LIE’s after MLS approximation [Shenefelt
et al. (2002)], the truncated singular value decomposition is applied. The L-curve
method is used to determine the regularization parameter; the regularization is espe-
cially important for “noisy” input data [Lesnic et al. (1998), Jin and Marin (2007),
Divo et al. (2005)]. Several quasi-static boundary value problems are solved for
various values of the Laplace transform parameter. The Stehfest [Stehfest (1970)]
numerical inversion scheme is employed to obtain the time-dependent solutions.
Numerical examples involving a finite strip and a hollow cylinder with orthotropic
and functionally graded material properties are analyzed to verify the efficiency and
accuracy of the proposed computational method.

2 Local integral equations for 2-D problems

Consider a finite 2-D body, with initial temperature T , in a moving fluid which has
temperature θe(t). The solid body, in the general case, has continuously varying
anisotropic material properties, and the unknown heat transfer coefficients on parts
of the boundary are to be determined. The boundary value problem for the heat
conduction in the body is governed by the following equation:

ρ(x)c(x)
∂θ

∂ t
(x, t) = [ki j(x)θ, j(x, t)],i +Q(x, t), (1)

where θ(x, t) is the temperature field, Q(x, t) is the density of body heat source,
ki j is the thermal conductivity tensor, ρ(x) is the mass density and c(x) the specific
heat.

In the present analysis, only numerical experiments are used to provide the tem-
peratures at internal points which are selected on symmetric axes. Thus, no other
internal node temperatures are prescribed in the inverse problems treated in this
study. The global boundary Γ consists of three parts Γ = Γθ ∪Γq ∪Γ3 and the
following boundary and initial conditions are assumed

θ(x, t) = θ̃(x, t) on Γθ
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q(x, t) = ki j(x)θ, j(x, t)ni(x) = q̃(x, t) on Γq

q(x, t) = h(x) [θe(t)−θ(x, t)] on Γ3

θ(x, t)|t=0 = T (x,0), (2)

where ni is the unit outward normal at the global boundary; h(x) is unknown heat
transfer coefficient; θe(t) is the temperature of the fluid medium outside of solid
body; Γθ is the part of the global boundary with prescribed temperature; on Γq , the
heat flux is prescribed; and, Γ3 represents the part of the surface where convective
boundary condition is prescribed. Generally, the heat transfer coefficient on some
part of the surface can be prescribed and on some part, it is unknown Γ∗3 ⊂ Γ3. The
main goal of this paper is to determine the unknown heat transfer coefficient from
the Dirichlet and Neumann data prescribed on the accessible part of the boundary
Γ1 ⊂ Γ, i.e.

θ(x, t) = θ̃(x, t), x ∈ Γ1, t ∈ (0, tmax)

q(x, t) = q̃(x, t), x ∈ Γ1, t ∈ (0, tmax).

For uniqueness of the solution, only examples where temperature and heat flux are
defined simultaneously on some part of the boundary are considered here. Once
the temperature and heat flux are computed everywhere, the unknown heat transfer
coefficient can be easily obtained from the third equation in equation (2).

Applying the Laplace transformation

L [θ(x, t)] = θ̄(x,s) =
∞∫

0

θ(x, t)e−stdt ,

to the governing equation (1) results in the following[
ki j(x)θ̄, j(x,s)

]
,i−ρ(x)c(x)s θ̄(x,s) =−F̄(x,s), (3)

where

F̄(x,s) = Q̄(x,s)+θ(x,0)

is the redefined body heat source in the Laplace transform domain with initial
boundary condition for temperature, and s is the Laplace transform parameter.

Instead of working with the global weak form for the above governing equation,
the MLPG methods construct the weak form over local sub-domains, such as Ωs ,
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which is a small region taken around each node inside the global domain [Sladek et
al. (2006)]. The local sub-domains overlap each other, and cover the whole global
domain Ω ; they could be of any geometric shape and size. In the present work,
these local sub-domains are taken to be of circular shape. The local weak form of
the governing equation (3) for xa ∈Ωa

s can be written as∫
Ωa

s

[(
ki j(x)θ̄, j(x,s)

)
,i−ρ(x)c(x)s θ̄(x,s)+ F̄(x,s)

]
θ
∗(x) dΩ = 0 , (4)

where θ ∗(x) is a weight (test) function. Using(
ki j(x)θ̄, j(x,s)

)
,i θ
∗(x) =

(
ki j(x)θ̄, j(x,s)θ ∗(x)

)
,i− ki j(x)θ̄, j(x,s)θ ∗,i (x)

and applying the Gauss divergence theorem one can write∫
∂Ωa

s

q̄(x,s)θ ∗(x)dΓ−
∫

Ωa
s

ki j(x)θ̄, j(x,s)θ ∗,i (x)dΩ−
∫

Ωa
s

ρ(x)c(x)sθ̄(x,s)θ ∗(x)dΩ+

+
∫

Ωa
s

F̄(x,s)θ ∗(x)dΩ = 0, (5)

where ∂Ωa
s is the boundary of the local sub-domain and

q̄(x,s) = ki j(x)θ̄, j(x,s)ni(x) .

The local weak form, equation (5), is a starting point for the derivation of the local
boundary integral equations. An appropriate test function needs to be selected. To
this end, a Heaviside step function may be chosen as the test function θ ∗(x) in each
sub-domain, i.e.

θ
∗(x) =

{
1 at x ∈Ωa

s

0 at x /∈Ωa
s

Equation (5) can then be transformed into the following simple local boundary
integral equation∫
∂Ωa

s

q̄(x,s)dΓ−
∫

Ωa
s

ρ(x)c(x)sθ̄(x,s)dΩ =−
∫

Ωa
s

F̄(x,s)dΩ. (6)

Equation (6) is recognized as the flow balance condition of the sub-domain. Under
steady-state conditions, the domain integral on the left hand side of this equation
disappears. Furthermore, if body heat source is absent in the problem, a pure con-
tour integral formulation is obtained.
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3 Local boundary integral equations for axisymmetric problems

For an axisymmetric problem, it is convenient to use cylindrical polar coordinates
x≡ (r, ϕ, z) (Fig.1). In this case, the governing equation (1) can be rewritten in the
form

[
kαβ (x)θ,β (x, t)

]
,α

+
krz(x)

r
θ,z(x, t)+

krr(x)
r

θ,r(x, t)+Q(x, t) = ρ(x)c(x)
∂θ

∂ t
(x, t),

(7)

where the summation convention for repeated indices α, β , representing the coor-
dinates r,z , is assumed.

1=r

2

L

b

3=z

a

Ω

q=0

θ=H(t)|

q=0Γsq

Γsθ

Γsq

 

Figure 1: Boundary conditions and node distribution in analysed domain for a finite
hollow cylinder

The Laplace transform when applied to equation (7) will yield

[
kαβ (x)θ̄,β (x,s)

]
,α

+
krz(x)

r
θ̄,z(x,s)+

krr(x)
r

θ̄,r(x,s)+ F̄(x,s) = ρ(x)c(x)sθ̄(x,s),

(8)
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where s is the Laplace transform parameter and

F̄(r,z,s) = Q̄(r,z,s)+θ(r,z,0)

is the redefined body heat source in the Laplace transform domain with the initial
boundary condition for the temperature field θ(r,z,0) . The local weak form of the
governing equation (8) for xa ∈Ωa

s can be written as∫
Ωa

c

[(
kαβ (x)θ̄,β (x,s)

)
,α

+
krz(x)

r
θ̄,z(x,s)+

krr(x)
r

θ̄,r(x,s)−

− ρ(x)c(x)s θ̄(x,s)+ F̄(x,s)
]

θ
∗(x) dΩ = 0 , (9)

where θ ∗(x) is a weight (test) function. Following the same steps as before, the
Gauss divergence theorem is next applied to equation (9), which results in∫
∂Ωa

s

q̄(x,s)θ ∗(x)dΓ−
∫

Ωa
s

kαβ (x)θ̄,β (x,s)θ ∗,α(x)dΩ−
∫

Ωa
s

ρ(x)c(x)sθ̄(x,s)θ ∗(x)dΩ+

+
∫

Ωa
s

[
krz(x)

r
θ̄,z(x,s)+

krr(x)
r

θ̄,r(x,s)
]

θ
∗(x)dΩ+

∫
Ωa

s

F̄(x,s)θ ∗(x)dΩ = 0. (10)

If a unit step function is used as the test function θ ∗(x) in each sub-domain, the
local weak form, equation (10), is transformed into a simple local boundary integral
equation∫
∂Ωa

s

q̄(x,s)dΓ−
∫

Ωa
s

ρ(x)c(x)sθ̄(x,s)dΩ+

+
∫

Ωa
s

[
krz(x)

r
θ̄,z(x,s)+

krr(x)
r

θ̄,r(x,s)
]

dΩ =−
∫

Ωa
s

F̄(x,s)dΩ. (11)

In the MLPG method, the test and trial functions, θ ∗(x) and θ̄(x,s), are not nec-
essarily from the same functional space. The test function is chosen as the unit
step function with support on the local sub-domain. The trial function, on the other
hand, is chosen to be the moving least-squares (MLS) interpolation over a number
of nodes which are randomly spread within the domain of influence; this will be
described in greater detail in Section 4. While the local sub-domain is defined as
the support of the test function on which the integration is carried out, the domain
of influence for a given node is defined as a region where the weight function is not
zero. Thus, the node xa contributes to the approximation at x only if this point lies
at the influence domain of the node xa.
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4 Meshless approximation and numerical solution

In general, a meshless method uses a local interpolation to represent the trial func-
tion with the values of the unknown variable (or the fictitious values) at some ran-
domly located nodes. The moving least-squares (MLS) approximation [Belytschko
et al. (1996), Atluri (2004)] used in the present analysis may be considered as one
such scheme.

 

Figure 2: Local boundaries, the domain Ωx for MLS approximation of the trial
function θ(x), and support area of weight function around node xa

With reference to Fig. 2, consider a sub-domain Ωx of the problem domain Ω in
the neighbourhood of a point x, for defining the MLS approximation of the trial
function (i.e. the temperature distribution) around x. To approximate the distri-
bution of the Laplace transform of temperature in Ωx over a number of randomly
located nodes {xa} , a = 1,2, ...n , the MLS approximant θ̄ h(x,s) of θ̄ , ∀x ∈ Ωx ,
is defined by

θ̄
h(x,s) = pT (x)a(x,s) , ∀x ∈Ωx (12)

where pT (x) =
[
p1(x), p2(x), ..., pm(x)

]
is a complete monomial basis; and a(x)

is a vector containing the coefficients a j(x) , j = 1,2, ...,m which are functions of
the space co-ordinates x = [x1, x2, x3]

T . For example, for a 2-D problem

pT (x) = [1, x1, x2] , for linear basis m = 3 (13)

pT (x) =
[
1, x1, x2, (x1)2, x1x2, (x2)2] , for quadratic basis m = 6. (14)
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The coefficient vector a(x) is determined by minimizing a weighted discrete L2-
norm defined as

J(x) =
n

∑
a=1

wa(x)
[
pT (xa)a(x,s)− θ̂

a(s)
]2

, (15)

where wa(x) is the weight function associated with the node xa, and wa(x) > 0.
Recall that n is the number of nodes in Ωx for which the weight function wa(x) > 0
and θ̂ a(s) are the fictitious nodal values, but not the nodal values of the unknown
trial function θ̄ h(x,s) in general. The stationary condition of Jin equation (14)
with respect to a(x,s)

∂J/∂a = 0

leads to the following linear relation between a(x,s) and θ̂(s)

A(x)a(x,s)−B(x)θ̂(s) = 0 , (16)

where

A(x) =
n

∑
a=1

wa(x)p(xa)pT (xa) ,

B(x) =
[
w1(x)p(x1), w2(x)p(x2), ....,wn(x)p(xn)

]
. (17)

The MLS approximation is well-defined only when the matrix A in equation (16)
is non-singular. A necessary condition to satisfy this requirement is that at least m
weight functions are non-zero (i.e. n ≥ m ) for each sample point x ∈ Ω and that
the nodes in Ωx are not arranged in a special pattern such as on a straight line. The
solution of equation (16) for a(x,s) and a subsequent substitution into equation
(12) lead to the following relation

θ̄
h(x,s) = Φ

T (x) · θ̂(s) =
n

∑
a=1

φ
a(x)θ̂ a(s) , (18)

where

Φ
T (x) = pT (x)A−1(x)B(x) . (19)

In equation (18), φ a(x) is usually referred to as the shape function of the MLS
approximation corresponding to the nodal point xa . From equations (17) and (19),
it can be seen that φ a(x) = 0 when wa(x) = 0. In practice, wa(x) is often chosen
such that it is non-zero within the finite size support domain of the nodal point
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xi . The support domain (influence domain) of the nodal point xa is usually taken
to be a circle of the radius ri centred at xa (see Fig. 2). The radius ri is an
important parameter of the MLS approximation because it determines the range
of the interaction (coupling) between the degrees of freedom defined at the nodes
considered. The size of the support ra should be large enough to cover a sufficient
number of nodes in the domain of definition to ensure the regularity of the matrix
A. The value of n is determined by the number of nodes whose influence domains
involve the approximation point x. The radius of the support domain for node xa

is usually selected as ra = 4rloc , where rloc is the radius of circular sub-domain.

A 4th-order spline-type weight function is employed in the present work

wa(x) =

{
1−6

(da

ra

)2
+8
(da

ra

)3−3
(da

ra

)4
0≤ da ≤ ra

0 da ≥ ra
, (20)

where da = ‖x−xa‖. The C1-continuity of the weight function given by equation
(20) is ensured over the entire domain and hence the continuity of the tempera-
ture gradients is satisfied. The partial derivatives of the MLS shape functions are
obtained as [Atluri (2004)]

φ
a
,k =

m

∑
j=1

[
p j

,k(A
−1B) ja + p j(A−1B,k +A−1

,k B) ja
]
, (21)

wherein A−1
,k =

(
A−1

)
,k represents the derivative of the inverse of A with respect

to xk , which is given by

A−1
,k =−A−1A,kA−1 .

The directional derivatives of θ̄(x,s) are approximated in terms of the same nodal
values as θ̄(x,s) by

∂ θ̄ h

∂n
(x,s) = nk(x)

n

∑
a=1

θ̂
a(s)φ a

,k(x) . (22)

The Laplace transform of the heat flux is then approximated by

q̄(x,s) = ki j(x)ni(x)
n

∑
a=1

θ̂
a(s)φ a

, j(x) . (23)

The local integral equation (6) for 2-D problems for the source point xc located
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inside Ω or on Γ3 yields the following set of equations:

n

∑
a=1

θ̂
a(s)

∫
∂Ωc

s

k(
i jx)n j(x)φ a

, j(x)dΓ −
n

∑
a=1

θ̂
a(s)

∫
Ωc

s

ρ(x)c(x)sφ
a(x)dΩ =

= −
∫
Ωc

s

F̄(x,s)dΩ . (24)

The LIE at xb ∈ Γb
sq

n

∑
a=1

θ̂
a(s)

∫
Lb

s

k(
i jx)n j(x)φ a

, j(x)dΓ −
n

∑
a=1

θ̂
a(s)

∫
Ωb

s

ρ(x)c(x)sφ
a(x)dΩ =

=−
∫

Γb
sq

˜̄q(x,s)dΓ−
∫

Ωb
s

F̄(x,s)dΩ, (25)

It should be noted that neither Lagrange multipliers nor penalty parameters need to
be introduced into the local weak form, equation (4), since the essential boundary
conditions on Γb

sθ
can be imposed directly using the interpolation approximation

of equation (18):

n

∑
a=1

φ
a(x)θ̂ a(s) = ˜̄

θ(xb,s), for xb ∈ Γ
b
sθ (26)

where ˜̄
θ(xb,s) is the Laplace transform of temperature prescribed on the boundary

Γb
sθ

for boundary conditions introduced below equation (2).

In a direct problem with prescribed heat transfer coefficient and thermal shock ex-
ternal temperature application (Heaviside time variation), the Laplace transform of
heat flux on Γ3 is given by

q̄(x,s) = h(x)
[
θe0/s− θ̄(x,s)

]
, (27)

where θe0 is the steady external temperature.

In such a case, the local integral equation at xb ∈ Γb
3 has the form:

n

∑
a=1

θ̂
a(s)

∫
Lb

s

ki j(x)n j(x)φ a
, j(x)dΓ−

n

∑
a=1

θ̂
a(s)

∫
Γb

3

h(x)φ a(x)dΓ−

−
n

∑
a=1

θ̂
a(s)

∫
Ωb

s

ρ(x)c(x)sφ
a(x)dΩ =
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=−
∫
Γb

3

h(x)
1
s

θe0dΓ−
∫

Ωb
s

F̄(x,s)dΩ . (28)

Similarly, for axisymmetric problems, the local boundary integral equation (11) for
the source point xc located inside Ω or on Γ3 yields the following set of equations:

n

∑
a=1

θ̂
a(s)

∫
∂Ωc

s

kαβ (x)nα(x)φ a
,β (x)dΓ −

n

∑
a=1

θ̂
a(s)

∫
Ωc

s

ρ(x)c(x)sφ
a(x)dΩ+

+
n

∑
a=1

θ̂
a(s)

∫
Ωc

s

[
krz(x)

r
φ

a
,z(x)+

krr(x)
r

φ
a
,r(x)

]
dΩ =−

∫
Ωc

s

F̄(x,s)dΩ. (29)

For the source point xb located on the global boundary Γ, the boundary, ∂Ωb
s , of

the sub-domain is created by Lb
s and Γb

sq (part of the global boundary with pre-
scribed heat flux) according to Fig.1. The local integral equation has in this case
the following form:

n

∑
a=1

θ̂
a(s)

∫
Lb

s

kαβ (x)nα(x)φ a
,β (x)dΓ −

n

∑
a=1

θ̂
a(s)

∫
Ωb

s

ρ(x)c(x)sφ
a(x)dΩ+

+
n

∑
a=1

θ̂
a(s)

∫
Ωb

s

[
krz(x)

r
φ

a
,z(x)+

krr(x)
r

φ
a
,r(x)

]
dΩ =−

∫
Γb

sq

˜̄q(x,s)dΓ−
∫

Ωb
s

F̄(x,s)dΩ.

(30)

The local integral equations at nodes on the part of the global boundary with essen-
tial boundary conditions Γb

sθ
are replaced by equation (26) given by the collocation

of the interpolation approximation (18).

The time-dependent fields can be obtained from by an inverse transformation of
the Laplace transformed values. Several numerical inversion schemes are available
for this purpose. It is also well known that for large time intervals, the numerical
inversion of the Laplace transform is unstable. However, the instability due to
Laplace inversion is generally lower than inverting the solution matrix resulting
from undetermined boundary conditions on some part of the boundary in inverse
problems. In other words, small truncation errors can be greatly magnified in the
inversion process which leads to poor numerical results. For shorter time instants,
the numerical results after the Laplace inversion are reliable [Davies and Martin
(1979)]. Of interest here are only relatively short time instants; the sophisticated
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Stehfest’s algorithm [Stehfest (1970)] for the numerical inversion is used. If f̄ (s)
is the Laplace transform of f (t) , an approximate value fa of f (t) for a specific
time t is given by

fa(t) =
ln2

t

N

∑
i=1

vi f̄
(

ln2
t

i
)

, (31)

where

vi = (−1)N/2+i
min(i,N/2)

∑
k=[(i+1)/2]

kN/2(2k)!
(N/2− k)!k!(k−1)!(i− k)!(2k− i)!

. (32)

In numerical analyses, N = 10 is used for double precision arithmetic [Sladek et
al. (2003a,b)]. This means that for each time t, N boundary value problems for
the corresponding Laplace parameters, s = i ln2/t , with i = 1, 2, ..., N , need to be
solved. If M denotes the number of the time instants in which f (t) is to be found,
the number of the Laplace transform solutions f̄ (s j) is then M×N . It is perhaps
worth noting that most of the alternative methods for the numerical inversion of the
Laplace transformation [Jin and Marin (2007)] require the use of complex valued
Laplace transform parameter. As a result, the application of complex arithmetic
may lead to additional storage requirement and an increase in computational effort.

Inverse and direct boundary value problems are described by the same governing
equation. Only the boundary conditions are different, giving rise to the ill-posed
nature of the inverse problem. The numerical method for the analysis can be the
same in both types of problems. The basic issue when dealing with the inverse
problem is the reliability of the solutions from the final system of algebraic equa-
tions obtained after application the numerical approximation procedures such as
the MLPG method here. Generally, for the Laplace transform integral formula-
tions, the system of algebraic equations can be rewritten into a matrix form with
unknown quantities on the left hand side and prescribed quantities are on the right
hand side:

KX = F. (33)

The matrix K in equation (33) is a square matrix with size (N×N), where N is the
total number of nodes. Their terms are determined by equation (28) and equation
(29) for 2-D and axisymmetric problems, respectively. It is ill-conditioned due to
the ill-posed nature of the IHCP. This means that numerical results are sensitive
to the “noise” on the right hand side F and the number of nodes used in meshless
approximation. Regularization methods [Divo et al. (2005)] are among the most
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popular and successful methods for solving accurately and in a stable manner, ill-
conditioned matrix equations. The truncated singular value decomposition (TSVD)
is one such technique and it is employed here to solve the matrix equation. The
singular value decomposition (SVD) of matrix K ∈ RN×N is given by [Hansen
(1998)]

K = WΣV′ =
N

∑
i=1

wiσiv′i, (34)

where W = (w1, w2, ...wN) and V = (v1, v2, ...,vN) are ortho-normal matrices sat-
isfying W′W = V′V = IN . Here, the superscript ’ represents the transpose of the
matrix. It is known that Σ = diag(σ1, σ2, ...,σN) has non-negative diagonal ele-
ments satisfying

σ1 ≥ ....σN ≥ 0.

The values σi are called the singular values of K and the vectors wi and vi are
called the left and right vectors of K, respectively. The solution X to the matrix
equation (33) can be written as a linear combination of the right singular vectors,
namely

X =
N

∑
i=1

w′iF
σi

vi. (35)

For an ill-conditioned matrix equation, there are many small singular values clus-
tering around zero. The solution obtained by standard methods may be dominated
by the contribution of these small singular values and hence it becomes unbounded
and oscillatory [Golub and Van Loan (1996)]. One simple remedy is to truncate the
above summation, i.e. by considering an approximate solution X∗, given by

X∗ =
N∗

∑
i=1

w′iF
σi

vi, (36)

where N∗ ≤ N is the regularization parameter which determines when one starts
to leave out small singular values. This method is known as the TSVD [Hansen
(1998)]. The performance of regularization methods depends on a suitable choice
of this parameter. To this end, the L-curve criterion [Lesnic at al. (1998), Jin and
Marin (2007)] is frequently used in the TSVD. Then, the minimum-norm least-
squares solution to the problem may be written as

min‖X‖2 subject to ‖KN∗X−F‖2 < ε ,

where ε is a measure of the perturbations in the system matrix K. The value N∗ is
determined by the value of ε .
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5 Numerical examples

5.1 Moving fluid around a finite strip

A finite strip with homogeneous material properties and initial temperature θin =
200C is subjected to a moving fluid with temperature θe(t) = 100H(t−0) all over
the surface (Fig. 3), where H(t − 0) the Heaviside unit step function. The size
of the strip is 2a x 2b with a = 20 mm and b = 70 mm. In the direct problem,
the heat transfer coefficients at x1 = b and x2 = a are h1 = 1071.43W/m2K and
h2 = 500W/m2K, respectively. Taking advantage of symmetry, only a quarter of
the strip is analysed. The remaining parts of the boundary are therefore prescribed
zero heat flux. The following material data are considered: thermal conductivity
k = 50W/mK, ρc = 3768000J/m3K. These geometry and material parameters are
the same as those used by Duda and Taler (2000), for the purpose of comparison.
The analytical solution to the problem is given in [Duda and Taler (2000)]:

θ(x1,x2, t) =
∞

∑
i=1

2sinβi cos(βix1/b)exp(−β 2
i αt/b2)

βi + sinβi cosβi

·
∞

∑
i=1

2sinγi cos(γix2/a)exp(−γ2
i αt/a2)

γi + sinγi cosγi
(θin−θe0)+θe0, (37)

where α = k/ρc and the eigenvalues βi and γi are the roots of the transcendental
equations
β sinβ

cosβ
− h1b

k = 0 and γ sinγ

cosγ
− haa

k = 0.

1

x2

x1

θe0=100q=0

q=0

Γ
3

θe0=100

30

300271

a

b

 

Figure 3: Boundary conditions for a finite strip

The thermal field on the finite strip is approximated by using 300 (30x10) equally-
spaced nodes. The local circular sub-domains each has radius rloc = 0.0018. The
numerical results for the temporal variation of temperature at various points are
shown in Fig. 4. It can be seen that there is very good agreement between the
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results using the present formulation and the analytical results at the mid-point of
the upper side of the strip.
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Figure 4: Direct solution: temperature distribution in a homogeneous isotropic strip
at upper and bottom side

As a measure of the numerical errors, the Sobolev-norm is calculated. The relative
error of the temperature in the time interval [0, tmax] is defined as

Er =
‖θ num−θ exact‖
‖θ exact‖ , (38)

where tmax = 660sec and

‖θ‖=

 tmax∫
0

θ
2dτ

1/2

.

The relative errors of the temperature, Er, at both points from Fig. 4 are less than
0.5%. For the total number of 121 (11x11) nodes, the relative error Er = 0.68%
has been obtained.

The solution to the inverse problem is investigated next. The heat transfer coeffi-
cient on the upper side is, say, unknown. Both the temperature and heat flux are
unknown on the upper surface, x2 = a. The temperature distribution at x2 = 0 is
taken from the previous analysis of the direct problem. Since the heat flux vanishes
at the bottom side of the strip, the boundary conditions are over-specified on this
part of the boundary, with both the temperature and heat flux being prescribed. A
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requirement to obtain a unique solution [Isakov (1999)] is thus satisfied. No other
internal node with prescribed temperature is considered for the inverse problem.

The Gaussian elimination method and the TSVD are both used to solve the sys-
tem of algebraic equations (33) for comparison. The Gaussian elimination method
was unsuccessful in yielding sensible results; the numerical outcome was highly
inaccurate, Er = 0.35. The relative error Er for the TSVD is 0.0081 if no “noise”
is considered for the prescribed temperature at the bottom surface. The choice
ε = 0.5 · 10−2 yields N∗ = 245. Numerical results for the temperatures are pre-
sented in Figs. 5; those for the heat flux are shown in Fig. 6. The numerical results
for the heat flux obtained by the present MLPG method and analytical ones are in
excellent agreement.
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Figure 5: Results for inverse problem:
time evolution of temperature at three
points on the upper side of a homoge-
neous isotropic strip
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Figure 6: Time evolution of the heat
fluxes at the mid of upper side of a ho-
mogeneous isotropic strip

In real inverse problems, the prescribed boundary data are measured and they are
invariably contaminated by measurement errors. It is therefore of interest to inves-
tigate the stability of the computational method with “noisy” measurements. The
absolute error between the noisy measurement and exact data is assumed to be
bounded, i.e.

∣∣θ̃ n
i − θ̃i

∣∣ ≤ δ for all measurement points and at all measured times.
The normal Gaussian random variable function from MATLAB is considered in the
numerical analyses.

Figure 7 shows the L-curve for the matrix equation (33) as log-log plot for the solu-
tion norm ‖x‖ against the residual norm ‖Kx−F‖ for various levels of truncation
in the SVD which are denoted here by dots. It can ne seen that there is a steep
branch of the curve for small residual norm values. The steep part of the curve
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Figure 7: The L-curve for the matrix
equation with 1% noise added into the
data
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Figure 8: Influence of noisy data
on temperature variation at mid-point
on the upper side of a homogeneous
isotropic strip

is broken at the level of truncationN∗ = 205. This value is considered in TSVD
for the solution of the matrix equation (33) with noisy input data. Next, a numer-
ical experiment is given. In similar numerical experiments presented in literature
[Lesnic et al. (1996, 1998), Lesnic and Elliot (1999), Jin B, Marin (2007)] the
measurement error is considered in interval 1-2% of the nominal prescribed value.
The time variation of temperature at the mid-point of the upper boundary (x2 = a,
x1 = b/2) for noisy data with δ = 1% is presented in Fig.8. The difference between
the temperatures corresponding to noisy and noise-free data is only little bit higher
than the error of the input data.

If the temperature distribution and the heat flux are computed in the inverse prob-
lem, the heat transfer coefficient is computed easily from the third equation of
equation (2). Numerical results are presented in Fig. 9. A uniform and time in-
dependent value of the heat transfer coefficient has been considered in the direct
problem to obtain the input data for the inverse problem. Therefore, the results pre-
sented in Fig. 9 are also a test of accuracy of the MLPG method employed. Good
accuracy over the whole time interval is observed; the maximum relative error of
the heat transfer coefficient is 3.4% for noisy input data.

Next, functionally graded material properties of the strip are considered whereby
the thermal conductivity tensor is taken to vary linearly with the x2-coordinate in
an orthotropic strip:

k11 = 50
(

1−0.8
x2

a

)
, k22 = 100

(
1−0.8

x2

a

)
.
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Figure 9: Numerically obtained heat
transfer coefficients on boundary of ho-
mogeneous strip
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Figure 10: Direct problem: Time vari-
ation of temperatures at two points on
the bottom side of the FGM orthotropic
strip

In such a case the thermal conductivity on the upper side of the strip x2 = a is 5
times lower than on the bottom side. The following orthotropic material properties
for the thermal conductivity are considered, k22 = 2k11 = 100W/mK.

The time variation of temperature at the center of the symmetric strip (x2 = 0, x1 =
0) is presented in Fig. 10 for the direct problem. In the FGM strip, the temperature
is slightly lower than in a homogeneous one. The corresponding numerical results
for the inverse problem are shown in Fig. 11. The influence of noisy input data is
evidently similar for the orthotropic FGM and isotropic homogeneous strips.

The numerical results for the heat flux on the upper surface of the strip are shown
in Fig. 12. Results were obtained from the analyses without noisy input data.
From the heat flux and temperature distributions, the heat transfer coefficient can
be easily calculated.

5.2 Hollow cylinder

In the next example, an infinitely long, thick-walled hollow cylinder with inner
and outer radii a = 0.4m and b = 0.5m, respectively, is considered (Fig. 13). Since
the boundary conditions along the length of the cylinder are assumed to be uniform,
only a finite part of its axial section, with length L = 0.1m, is analyzed numerically.
The external surface of the hollow cylinder is thermally insulated. The hollow
cylinder with homogeneous material properties and initial temperature θin = 200C
is subjected to a moving fluid with temperature θe(t) = 100H(t − 0)on the inner
radius. In the direct problem, the following values were considered for the various
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Figure 11: Results for inverse problem:
temperatures at the mid-point on upper
boundary of the FGM orthotropic strip
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Figure 12: Heat fluxes at the mid-point
of upper side of the homogeneous and
FGM orthotropic strip

parameters: heat transfer coefficientsh = 500W/m2K , the thermal conductivity
k = 50W/mK and ρc = 3768000J/m3K.
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Figure 13: Analyzed domain with
nodes and boundary conditions for a
hollow cylinder
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Figure 14: Temporal variations of tem-
peratures at two different radii of a ho-
mogeneous isotropic hollow cylinder

A similar direct boundary value problem with an ideal heat transfer coefficient
(prescribed temperature on the inner surface) is solved in [Sladek et al. (2007)].
In the present analysis, the thermal field on the analyzed domain is approximated
by using 400 (20x20) uniformly distributed nodes. As in the previous example, the
direct problem is solved in the first step. The temporal variations of temperatures at
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the inner and outer radii as obtained from the MLPG method are presented in Fig.
17.

In the inverse problem, a finite hollow cylinder is considered with vanishing heat
fluxes at both the ends of the cylinder. Both the Dirichlet and Neumann boundary
conditions are prescribed on the external surface and no boundary conditions are
prescribed at the inner radius. The values of temperature at the external radius are
obtained from the solution of the direct problem.

Again the noisy input data of temperature on the external surface with δ = 1%
are used. The TSVD is applied to solve the matrix equation (33). The truncated
number of equations N∗ = 231 is obtained from the L-curve.
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Figure 15: Temporal variations of the
heat fluxes on the inner radius of the
hollow cylinder
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Figure 16: Temporal variation of the
temperatures on the inner surface of the
hollow cylinder

Solving the inverse problem, the numerical results obtained for the heat flux on the
inner radius are shown in Fig. 15 for both noisy and noise-free input data. If results
for noise-free input data are considered as accurate, then the relative errors of the
heat flux for noisy input data are in some instants almost 15%. The time evolution
of the temperature at the inner surface is presented in Fig. 16. The maximum
relative error of the temperature with noisy input data to those obtained without
noise is 6.5%. It is almost two times lower than for the heat flux. If both the heat
flux and temperature are computed at the inner radius of the hollow cylinder, the
heat transfer coefficient can again be obtained easily from eq. (2).



The Inverse Problem of Determining Heat Transfer Coefficients 213

6 Conclusions

In this paper, a universal approach for solving transient heat conduction inverse
problems in 2-D and axisymmetric bodies, and which can be employed for the de-
termination of unspecified heat transfer coefficients has been presented. It is based
on the local boundary integral equation method with the MLS approximation for
spatial variations of physical fields, together with using the Laplace transform tech-
nique to remove the time variable from the governing equation. On the external sur-
face of the body which is in contact with the surrounding fluid medium, no temper-
ature and heat flux are prescribed (under-determined boundary conditions); on the
remaining part of the boundary, over-specified boundary conditions are assumed.
In the numerical test examples presented, the complete boundary data on part of
the boundary are obtained from the solution of the direct boundary value problem.
The material properties of bodies can be continuously varying with respect to the
Cartesian coordinates. Both isotropic and orthotropic properties are considered in
the direct analyses. The chosen material coefficients are then compared with those
obtained from solution of inverse problems. The boundary-domain formulation can
be easily implemented on simple circular sub-domains to which the local integral
equations are related. In contrast to the conventional boundary integral equation
methods, all integrands in the present formulation are regular due to the choice
of a unit-step function as the test function. No special integration techniques are
therefore required to evaluate the integrals. That the standard Gaussian elimination
method for the resulting equation set from the inverse problem produces unstable
results has also been shown in the present work. Stable results are obtained using
truncated singular value decomposition (TSVD) applied to solve the ill-conditioned
matrix equation with regularization parameter given by the L-curve method. The
numerical results indicate that the present method is accurate and stable with re-
spect to the perturbations in the input data. In future it would be interesting to
compare the present results with ones obtained by promising methods [Liu and
Atluri (2009a,b,c)] published recently.
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