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A Rate-Dependent Damage/Decohesion Model for
Simulating Glass Fragmentation under Impact using the

Material Point Method

Luming Shen1

Abstract: A bifurcation-based simulation procedure is proposed in this paper to
explore the transition from localization to decohesion involved in the glass frag-
mentation under impact loading. In the proposed procedure, the onset and ori-
entation of discontinuous failure of glass is identified from the bifurcation analy-
sis based on a rate-dependent tensile damage model. The material point method,
which does not involve fixed mesh connectivity, is employed to accommodate the
multi-scale discontinuities associated with the fragmentation of glass using a sim-
ple interface treatment. A parametric study has been conducted to demonstrate the
effects of specimen size and impact velocity on the evolution of glass failure under
impact loading. The preliminary results obtained in this numerical study provide a
better understanding of the physics behind glass fragmentation under impact load-
ing.
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method, impact.

1 Introduction

Terrorist bomb attacks and threats are on the rise all over the world. It is estimated
that most injuries from bomb blasts can be attributed to airborne sharp glass frag-
ments. Hence, it is very important for us to thoroughly understand the failure mech-
anism of glass under impact/blast loading in order to develop better blast-resistant
transparency and mitigate the injury or death due to flying glass fragments. Dy-
namic failure of glass has been the focus of considerable theoretical, experimental
and numerical investigations [Brar, Bless and Rosenberg (1991); Bourne, Rosen-
berg and Field (1995); Kanel, Razorenov and Fortov (1992); Kanel, Razorenov,
Savinykh, Rajendran and Chen (2005); Wei and Dharani (2005); among others].
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Experimental investigations such as full-scale explosion tests tend to be expensive,
environmentally unfriendly and time consuming. On the contrary numerical simu-
lation of glass failure under blast/impact loading would be a lot more economical,
more environmentally friendly and less time consuming.

Owing to the rapid improvement in computer hardware and computational tools,
numerical modelling and simulation of complex impact, penetration, and fragmen-
tation problems has become possible [Anderson and Bodner (1988); Chen, Feng,
Xin and Shen (2003), Chen, Shen, Kanel and Razorenov (2001); Zukas (1990)].
The computational codes used for the simulation of these problems can be classified
as Eulerian or Lagrangian with advantages and disadvantages depending upon the
framework used [Anderson and Bodner (1988)]. So far, many simulations of im-
pact, penetration, brittle failure, and fragmentation have tended to use Lagrangian
approaches [Camacho and Ortiz (1988); Johnson, Stryk, Beissel and Holmquist
(2001)], such as finite element method, with special techniques for simulating frac-
ture and failure. However, the issues of considerable complexity in handling con-
tact, mesh entanglement due to material fragmentation, and difficulties encountered
while solving large deformation fluid-structure interaction problems have led to the
exploration of alternative approaches. As one of the innovative mesh-free particle
methods, the material point method (MPM) uses Lagrangian particles embedded
in a background Eulerian grid. Particles interact via the background computational
grid with other particles in the same body, with particles in other solid bodies, and
with particles in fluids if involved. Thus, these three issues mentioned in the context
of conventional mesh-based methods could be circumvented.

To explicitly simulate the fracture and/or fragmentation of materials, a rigorous
cohesive/fracture model is essential. To date, several kinds of cohesive/fracture
models have been proposed for simulating brittle failure, as discussed by the rep-
resentative papers [Klein, Foulk, Chen, Wimmer and Gao (2000); Le, Mai-Duy,
Tran-Cong and Baker (2008); Schreyer, Sulsky and Zhou (1999); Xu and Needle-
man (1994); Zhang and Chen (2008)]. To achieve computational efficiency, how-
ever, in these studies the location and orientation of decohesion/fracture were either
predefined, mesh-dependent or based on the maximum tensile stress (strain) with-
out performing a discontinuous bifurcation analysis. As can be seen from Fig. 1,
discontinuous bifurcation can occur before, at or after the peak state, depending on
the continuum tangent stiffness tensor and stress state [Chen, Shen, Mai, and Shen
(2005); Shen and Chen (2005a); (2005b)]. It is therefore not rigorous to distribute
arbitrarily cohesive surfaces in a computational mesh and initiate decohesion at
a predefined state. Based on recent studies [Chen, Shen, Mai, and Shen (2005);
Shen, Liu and Chen (2001)], in fact, the discontinuous bifurcation analysis could
be performed without too much computational cost when an associated von Mises
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elasto-plasticity model or a rate-dependent damage model is used.
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Figure 1: Discontinuous bifurcation might occur before, at or after the limit state.

In this paper, a rate-dependent tensile damage/decohesion model is proposed for
modelling glass fragmentation within the framework of the MPM. In the proposed
model, bifurcation analysis is performed to identify the initiation and orientation of
discontinuous failure. To demonstrate the potential of the proposed rate-dependent
tensile damage/decohesion model, the failure of a circular glass plate under impact
of a high velocity steel cylinder is simulated using the MPM.

The remaining sections of the paper are arranged as follows. A brief description
of the MPM is presented in Section 2, which is followed by the description of the
proposed constitutive models for glass and steel in Section 3. A case study of steel
cylinder impacting on circular glass plate is performed to evaluate the proposed
approach and the simulation results are discussed in Section 4. The conclusions
and future work are given in the last section.

2 The material point method

As indicated by Belytschko, Krongauz, Organ, Fleming, and Krysl (1996), Klein,
Foulk, Chen, Wimmer and Gao (2000), Atluri (2004), Atluri, Han, and Rajendran
(2004), Li and Atluri (2008) and others for model-based simulation with cohe-
sive/fracture formulations, the meshfree particle methods are uniquely suitable for
those problems such as localized large deformations, propagation of cracks, sep-
aration of continuum and fragmentation, for which the conventional mesh-based
methods such as finite element are handicapped. In fact, the key difference among
different spatial discretization methods is the way how the gradient and divergence
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terms are calculated. Because the meshfree particle methods do not use rigid mesh
connectivity as compared with the mesh-based methods the interpolation in the
moving domain of influence is the common feature of the meshfree particle meth-
ods.

As one of the innovative spatial discretization methods, the MPM is an extension
to solid mechanics problems of a hydrodynamics code called FLIP that, in turn,
evolved from the Particle-in-Cell Method dating back to the pioneering work of
Harlow (1964). The motivation of developing the MPM was to simulate those chal-
lenging problems such as impact/contact, penetration and machine processing with
history-dependent internal state variables, as shown in the early publications about
the MPM [Sulsky, Chen and Schreyer (1994); Sulsky, Zhou and Schreyer (1995)].
The essential idea of the MPM is to take advantage of both the Eulerian and La-
grangian methods while avoiding the shortcomings of each. In comparison with the
other meshless methods, the MPM appears to be less complex with a cost factor of
at most twice that associated with the use of corresponding finite elements [Chen,
Hu, Shen, Xin and Brannon (2002)]. In addition, the use of the single-valued map-
ping functions in the MPM results in a natural no-slip contact/impact scheme with-
out invoking master/slave nodes so that no inter-penetration would occur in multi-
body interaction problems. Recently, much research has been conducted to improve
the spatial discretization methodology proposed in the original MPM such that the
MPM could be applied to more engineering problems of current interests [Bar-
denhagen and Kober (2004); Guo and Nairn (2006); Hu and Chen (2006); Nairn
(2003); Shen and Chen (2005a); Wallstedt and Guilkey (2007); among others]. To
illustrate how the transition from continuous to discontinuous failure modes in the
glass fragmentation could be simulated with the proposed numerical procedure, the
framework of the MPM is briefly outlined as follows.

The MPM discretizes a continuum body with the use of a finite set of Np material
points in the original configuration that are tracked throughout the deformation
process. Let xt

p (p = 1, 2, . . . , Np) denote the current position of material point
p at time t. Each material point at time t has an associated mass Mp, density
ρ t

p, velocity vt
p, Cauchy stress tensor σσσ t

p, strain εεε t
p, and any other internal state

variables necessary for constitutive modeling. Thus, these material points provide a
Lagrangian description of the continuum body. Since each material point contains a
fixed amount of mass unless the material point is further divided into smaller points
for multi-scale modeling, the conservation of mass is automatically satisfied. At
each time step, the information from the material points is mapped to a background
computational mesh (grid). This mesh covers the computational domain of interest,
and is chosen for computational convenience. After the information is mapped from
the material points to the mesh nodes, the discrete equations of the conservation of
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momentum are solved on the mesh nodes. The nodal solutions are then mapped
back to update material points, which completes the computational cycle within
one time step.

Based on the standard procedure used in the finite element method, the weak form
of the conservation of momentum is found to be∫

Ω

ρw ·adΩ =−
∫

Ω

ρσσσ
s : ∇wdΩ+

∫
Sc

ρcs ·wdS +
∫

Ω

ρw ·bdΩ (1)

in which w denotes the test function, a is acceleration, σσσ s is specific stress (i.e.,
stress divided by mass density), cs is specific traction vector (i.e., traction divided
by mass density), b is specific body force, Ω is current configuration of the con-
tinuum, and Sc is that part of the boundary with a prescribed traction. The test
function w is assumed to be zero on the boundary with a prescribed displacement.
Since the whole continuum body is described with the use of a finite set of material
points (mass elements), the mass density term can be written as

ρ (x, t) =
Np

∑
p=1

Mpδ
(
x−xt

p
)

(2)

where δ is the Dirac delta function with dimension of the inverse of volume. The
substitution of Eq. (2) into Eq. (1) converts the integrals to the sums of quantities
evaluated at the material points; namely

Np

∑
p=1

Mp
[
w
(
xt

p, t
)
·a
(
xt

p, t
)]

=
Np

∑
p=1

Mp

[
−σσσ

s (xt
p, t
)

: ∇w|xt
p

+w
(
xt

p, t
)
· cs (xt

p, t
)

h−1 +w
(
xt

p, t
)
·b
(
xt

p, t
)]

(3)

with h being the thickness of the boundary layer. As can be observed from Eq. (3),
the interactions among different material points are reflected only through the gra-
dient terms which necessitate the use of a background mesh. Different constitutive
models (continuum or discrete) can be applied to the material points for given total
strains. Complete decohesion would occur if the material strength is totally lost.
In other words, a material point would be separated from the original continuum
body if there is no internal interaction between the point (with zero strength) and
the body (with nonzero strength). Because there is no fixed mesh connectivity be-
tween the material points and the background mesh in the MPM, localization and
the transition from continuous to discontinuous failure modes could be simulated
without the difficulties associated with remeshing.
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3 Constitutive models

3.1 From continuous failure to decohesion

Since the material failure is an evolving process that involves jumps in certain field
variables, the discontinuous bifurcation analysis is performed based on the jump
forms of conservation laws [Chen (1996)]. With the jumps in the kinematic field
variables of a continuum body, the evolution of material failure process can be
divided into diffuse failure (v1 = v2 and ε̇εε1 = ε̇εε2), localized failure (v1 = v2 and
ε̇εε1 6= ε̇εε2) and discrete failure (v1 6= v2 and ε̇εε1 6= ε̇εε2) with v1 and v2 being the veloc-
ity vectors and ε̇εε1 and ε̇εε2 being the total strain rates on the side 1 and 2 of a moving
surface of discontinuity, respectively. As can be seen, the jump degree in the kine-
matic field variables identifies the initiation of different failure states at different
scales [Bazant and Chen (1997)]. The transition from continuous to discontinuous
failure states is characterized by the condition of localized failure that can be de-
termined via the discontinuous bifurcation analysis of the acoustic tensor [Iordache
and Willam (1998); Ottosen and Runesson (1991) among others]. Because there is
a jump in the strain rate for localized failure, it is reasonable to claim that a cor-
responding jump must exist in mass density. The jump in mass density results in
a moving, instead of a stationary, surface of discontinuity governed by the jump
forms of conservation laws [Chen (1996)]. Without explicitly tracing each individ-
ual surface of discontinuity, a computational efficient and mathematically rigorous
approach is proposed in this paper to describe the transition from continuous to
discontinuous failure for glass and steel.

Since glass is brittle and steel is ductile, different constitutive models need to be
developed for glass and steel. To account for the facts that the compressive strength
of glass is much higher than the tensile strength and its strength varies as a function
of loading rate, an elastic-perfectly plastic Drucker-Prager model will be used in
the compressive regime of glass, while a rate-dependent damage model will be used
before the localization and a bifurcation-based decohesion model is adopted after
the localization for glass under tensile loading. For steel, an associated von Mises
model with a linear hardening and softening law is used before the localization. A
bifurcation-based decohesion model is then applied to steel once the localization
has occurred. The formulations of the constitutive models for glass and steel will
be discussed in Sections 3.2 and 3.3, respectively.

3.2 Constitutive models for glass

In this study, a combined rate-dependent local damage/plasticity model developed
to study the stress-wave-induced fracturing for brittle materials [Taylor, Chen and
Kuszmaul (1986); Chen, Hu and Chen (2001); Hu and Chen (2006)] will be adopted
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to model the glass responses under dynamic loading. Within the loading regime of
the model, an isotropic elasticity tensor governs the elastic material behavior; a
scalar measure of continuum damage is active through the rate-dependent degrada-
tion of the elasticity tensor if the confining pressure P>0 (tensile regime); and an
elastic-perfectly plastic Drucker-Prager model is used if P<0 (compressive regime).
A decohesion model is activated once the initiation of the discontinuous failure is
identified through bifurcation analysis for glass under tension. It is assumed that
no additional damage would occur as long as decohesion evolves in the material
element. Decohesion will not be introduced for glass under compression.

The stress-strain relation for the rate-dependent tensile damage model is given by

σσσ = Eed : εεε (4)

where σσσ denotes a stress tensor, εεε a total strain tensor, and Eed a secant elastodam-
age stiffness tensor. The rate-dependent elastodamage stiffness tensor is updated
with the evolution of the bulk modulus K and Poisson’s ratio υ , which can be de-
scribed as below.

K̄ = (1−D)K (5)

ῡ = υ

(
1− 16

9
ρd

)
(6)

ρd = 2.5k
(

KIC

ρcε̇max

)2

ε
m
v (7)

D = 16ρd
(
1− ῡ

2)/ [9(1−2ῡ)] (8)

where ρd is a crack-density parameter, KIC the fracture toughness, εv the mean
volumetric strain, ε̇max the maximum volumetric strain rate experienced by the ma-
terial at fracture, c the uniaxial wave speed, ρ the volume density of materials, K̄
the bulk modulus of damaged materials, respectively, ῡ the Poisson’s ratio of the
damaged materials, respectively, k and m two model parameters, and D a single
damage parameter. To perform bifurcation analysis, a continuum tangent stiffness
tensor is needed. The rate form of stress-strain relation for the rate-dependent ten-
sile damage model takes the form of

σ̇σσ = Ted : ε̇εε (9)

where Ted is the tangent elastodamage stiffness tensor. A bifurcation analysis of
the acoustic tensor can be performed based on Eq. (9) to identify the transition
from continuous to discontinuous failure modes, and the corresponding orientation



30 Copyright © 2009 Tech Science Press CMES, vol.49, no.1, pp.23-45, 2009

of failure surface. As demonstrated in the previous work [Chen, Deng and Chen
(2001)], the failure angle is rate-independent although the failure strain is rate-
dependent for the proposed tensile damage model.

Based on the previous research on decohesion models [Shen, Liu and Chen (2001),
Chen and Fang (2001); Chen, Shen, Mai and Shen (2005)], a bifurcation-based
rate-dependent decohesion model is formulated to predict the initiation and orien-
tation of discontinuous failure. As illustrated in Fig. 2 for two-dimensional cases,
n and t denote the unit normal and tangent vectors to the cohesive surface, respec-
tively, after bifurcation occurs. The normal vector is related to the critical failure
angle through n = (−sinθ cri,cosθ crj), with i and j denoting the unit vector along
the x- and y-axis, respectively.
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Figure 2: A 2-dimensional element with decohesion. 
 
To determine the discrete constitutive relation between the 
traction τ and decohesion du , the following equations, which 
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Figure 2: A 2-dimensional element with decohesion.

To determine the discrete constitutive relation between the traction τττ and decohe-
sion ud , the following equations, which satisfy the thermodynamic restrictions, can
be developed for a given total strain rate ε̇εε [Schreyer, Sulsky, Zhou (1999); Chen,
Shen, Mai and Shen (2005)]:

σ̇σσ = E :
(

ε̇εε− ε̇εε
d
)

(10)

τ̇ = σ̇σσ ·n (11)

ε̇εε
d = λ̇

d (n⊗m+m⊗n)/(2Le) (12)

f d = τ
e−U0

[
1−
(

λ
d
)q]

= 0 (13)



A Rate-Dependent Damage/Decohesion Model 31

u̇d = λ̇
dm (14)

where λ̇ d is a dimensionless monotonically increasing variable characterizing the
evolution of decohesion, Le is the effective length representing the ratio of the vol-
ume to the area of the decohesion within a material element, and U0 is the reference
surface energy defined as the product of the reference decohesion scalar ū0 and cor-
responding traction τ̄0. The effective traction τe takes the form of

τ
e = τ ·m = ū0

√
τ ·Td · τ (15)

with an associated evolution equation, namely

m = ū0 (Td · τ)/
(√

τ ·Td · τ
)

. (16)

The components of the positive definite tensor of material parameters, Td , with
respect to the n – t basis are given by

[Td ] = τ̄
2
0

[ 1
τ2

np
0

0 1
τ2

t p

]
(17)

At the initiation of decohesion (λ d = 0), it follows from Eqs. (13), (15) and (17)
that

τ2
nb

τ2
np

+
τ2

tb

τ2
t p

= 1 (18)

where the normal and tangential tractions, τnb and τtb, are obtained from the dis-
continuous bifurcation analysis. By letting Cm = τt p/τnp, different failure modes
can be simulated utilizing different values of Cm and Eq. (18). For example, mode I
failure dominates if Cm = 100, while mode II failure dominates if Cm = 0.01. Mixed
failure modes could be simulated by using Cm = 1, depending on the critical state.
Well-designed experiments are required to calibrate the value of Cm. The reference
traction values, τnp and τt p, can be found from Eq. (18) evaluated at the initiation
of bifurcation for a given Cm. As can be seen from the above formulations, the
discrete model parameters to be determined from the experiments are U0, q and Cm

if the choice of τnp = τ̄0 is made. The relation between the traction and decohesion
can be adjusted by changing the value of q, as illustrated in Fig. 3 with a linear
relation being obtained if q = 1.

A standard elastic-perfectly plastic Drucker-Prager model is adopted for glass un-
der compressive loading regime. The yield surface takes the form of

f (σσσ) = σ̄
2− (σy +βP)2 = 0 (19)
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Figure 3: The relationship between effective traction and effective decohesion.

in which σ̄ =
√

3
2σσσd : σσσd is the effective stress with σσσd being the deviatoric stress

tensor, P =−1
3 σii the mean pressure, and β a material constant.

3.3 Constitutive models for steel

Following the previous work on the bifurcation-based decohesion model for sim-
ulating tungsten film delaminating from silicon substrate [Chen, Shen, Mai and
Shen (2005)], an associated von Mises model with a linear hardening and softening
law is applied to steel before the localization. The model consists of the following
equations:

dσσσ = E : (dεεε−dεεε
p) (20)

f (σσσ , I) =

{
σ̄2− (σy +EhI)2 = 0 0≤ I < Ip

σ̄2− [σp−Es (I− Ip)]
2 = 0 I ≥ Ip

(21)

dεεε
p = dφ

∂ f
∂σσσ

(22)

dI = dφ = (dεεε
p : dεεε

p)
1
2 (23)

in which E denotes linear isotropic elasticity tensor, εεε p inelastic strain tensor,
f (σσσ , I) = 0 inelastic surface with I representing the internal state variable,Ip the
internal state variable corresponding to the peak state, σ y the yield strength, σ p

the peak strength, Eh the hardening modulus and Es the softening modulus, and φ
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a parameter characterizing the loading process. Either an incremental-iterative or
one-step solution scheme could be employed to integrate the above set of constitu-
tive equations, depending on the error tolerance.

The continuum tangent stiffness tensor corresponding to the above von Mises model
can be found to be

T = E−Hσσσ
d⊗σσσ

d (24)

where H = 4G2/
[(

2G− 1
N

∂ f
∂ I

)(
σσσd : σσσd

)]
is used with N =

√
∂ f
∂σσσ

: ∂ f
∂σσσ

and with
G being shear modulus. The discontinuous bifurcation occurs when H reaches the
critical state, Hcr, that is defined by

Hcr =
(
G2 +3KG

)
/
[
3G(σ0−σc)

2 +(G+3K)r2
]

(25)

in which K is bulk modulus, σo = (σ1 +σ2 +σ3)/3, σc = 0.5(σ1 +σ3), and r =
0.5(σ1−σ3), with σ1 and σ3 being the maximum and minimum principal stress,
respectively. The critical failure angle, θ cr, is given by

θ
cr =±arctan

√
3G(σc−σ0)− (G+3K)r
3G(σ0−σc)− (G+3K)r

(26)

As can be seen, the initiation and orientation of localized failure depend on the
material properties and stress state. Because the critical state has been identified
via the closed-form solutions, the same procedure described in Eqs. (10)-(18) can
be used to couple the bifurcation analysis with the discrete constitutive model and
to predict the decohesion of steel.

4 Demonstration

To demonstrate the potential of the proposed tensile damage model and bifurcation-
based decohesion model for simulating glass fragmentation, numerical simulations
of a steel cylinder impacting on a circular glass plate are performed by using the
MPM. The configuration of the axisymmetrical problem is shown in Fig. 4. The
glass plate has a thickness of 5 mm and a radius of R with its perimeter being
fixed. The steel cylinder has a height of 50 mm and a radius of 5 mm. The initial
separation between the impactor and the plate is 3 mm. The steel cylinder impacts
at the center of the glass plate in the normal direction.

Before the discontinuous bifurcation occurs, the associated von Mises elastoplas-
ticity model with a linear hardening/softening function is used for steel, for which
Young’s modulus E = 195 GPa, Poisson’s ratio υ = 0.25, mass density ρ = 7,800
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Figure 4: Configuration of the axisymmetrical problem.

kg/m3, hardening modulus Eh = 9.6 GPa, and softening modulus Es = 9.6 GPa
are assigned for a parametric study. In addition, yield strength σ y = 359 MPa and
peak strength σ p = 484 MPa are adopted. Note that no dynamic effect on the me-
chanical properties of steel is considered since the focus of this study is on the
glass failure. After bifurcation occurs, the discrete constitutive model is active with
ū0 = 1.60×10−9m, q = 1.0, and Cm = 1.0.

For the glass, the model parameters are assigned with the following values: Young’s
modulus E = 72 GPa, Poisson’s ratio υ = 0.25, mass density ρ = 2,500 kg/m3,
fracture toughness KIC = 0.83MPa

√
m, yield strength σ y = 43 MPa, the Drucker-

Prager model parameter β = 1.8, the damage model parameters k = 5.0x1026 m−3

and m = 6, and the decohesion model parameters ū0 = 5.0× 10−6m, q = 1.0, and
Cm = 50.0.

In the MPM, the computational grid consists of square cells with each side being
1.0 mm long. Initially, one material point per cell is used to discretize both steel and
glass. With the evolution of localization and decohesion, the number of material
points per cell would change but the cell size is fixed. An explicit time integrator is
adopted with time step of 0.2 µs.

To study the specimen size and loading rate effects on the failure mechanism of
glass plate, numerical simulations of steel cylinder impacting on three different
glass plates (R= 200 mm, 400 mm and 800 mm) at three different velocities (v =
200 m/s, 400 m/s and 800 m/s) are performed. Fig. 5 shows the snapshots of a steel
cylinder impacting on a glass plate with R = 200 mm at a velocity of v = 200 m/s.
Note that time t is set to be zero at the moment when the steel cylinder first time
touches the glass plate. As can be seen from the figures, no fragmentation occurs at
time t = 50 µs. Severe fragmentations first appear at the position about 30 mm from
the impact center around time t = 100 µs. When the stress wave reaches the fixed
end and is reflected back by the fixed boundary, the stress magnitude is doubled,
which results in severe glass fragmentation near the end at time t = 150 µs. As the
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a). t = 50 μs                                   b). t = 100 μs 

 
 
 

 
c). t = 150 μs                                 d). t = 200 μs 

 
e). t = 250 μs 

 Figure 5: Snapshots of a steel cylinder impacting on a glass plate with R=200 mm
at velocity of 200 m/s.
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reflected stress wave travels further, the glass breaks at the distance 100 mm from
the center.

 
a). t = 50 μs                                      b). t = 100 μs 

 
c). t = 140 μs 

 
Figure 6: Glass damage contours corresponding to Fig. 5.

The propagation of damage in glass plate with R = 200 mm impacted by a steel
cylinder at velocity of 200 m/s is presented in Fig. 6. Note that damage occurs
only in tensile loading regime and the evolution of damage ends after the localiza-
tion has occurred. As can be seen from Fig. 6, the damage propagates from the
impact center to the boundary as the stress wave travels, although the damage front
travels at a velocity which is lower than that of stress wave. The propagation of
the corresponding decohesion in glass plate is demonstrated in Fig. 7. The first
decohesion occurs around time t = 70 us after impact and the largest decohesion
is located about 25 mm away from the impact center, which is consistent with the
failure patterns in Figure 5. The comparison between Fig. 6 and Fig. 7 indicates
that the damage front is ahead of the fragmentation front since the localization only
occurs when the damage reaches a certain level.
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a). t = 100 μs                                 b). t = 150 μs 

 

 
c). t = 200 μs 

 Figure 7: Glass decohesion contours corresponding to Fig. 5.

To investigate the effect of loading rate on the failure mechanism of glass, impact
velocities of v = 400 m/s and v = 800 m/s are also used. Fig. 8 shows the snapshots
of a steel cylinder impacting on a glass plate with R = 200 mm at an impact velocity
of v = 800 m/s. As can be found from the figure, with a higher impact velocity the
steel cylinder easily penetrates the glass plate. As the stress wave propagates, se-
vere fragmentations occur at the position 50 mm from the impact center. Similarly,
the glass breaks near the end due to the reflected stress wave.

The corresponding glass damage evolution is shown in Fig. 9. Compared with the
damage evolution in Fig. 6, it seems that at a higher impact velocity, the damage
propagates much faster. Since the velocity of stress wave is independent of the
impact velocity, it seems that under a higher impact velocity more material points
are under large tensile loading regime. The glass decohesion occurs right after
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a). t = 50 μs                                     b). t = 100 μs 

 
c). t = 150 μs                                   d). t = 200 μs 

 
Figure 8: Snapshots of a steel cylinder impacting on a glass plate with R = 200 mm
at velocity of 800 m/s.

impact as shown in Fig. 10(a). However, the propagation of the decohesion is
slower, as demonstrated in Fig. 10, due to the quick penetration of the steel bar
through the glass.

To study the size effect on the glass failure mechanism, glass plates with radii of
400 mm and 800 mm are also impacted by a steel cylinder at different velocities in
the simulations. Fig. 11 presents the snapshots of a steel cylinder impacting on a
glass plate with R = 400 mm at a velocity of v = 200 m/s. Again, no fragmentation
occurs at time t = 50 µs. Severe fragmentations first appear at the place 50mm
from the impact center at time t = 100 µs. At time t = 250 µs, the reflected stress
wave cause the break of glass near the fixed end.

The evolution of damage in the glass plate with R = 400 mm impacted by a steel
cylinder at velocity of 200 m/s is demonstrated in Fig. 12. Compared with the
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a). t = 50 μs                                      b). t = 100 μs 

 

Figure 9: Glass damage contours corresponding to Fig. 8.

damage evolution shown in Fig. 6, it seems that with a larger size glass plate, the
damage propagates at a little bit higher velocity. This is because more material
points are under tensile loading regime with a large glass plate under the same
impact velocity.

5 Conclusions

A bifurcation-based simulation procedure has been proposed in this paper to ex-
plore the transition from localization to decohesion involved in the glass fragmen-
tation under impact loading. In the proposed procedure, a rate-dependent tensile
continuum damage/plasticity model is combined with a rate-dependent decohesion
model via the bifurcation analysis so that the governing differential equations re-
main well posed for given boundary and/or initial data. Since no higher order terms
in space are introduced into the stress–strain relations, the proposed procedure is
sound in physics and efficient in computation.

In the simulation, the onset and orientation of discontinuous failure of glass is iden-
tified from the discontinuous bifurcation analysis based on a rate-dependent tensile
damage model. Without explicitly treating individual surfaces of discontinuity,
a discrete constitutive model is formulated based on the bifurcation analysis to
predict the evolution of material failure as decohesion of continuum. The MPM
is developed to accommodate the multi-scale discontinuities involved in the glass
fragmentation with a simple interface treatment.

A parametric study has been conducted to demonstrate the effects of specimen size
and strain rate on the evolution of failure patterns of glass under impact loading.
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a). t = 1 μs                                      b). t = 100 μs 

 
c). t = 200 μs 

 
Figure 10: Glass decohesion contours corresponding to Fig. 8.

It appears from the simulation results that the damage propagates faster when the
impact velocity is higher or the glass size is larger. The damage front is ahead of
the fragmentation front as the localization only occurs when the damage reaches a
certain level. The glass may break at the areas near both the impact center due to
the direct impact loading and the fixed end due to the reflected stress wave.

Although well-designed experiments are required to explore the multi-scale failure
mechanisms involved, the parametric study presented here provides a better under-
standing on the physics behind the glass fragmentation under impact loading. An
integrated experimental, analytical and computational effort is required to further
improve the proposed procedure for general applications.
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a). t = 50 μs                                     b). t = 100 μs 

 
c). t = 150 μs                                    d). t = 200 μs 

 
e). t = 250 μs 

 Figure 11: Snapshots of a steel cylinder impacting on a glass plate with R = 400
mm at velocity of 200 m/s.
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a). t = 50 μs                                     b). t = 100 μs 

 
c). t = 140 μs 

 
Figure 12: Glass damage contours corresponding to Fig. 11.
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