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An Accurate Algorithm for Evaluating Radiative Heat
Transfer in a Randomly Packed Bed
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Abstract: Motivated by Hottel’s crossed-string method, this paper presents an
accurate algorithm for the evaluation of the geometric view factors in a randomly
packed bed of circular particles of various sizes. The radiative heat exchange can
thus be predicted accurately. The solution procedure is illustrated and the solution
accuracy is assessed via a numerical example.
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1 Introduction

Heat transfer in a randomly packed bed can be found in many industrial applica-
tions. For instance, in the nuclear industry the process of a pebble bed nuclear
reactor essentially involves the forced flow of gas through uranium enriched spher-
ical pebbles that are cyclically fed through a concentric column in order to extract
thermal energy. Heat transfer occurs between the moving particles and the gas in
the form of conduction, convection, and radiation. As the temperature in the bed is
extremely high, the radiative heat transfer is significant.

In addition to the experimental studies, mathematical modelling has become in-
creasingly important as a powerful tool to better understand and predict the heat
transfer mechanism in a packed bed. Among the approaches proposed, the continuum-
based methods (see for instance, Van der Held 1952, Chen and Churchill 1963, Har-
maker 1947) considered a packed bed as a pseudo homogeneous material, and the
heat transfer process is described by differential equations; whilst the stochastic-
based approaches such as ray tracing and Monte Carlo methods (Yang et al 1983,
Argento and Bouvard 1996, Zedtwitz et al 2007) determine the radiative proper-
ties from the forward and backward fluxes measured inside a packed bed. These
approaches are mainly of an approximation nature.
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One of the difficulties in evaluating the radiative heat transfer in a randomly packed
bed is the determination of the geometric relations for how the solid particles view
each other, or the so-called geometric view factors. Because of the presence of
other particles that may (partially) block the two particles under consideration,
straightforward analytical integration methods often become too cumbersome or
impossible.

Motivated by the idea of Hottel’s crossed-string method (Siegel and Howell 1992),
an accurate algorithm is proposed in this work to evaluate the geometric view fac-
tors in a randomly packed bed of circular particles of various sizes so that the ra-
diative heat exchange can be accurately predicted. This will form an integrated part
of our ongoing project (Feng et al 2007, Feng et al 2008, Feng et al 2009, Han et
al 2007) that aims to develop a comprehensive computational framework to model
multi-physical phenomena involving fluid-thermal-particle interactions.

2 Geometric View Factors for Two Finite Surfaces

2.1 Analytical method

Consider two finite surfaces as illustrated in Fig. 1. The areas A1 and A2 at temper-
atures T1 and T2 are arbitrarily oriented, and have their normals at angles θ1 and θ2
to the line of length S joining them. The geometric view factor F1−2 is defined as
the fraction of radiation energy leaving the diffuse surface 1 that reaches the diffuse
surface 2, and is evaluated by (Siegel and Howell 1992)

F1−2 =
1

A1

∫
A1

∫
A2

cos(θ1)cos(θ2)
πS2 dA2dA1 (1)

Figure 1: Geometric view factors between two finite surfaces
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Similarly, the geometric view factor from surface 2 to surface 1 is calculated as

F2−1 =
1

A2

∫
A1

∫
A2

cos(θ1)cos(θ2)
πS2 dA2dA1 (2)

The reciprocity relation for geometric view factors between two finite areas is found
from the fact that the double integrals in Eqs.(1) and (2) are identical, therefore

A1F1−2 = A2F2−1 (3)

As mentioned earlier, the straightforward integration of Eq. (1) or Eq. (2) is pos-
sible only for very few simple geometric configurations. In view of a number of
mathematical techniques available for the evaluation of geometric view factors,
Hottel’s crossed-string method may be employed to develop an accurate solution
for a randomly packed bed of circular particles.

2.2 Hottel’s crossed-string method

To explain Hottel’s crossed-string method, an expression needs to be derived first
for the geometric view factor between any two of the plates in an enclosure of a
triangular cross section. The enclosure is made up of three plane plates, each of
finite width and infinite length, thus forming a hollow infinitely long triangular
prism.

Since the plates are planer, they cannot view themselves, i.e. Fi−i = 0,(i = 1,2,3).
Therefore, the following relations hold

F1−2 +F1−3 = 1

F2−1 +F2−3 = 1

F3−1 +F3−2 = 1

Multiplying each equation above by the respective plate area results in

A1F1−2 +A1F1−3 = A1

A2F2−1 +A2F2−3 = A2

A3F3−1 +A3F3−2 = A3

By applying the reciprocal relations to some of the terms, the three equations be-
come

A1F1−2 +A1F1−3 = A1
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A1F1−2 +A2F2−3 = A2

A1F1−3 +A2F2−3 = A3

F1−2 is obtained by solving the above equations as

F1−2 =
A1 +A2−A3

2A1
=

L1 +L2−L3

2L1
(4)

Figure 2: Hottel’s crossed-string method

Now consider the geometric view factors between two surfaces A1 and A2 that are
partially blocked by two other surfaces A3 and A4, as shown in Fig. 2. Draw dashed
lines ae f c and bghd that represent strings tightly stretched between the outer edges
of the four surfaces with points e, f ,g,h as the tangents between surfaces A1 and
A3, A3 and A2, A1 and A4, and A4 and A2. Also draw two crossed strings ad and bc.
The enclosure abghda is composed of three sides that are either convex or planar.
Then the relation in Eq.(4) can be employed to obtain the following expression

A1F1−bghd =
A1 +Abghd−Aad

2
(5)

Similarly, for the three-sided enclosure ae f cda, we have

A1F1−ae f c =
A1 +Aae f c−Abc

2
(6)
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Furthermore,

F1−2 +F1−ae f c +F1−bghd = 1 (7)

Substituting Eqs.(5) and (6) into (7) gives

A1F1−2 =
Aad +Abc−Aae f c−Abghd

2
(8)

This is a special case of Hottel’s crossed-string method (Siegel and Howell 1992),
which states that the geometric view factor from surface A1 to surface A2 equals
the difference of the sum of the crossed string lengths and the sum of the uncrossed
string lengths, divided by twice the circumference of surface 1. The significance
of this method implies that the geometric view factors between two surfaces can
be obtained by simply constructing the four strings, followed by calculating their
lengths, which completely avoids the evaluation of the double integrals in Eq. (1).

3 Geometric View Factors for a Packed Bed of Circular Particles

Hottel’s crossed-string method described above can now be applied to develop an
approach for the evaluation of the geometric view factors for a packed bed of cir-
cular particles of various sizes.

In the simplest case, consider the geometric view factors between two circular par-
ticles without view blockage, as shown in Fig. 3. Let R1 and R2 be the radii of the
two particles, and A1 = 2πR1 and A2 = 2πR2 be their circumferences, respectively.
Draw two uncrossed strings, L1 and L4 which are the outer common tangents of
the two particles, and two crossed strings, L2 and L3, which are the inner common
tangents plus the two arcs. Based on Hottel’s crossed-string rule, the geometric
view factor from particle 1 to particle 2 can be expressed as

F1−2 =
L2 +L3−L1−L4

2A1
(9)

Now consider a general case in a randomly packed bed of different sized particles,
as shown in Fig. 4. This example will be used to illustrate the algorithm to be
developed.

For particles 1 and 2, the two uncrossed strings (outer common tangents) together
with the two particles form a domain, termed the effective view domain. Obviously,
any particle outside the domain has no effect on the geometric view factor of the
two particles under considerations.

The first step in the evaluation of the geometric view factors is to exclude the par-
ticles outside the effective view domain. This can be achieved very efficiently by
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Figure 3: Hottel’s method for two particles

utilising, for instance, any of the search algorithms employed in discrete element
modelling (Feng et al 2002, Han et al 2007).

Particles that overlap or locate within the domain will (partially) block the view of
the two particles concerned, and can be classified into three categories:

Figure 4: Two particles with blockage in a randomly packed bed of circular parti-
cles

1) Particles overlapping both upper and lower uncrossed strings. If this is the
case, then particles 1 and 2 will be fully blocked, implying a zero view fac-
tor and the procedure is terminated. Note that there is no such case in the
example given in Fig. 4.

2) Particles intersecting with either the upper or the lower uncrossed string. In
the given example, particles 3, 4 and 5 intersect with the upper uncrossed
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string, and particles 6 and 7 intersect with the lower uncrossed string.

3) Particles that are embedded, i.e. completely lie within the effective view
domain, and have no intersections with the upper and lower strings. Again
no such particles exist in the given example.

In what follows, the second and third cases will be discussed separately.

3.1 Geometric view factors between two particles without blockage of embedded
particles

(a) Initial string

(b) String after insertion of particle 4

(c) final string
Figure 5: Generation of the upper uncrossed string between two particles with
blockage
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For the second case, it is essential to numerically define each string, uncrossed and
crossed, so that their lengths can be accurately evaluated.

The generation of the upper uncrossed string is taken as an example. The procedure
for generating the other three strings can be formulated in a similar manner.

Step 1 (Fig. 5a): Construct the initial upper uncrossed string, i.e. the common outer
tangent a→ b, of particles 1 and 2 defined by the two touch points, a and b ,
and the unit vector (the two direction cosines).

Step 2 (Fig. 5b): Loop over the particles intersecting with the string. Particle 4 is
identified as the one that has the maximum overlapping/penetrating distance
with the string a→ b. Then this string should be re-generated with two sub-
strings, one from particle 1 to particle 4, and another one from particle 4 to
particle 2. Consequently the newly generated string comprises three arcs and
two straight lines, i.e. a y c→ d y e→ f y b.

Note that the maximum penetration of the particles with the original string
needs to be determined. If the particles are simply inserted to overlap the
original string, some may not touch the string at later stages.

Step 3 (Fig. 5c): Repeat steps 1 and 2 for each of the two subsections of the new
string, i.e. loop over the particles (except for the particles already included,
e.g. particle 4) to identify a particle with the maximum overlapping/penerating
distance (particle 3 for the first sub-string, for instance). If such a particle
exists, this subsection of the string is further replaced by another two sub-
strings. The above procedures are then repeated. Otherwise, go to the next
subsection of the string using the same technique. The entire procedure is
terminated if no particles intersect with all the sections of the string.

Figure 6: Evaluation of an arc length

It is worth pointing out that when a new particle is inserted to split a string
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Figure 7: Full blockage: zero geometric view factor

into two sub-strings, the two touch points of the string with its two associated
particles will be changed. For instance, particle 3 overlaps with the string
section between particle 1 and particle 4, thereby the touch points c and d are
moved to c′ and d′, as shown in Fig. 5c.

The final upper uncrossed string in the given example consists of four arcs
and three straight lines: a y c′→ g y h→ d′ y e→ f y b.

Step 4 : Evaluate the total length of the string based on its final configuration. The
only issue is how to evaluate the arc lengths, or the angles of the arcs in-
volved, effectively. Suppose a particle is part of the string, touching two
sub-strings, as shown in Fig. 6. As the unit vectors, t1 and t2, of the two
sub-strings are already known, the angle θ of the arc can be computed as

θ = cos−1(t1 · t2)

In the above procedure, the particles that intersect the lower uncrossed string (i.e.
particles 6 and 7) are not checked for the intersection with the upper uncrossed
string only for simplicity of illustration. They nevertheless should be included in
the check procedure since the upper string may be affected by their presence, as is
the case shown in Fig. 7. In this case, however, particles 1 and 2 are fully blocked,
thus leading to a zero view factor. In general, when a particle that intersects the
lower (upper) uncrossed string is involved in the formation of the upper (lower)
uncrossed string, the corresponding view factor will be zero. Nevertheless, both
types of particles overlapping with the upper or lower uncrossed string can alter the
two crossed strings without necessarily leading to a zero view factor.

Besides the two cases identified above that lead to a full blockage, or a zero view
factor, more complex full blockage situations may be exploited and identified,
which may not be computationally beneficial as it generally involves more checks.

The above algorithm can be easily implemented by employing a linked data struc-
ture and recursive operations.
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3.2 Geometric view factors between two particles with blockage of embedded
particles

For the third case where some particles are embedded in the computational domain
of particles 1 and 2, the algorithm presented above for the second case should be
modified to accommodate this more complex situation.

(a) Initial string

(b) Case 1

(c) Case 2
Figure 8: Blockage with one embedded particle

Consider a particle in Fig. 8a that is embedded in the effective view domain of
particles 1 and 2. In this case Hottel’s crossed-string method cannot be applied
in a straightforward manner. Instead, two cases need to be considered separately.
In the first instance, the embedded particle is assumed to be extended upwards
beyond the upper uncrossed string of the two particles, as shown in Fig. 8b. In
other words, the particle is treated as a long obstacle. Then Hottel’s rule can be
applied to generate four strings, L1

1,L
1
2,L

1
3 and L1

4. The corresponding geometric
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view factor from particle 1 to particle 2 can be evaluated as

F1
1−2 = (L1

3 +L1
4−L1

1−L1
2)/A1 (10)

In the second instance, the embedded particle is assumed to be extended downwards
beyond the lower uncrossed string of the two particles, as shown in Fig. 8c. The
four strings, L2

1,L
2
2,L

2
3 and L2

4, can then be generated. According to Hottel’s rule,
the corresponding geometric view factor in this case can be evaluated as

F2
1−2 = (L2

3 +L2
4−L2

1−L2
2)/A1 (11)

As a result, the geometric view factor between particle 1 and particle 2 is the com-
bination of Eqs. (10) and (11),

F1−2 = F1
1−2 +F2

1−2

In a randomly packed bed more than one particle can be embedded in the effective
view domain of particles 1 and 2. Fig. 9 depicts such a case where two particles
are embedded. Similar to the above discussion, two cases need to be considered for
each embedded particle, thereby giving rise to a total of 2m cases, where m repre-
sents the total number of embedded particles. The geometric view factor can then
be obtained by the combination of these 2m results. However, for a particle assem-
bly with a wide range of particle size distribution, m can be large and this ’brute
force’ approach is thus not computationally efficient, although the implementation
is fairly straightforward.

Figure 9: Blockage with more embedded particles

The numerical efficiency for evaluating the geometric view factors involving em-
bedded particles can be improved in a number of ways. One approach, which is
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implemented in this work, is to firstly construct the four strings without the consid-
eration of the embedded particles following the procedure described in the previous
subsection. Then all the embedded particles are checked against the new effective
view domain formed by the two uncrossed strings and the two particles, which may
have three outcomes for each embedded particle:

1) The embedded particle lies completely outside the domain. Clearly this par-
ticle is excluded in the following operation.

2) The embedded particle intersects with one or two of the uncrossed strings.
If the particle intersects with both strings, this is equivalent to a full block-
age and the procedure is terminated; Otherwise, if the particle intersects with
only one of the uncrossed strings, this string should be modified by inserting
the particle. Unlike the particle insertion operation in the previous subsec-
tion, some existing particles that form the string may have to be deleted as
they may lose contact with the string after the new particle is inserted.

3) The embedded particle is still embedded in the domain.

As the strings are kept updated during the checking process, all the embedded par-
ticles should be repeatedly checked against the strings until no changes occur to the
strings or no embedded particles exist.

The purpose of the above checking operation is to further exploit a possible full
blockage which will immediately halt the procedure, and to minimise the number
of embedded particles so as to reduce the computational costs at the next stage,
where all the combination cases for the remaining embedded particles are consid-
ered following the procedure outlined earlier.

3.3 Geometric view factors in a large packed bed

The preceding subsections describe the procedures for evaluating the geometric
view factors between two particles with or without embedded particles. To model
radiative heat transfer in a packed bed, all the nonzero view factors between one
particle and the other particles as well as the problem boundaries need to be deter-
mined.

For small scale and static problems where the geometric view factors are evaluated
only once, this can be achieved by looping over all the particles without signifi-
cantly compromising the computational efficiency. For a packed bed with a large
number of particles, however, an alternative solution strategy must be sought since
the complexity of the procedure is O(n2) with n being the total number of particles.
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Figure 10: Definition of a circular cover domain and enlargement for a particle

A more efficient approach is to define a circular cover domain of radius R0 for
each particle in the packed bed, the black circle for the red particle in Fig. 10, for
instance. Then the geometric view factors of this particle with other particles in the
cover domain are evaluated. If the sum of the geometric view factors is approaching
1 within a given tolerance τ , i.e.

1−∑
j

Fi− j < τ (12)

the calculation for this particle is completed. Otherwise, the radius of the cover
domain is increased by a given value δ , and the evaluation of the geometric view
factors with the newly included particles is performed. This procedure is repeated
until condition (12) is satisfied.

Clearly it is essential to identify those particles in the cover domain. Again this
can be achieved by employing some of the efficient search algorithms employed in
discrete element modelling, such as the ASDT algorithm (Feng et al 2002). The
values of R0 and δ should be chosen based on the packing characteristics of the
particles, such as packing density and size distribution, to achieve a better perfor-
mance. However, those particles near the domain boundary may be treated in a
slightly different way, which depends on the shape and other features of the bound-
ary.
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Figure 11: Example - a loosely packed bed in a circular enclosure

4 Numerical Example

A simple numerical example is provided in this section to illustrate the procedure
for modelling the radiative heat transfer in a packed bed of particles within a cir-
cular enclosure, as depicted in Fig. 11. A total of 51 circular particles are loosely
packed with radii in the range of [0.05,0.09]m. To assess the accuracy of the al-
gorithm proposed in this work, the circular boundary of radius 0.6m is represented
by 100 mono-sized particles. The temperatures of the boundary particles are pre-
scribed with a linear distribution from 250◦C at the leftmost particle to 500◦C at
the rightmost particle. The particles in the packed bed are assigned with a random
initial temperature in the range of [250,500]◦C.

The geometric view factors associated with each particle are evaluated following
the procedure described in the preceding section. As the scale of the particle assem-
bly is small, each particle in the enclosure is checked against all the other particles
including those representing the boundary for possible nonzero view factors. The
sum of the geometric view factors for each particle serves as an indicator against
the exact value which is 1.

Table 1 presents the results calculated for 5 selected particles at different positions
ranging from the near-boundary to the interior in the packed bed. The second col-
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umn of the Table lists the particles, termed ’visible’ particles, that have nonzero
geometric view factors with the chosen particles. The number of ’visible’ particles
and the partial sum of the geometric view factors excluding the boundary particles
are given in the third and fourth columns, respectively, while the total sum including
the boundary particles is presented in the last column. As the number of particles
is small and loosely packed, the number of ’visible’ particles is fairly large (around
25), and these particles are distributed across a large area of the packed bed (see
particle 20). As expected, for particles that are close to the boundary, particles 1
and 40 for example, the partial sum of the geometric view factors is small (around
0.5), while for the interior particles, such as 10 and 20, the partial sum is very
close to 1. The values in the last column indicate that the relative solution accuracy
of the algorithm proposed is about 10−3. The error stems mainly from numerical
round-offs in the operations.

Note that for a pair of particles i and j only Fi− j is evaluated while Fj−i is obtained
by utilising the reciprocity relation in Eq. (3). After discarding those negligible
view factors with a cut-off value of 10−5, the total number of the nonzero view
factors is 2842 for all the particles in the packed bed. This number mainly dictates
both computer memory requirement and CPU time in the next stage for simulating
the temperature evolution.

Figure 12: Temperature evolution histories for particles 21, 48 and 49

The particles in the packed bed are assumed isothermal and their temperature evo-
lution is governed by the following transient heat transfer equations:

CiṪi(t) = σ ∑
j

AiFi− j(T 4
i −T 4

j ) (13)

where Ci is the thermal capacity of particle i, Ti is its temperature in degrees Kelvin,
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Table
1:T

he
geom

etric
view

factors
fora

few
selected

particles

particle
(i)

listof’visible’particles
(j)

no.ofparticle
(j)

∑
j F

i−
j

∑
j F

i−
j (total)

1
2,3,8,9,13,17-19,23,42,44,45,49-51

15
0.506607

1.001501
5

3,4,6,7,9-12,14,15,20-22,32,42-45,47
17

0.928369
0.999202

10
2-6,8,11-15,17,18,20,21,23,

25
0.995864

0.999815
27-29,35,42-45,51

20
3,5,7,9,10,12-15,17-19

21-25,
24

0.999088
0.999989

27-30,32,38,44
40

23,29,33,34,37,38,39,41,49
9

0.554262
1.000136
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Ṫi the time derivative of the temperature, Ai is the circumference of the particle; j
represents all the ’visible’ particles having nonzero view factors Fi− j with particle i,
and σ = 5.6704×10−8 kg s−3 K−4 is the Stefan-Boltzmann constant. The transient
equations are numerically integrated using the forward Euler time stepping scheme.
In this example, the time step can be chosen in a wide range without encountering
any numerical instability problems.

The time histories of the temperature evolution for three particles, 21, 48 and 49,
are displayed in Fig. 12. The temperature evolutions of the system at several time
instants, t=0, 10, 20, 50s, are depicted in Fig. 13a-d. Clearly the system has reached
the correct steady-state, as expected.

(a) Initial temperature distribution at
t=0s

(b) Temperature distribution at t=10s

(c) Temperature distribution at t=20s (d) Temperature distribution at t=50s
Figure 13: Temperature evolution of the particle assembly at several time instants
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5 Concluding Remarks

This paper has proposed an accurate algorithm for the evaluation of the geometric
view factors in a randomly packed bed of circular particles of various sizes, mo-
tivated by the idea of Hottel’s crossed-string method. This approach provides an
appropriate basis for calculating the radiative heat exchange in a packed bed of par-
ticles encountered in many industrial applications. The procedure is illustrated and
the solution accuracy is assessed through a numerical example.
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