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Models
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Abstract: A meshless model, based on the Meshless Local Petrov-Galerkin
(MLPG) approach, is developed and implemented in parallel for the solution of
axi-symmetric poroelastic problems. The parallel code is based on a concurrent
construction of the stiffness matrix by the processors and on a parallel precon-
ditioned iterative method of Krylov type for the solution of the resulting linear
system. The performance of the code is investigated on a realistic application con-
cerning the prediction of land subsidence above a deep compacting reservoir. The
overall code is shown to obtain a very high parallel efficiency (larger than 78% for
the solution phase) and it is successfully applied to the solution of a poroelastic
problem with a fine discretization which produces a linear system with more than
6 million equations using up to 512 processors on the HPCx supercomputer.
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1 Introduction

Since the late ’70s meshless methods have attracted an increasing attention due to
their flexibility in solving several engineering problems. Among these, a special
attention has been devoted for example to the Element-Free Galerkin Belytschko et
al (1994), the Meshless Galerkin with Radial Basis Functions Wendland (1999),
and the Meshless Local Petrov-Galerkin (MLPG) Atluri Shen (2002a,b); Atluri
Zhu (1998) method. In particular, the last one has the attractive feature of begin
“truly” meshless as it does not need any kind of connection among the nodes se-
lected within the computational domain. For this reason MLPG method turns out
to be more flexible and easier to use than other meshless methods or the conven-
tional Finite Element (FE) Methods Pini et al (2008). The MLPG method has been
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successfully employed in several applications Sladek et al (2008b,a); Ma (2008);
Jarak Soric (2008); Zheng et al (2009).

However, the main drawback of a meshless method, which currently precludes its
use especially in fully 3-D problems, is the large computational cost with respect to
low-order (especially linear) FE (see Yuan et al (2007) for an attempt to solve this
problem). In particular, the numerical integration of the meshless shape functions,
that may be quite complex in nature, can be very expensive and sometimes inac-
curate, so that one of the current main challenges for the improvement of meshless
techniques relies on the robust and efficient implementation of effective integration
rules.

The present paper is concerned with the development of a parallel poroelastic
MLPG model for large scale parallel solution of an axi-symmetric poroelastic prob-
lem. In several real problems related to the mechanics of pore fluid withdrawal or
injection, the assumption of an axi-symmetric geometry with the symmetry axis
coinciding with a vertical well is often used, e.g. Gambolati et al (1999, 2000);
Ferronato et al (2004). This allows for avoiding the computational burden involved
by a fully 3-D meshless simulation and nonetheless obtaining relevant results for
the engineering practice. The MLPG accuracy in an axi-symmetric problem has
been investigated in a recent work Ferronato et al (2007b) with the aid of avail-
able analytical solutions, such as for example the land subsidence occurring over
a compacting cylindrical gas/oil reservoir Geertsma (1973), and compared to the
outcome of a standard FE poroelastic model. In particular, MLPG is shown to take
advantage of a great flexibility in the definition of the local sub-domains and the
number of nodal contacts, allowing for a potentially better accuracy with a rela-
tively small number of nodes over the integration domain.

The present paper is concerned with the development of a parallel poroelastic
MLPG model for large scale parallel solution of an axi-symmetric poroelastic prob-
lem. The parallel implementation of our MLPG model is based on the concurrent
construction of the stiffness matrix by the processors without any intercommuni-
cation and on an efficient preconditioned iterative solution of the linear system
arising from the meshless discretization. To this aim a parallel FSAI (Factorized
Sparse Approximate Inverse) preconditioner Kolotilina Yeremin (1993) with pre-
and post- filtration Kolotilina et al (1999); Nikishin Yeremin (2003) has been de-
veloped in combination with a parallel BiCGSTAB van der Vorst (1992) iterative
solver. The resulting preconditioner proves very effective in the acceleration of
the iterative solver, revealing at the same time roughly as sparse as the coefficient
matrix.

Numerical results on the HPCx supercomputer available at EPCC (Edinburgh Par-
allel Computing Center, UK) show that our approach is perfectly scalable even on a
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very high number of processor (up to 512) and allows for the solution of very large
geomechanical problems.

The paper is organized as follows. The equations of elastic equilibrium of an axi-
symmetric porous volume are solved with the aid of MLPG in Section §2. In §3,
we recall the basic algorithm for constructing FSAI preconditioners, while our par-
allelization strategies are described in §4. In §5 the parallel numerical results are
presented, together with a discussion regarding the optimal choice of the precondi-
tioner. A number of remarks close the paper in §6.

2 MLPG formulation for axi-symmetric poroelastic problems

The problem used to test our parallel MLPG iterative solver consider a cylindrical
reference system r, θ , z, with z the vertical axis taken positive in the upward di-
rection. We choose to solve an axi-symmetric poroelastic problem since it is still
widely used in real-life applications (see for example Ferronato et al (2007a)).
Moreover, an analytic solution can be explicitly computed to guarantee the accu-
racy of the MLPG approach (see Ferronato et al (2007b) where MLPG has been
compared with Galerkin Finite Elements).

The equations of elastic equilibrium of a cylindrical, isotropic and axi-symmetric
porous medium with the axis at r = 0 read Verruijt (1969):

Dσ +b = 0 (1)

where:

D =

[
∂

∂ r + 1
r 0 −1

r
∂

∂ z
0 ∂

∂ z 0 1
r + ∂

∂ r

]
σ = [σr, σz, σθ , σrz]

T

b = [br, bz]T =
[
−∂ p

∂ r
, −∂ p

∂ z

]T

where σr, σz, σθ , σrz are the effective stress components, and p is the pore fluid
pressure.

Consider the equilibrium of the porous medium at steady state, so that p is a known
variable which can be calculated, for example, from the classical flow equation Ver-
ruijt (1969); Gambolati (1974). The solution to eq. (1) requires appropriate
Dirichlet boundary conditions over Γu and Neumann boundary conditions over Γt .
It is obtained in a weak form by orthogonalizing the residual to a test function vi,
i = 1,2, over a number of local sub-domains Ω

(k)
s , k = 1, . . . ,n, located within the

overall cylindrical porous volume Ω. Setting:

V =
[

v1 0
0 v2

]
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the local weak form of (1) with Dirichlet condition reads Ferronato et al (2007b):∫
Ω

(k)
s

V (Dσ +b) dΩ − α

∫
Γ

(k)
su

V (u−u) dS = 0 k = 1, . . . ,n (2)

where Γ
(k)
su is the portion of Ω

(k)
s where Dirichlet conditions are prescribed, u =

[ur, uz]
T is the vector of radial and vertical displacements with u the prescribed

ones, and α is a penalty parameter. Because of the axi-symmetry of Ω, the domain
of influence Ω

(k)
s is chosen an annular volume with a circular cross section Ω

′(k)
s of

radius r(k)
0 on the plane θ = θ . Hence eq. (2) yields:∫

Ω
′(k)
s

V (Dσ +b)r dr dz − α

∫
Γ
′(k)
su

V (u−u)r dΓ = 0 k = 1, . . . ,n (3)

with the global integration domain thus restricted to the plane θ = θ .

Different choices for vi provide different MLPG formulations. The most popular
one is the so-called MLPG1Atluri Shen (2002a); Ferronato et al (2008). Let v1 =
v2 = w(k), where w(k) is the weight function used in the Moving Least Square (MLS)
approximation Atluri Shen (2002a) defined over an annular support whose section
on the plane θ = θ is a circle with radius r(k) = r(k)

0 , i.e. Ω
′(k)
s . Common weight

functions are Gaussian surfaces Belytschko Gu (1994) or splines Belytschko et al
(1996). In the axi-symmetric MLPG1 model investigated in the sequel, w(k) is the
following spline function:

w(k) =

 1−6
(

δ

r(k)

)2

+8
(

δ

r(k)

)3

−3
(

δ

r(k)

)4

0≤ δ ≤ r(k)

0 δ > r(k)
(4)

where δ is the distance between the point (r,z) and the center of w(k) local circular
support, i.e. node k. The advantage of MLPG1 implementation is that w(k), and so
vi, vanishes over Γ

′(k)
s0 . Hence, setting:

Ev =

[
r ∂v1

∂ r 0 v1 r ∂v1
∂ z

0 r ∂v2
∂ z 0 r ∂v2

∂ r

]

eq. (3) can be written in the following matrix form:∫
Ω
′(k)
s

Evσ dr dz+α

∫
Γ
′(k)
su

rV u dΓ−
∫

Γ
′(k)
su

rV t dΓ =

=
∫

Γ
′(k)
st

rV t dΓ+α

∫
Γ
′(k)
su

rV u dΓ+
∫

Ω
′(k)
s

rV b dr dz k = 1, . . . ,n (5)
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where t = [tr, tz]T is the local vector of linear loads over Γ
(k)
s with t the prescribed

ones.

The MLS approximation for the unknown u reads:

u'

[
∑

n
j=1 φ jû

( j)
r

∑
n
j=1 φ jû

( j)
z

]
(6)

with φ j the MLS shape functions with linear basis and û( j)
r and û( j)

z the fictious
nodal displacements Belytschko et al (1996); Ferronato et al (2008). Using (6),
the Hooke’s law becomes:

σ =
n

∑
j=1

DB jû j (7)

with:

B j =


∂φ j
∂ r 0
0 ∂φ j

∂ z
φ j
r 0

∂φ j
∂ z

∂φ j
∂ r

 û j =
[
û( j)

r , û( j)
z

]T

D =
E(1−ν)

(1+ν)(1−2ν)


1 ν

(1−ν)
ν

(1−ν) 0
ν

(1−ν) 1 ν

(1−ν) 0
ν

(1−ν)
ν

(1−ν) 1 0

0 0 0 (1−2ν)
2(1−ν)


and E and ν are the Young modulus and the Poisson ratio of the porous medium,
respectively.

Finally, substituting eq. (7) into eq. (5) provides the following linear algebraic
system with û as the unknown vector:

n

∑
j=1

Kk jû j = fk, k = 1,2, ...,n shortly Ku = f (8)

where:

Kk j =
∫

Ω
′(k)
s

EvDB j dr dz + α

∫
Γ
′(k)
su

rV Sφ j dΓ −
∫

Γ
′(k)
su

rV NDB jS dΓ (9)



196 Copyright © 2009 Tech Science Press CMES, vol.49, no.3, pp.191-214, 2009

fk =
∫

Γ
′(k)
st

rV t dΓ + α

∫
Γ
′(k)
su

rV Su dΓ +
∫

Ω
′(k)
s

rV b dr dz (10)

with

N =
(

nr 0 0 nz

0 nz 0 nr

)
the matrix of the components of the outer normal to Γt and S the auxiliary flag
matrix:

S =
[

Sr 0
0 Sz

]

Sr =

{
1 if ur is prescribed on Γ

′(k)
su

0 otherwise
Sz =

{
1 if uz is prescribed on Γ

′(k)
su

0 otherwise

The stiffness matrix K of system (8) has size 2n, is generally unsymmetric, and its
sparsity is very much dependent on the size of the domains of influence Ω

′(k)
s and

the local supports for w(k), i.e. ultimately on r(k)
0 and r(k).

2.1 The quadrature formula

Following a suggestion by Peirce Peirce (1957) as implemented in De Bathe
(2000), a Gauss-Legendre formula for the ρ integral and a midpoint rule for the
θ integral are used:∫ r0

0

∫
θ2

θ1

F(ρ,θ)ρ dρ dθ ≈
nρ

∑
i=1

nθ

∑
j=1

aib jF(ρi,θ j) (11)

where ρi is the square root of the i-th zero of the nρ -degree Legendre polynomial,

ai =
r2

0wi

4
the corresponding weight, θ j = θ1 + ( j− 1

2
)b j, and b j =

θ2−θ1

nθ

. It

follows straightforwardly that aib j =
wiA
2nθ

, with A =
r2

0
2

(θ2−θ1) the circular sector
area.

3 Iterative solution of the linear system

System (8) is sparse and can be very large. Preconditioners for the iterative solu-
tion via Krylov subspace methods is a common choice for this kind of problems,
provided that an efficient preconditioner is available. We choose to work with the
BiCGSTAB method accelerated by a preconditioner belonging to the class of ap-
proximate inverse preconditioners, which have been extensively studied by many
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authors. We quote among the others the SPAI preconditioner Grote and Huckle
(1997), the AINV preconditioner described in Benzi Tuma (1998); Benzi et al
(2000) and the FSAI (Factorized Sparse Approximate Inverse) preconditioner pro-
posed in Kolotilina Yeremin (1993). These preconditioners explicitly compute an
approximation to the inverse of the coefficient matrix and their application needs
only matrix vector products, which are more effectively parallelized than solving
two triangular systems, as in the ILU preconditioner. Factorized sparse approxi-
mate inverses are known to preserve the positive definiteness of the problem and
provide better approximations to the inverse of the coefficient matrix for the same
amount of storage (than non-factorized ones). Both FSAI and AINV compute the
approximation to A−1 in factorized form. However, the AINV preconditioner is
generally more efficient than FSAI as accelerator of Krylov solvers, due to its flex-
ibility in the generation of the pattern of the approximate inverse factor. On the
contrary, the FSAI preconditioner requires the a priori specification of the sparsity
pattern of the triangular factors. We have chosen to use the FSAI preconditioner be-
cause in its current formulation AINV offers limited opportunity for parallelization
of the preconditioner construction phase, while the construction of FSAI is inher-
ently parallel. For an exhaustive comparative study of sparse approximate inverse
preconditioners the reader is referred to Benzi Tuma (1999).

3.1 The FSAI Preconditioner

Let A be a symmetric positive definite (SPD) matrix and A = LALT
A be its Cholesky

factorization. The FSAI method gives an approximate inverse of A in the factorized
form

M = GT
L GL, (12)

where GL is a sparse nonsingular lower triangular matrix approximating L−1
A . To

construct GL one must first prescribe a selected sparsity pattern SL ⊆ {(i, j) : 1 ≤
i 6= j ≤ n}, such that {(i, j) : i < j} ⊆ SL, then a lower triangular matrix ĜL is
computed by solving the equations

(ĜLA)i j = δi j, (i, j) 6∈ SL. (13)

The diagonal entries of ĜL are all positive. Defining D = [diag(ĜL)]−1/2 and set-
ting GL = DĜL, the preconditioned matrix GLAGT

L is SPD and has diagonal entries
all equal to 1. As it has been described above the matrix ĜL is computed by rows:
each row requires the solution of a small SPD dense linear system of size equal
to the number of nonzeros allowed in that row. Each row of ĜL can be computed
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independently of each other. The extension of FSAI to the nonsymmetric case is
straightforward; however the solvability of the local linear systems and the non
singularity of the approximate inverse is only guaranteed if all the principal subma-
trices of A are non singular (which is the case, for instance, if A is positive definite,
i.e., A+AT is SPD).

A common choice for the sparsity pattern is to allow nonzeros in GL only in posi-
tions corresponding to nonzeros in the lower triangular part of A. A slightly more
sophisticated and more costly choice is to consider the sparsity pattern of the lower
triangle of A2, see Kaporin (1994). While the approximate inverses corresponding
to higher powers of A are often better than the one corresponding to k = 1, they
may be too expensive to compute and apply. It is possible to considerably reduce
storage and computational costs by working with sparsified matrices. Dropping
entries below a prescribed threshold in A produces a new matrix Ã ≈ A; using the
structure of the lower triangular part of Ãk often results in a good pattern for the
preconditioner factor.

3.2 Prefiltration

One feature of the coefficient matrices produced by the MLPG discretization method
is that they are denser than the matrices arising from FE discretization of the same
problem. On the average the number of nonzero elements per row can be about 70–
100 entries. This feature makes almost mandatory the use of a technique called pre-
filtration, to reduce the cost of computing the preconditioner. The basic prefiltration
technique (pointwise) consists in dropping entries below a prescribed threshold in
the coefficient matrix to produce a sparsified matrix, whose nonzero structure will
be used as the symbolic pattern for the preconditioner factors.

In Nikishin Yeremin (2003), the authors introduce a prefiltration strategy based
on the so-called vector aggregation technique. The prefiltration is performed on
a aggregated matrix naturally induced from the original coefficient matrix by the
degrees of freedom per mesh node, and its size is n/s being s = 2,3 the spatial di-
mension of the discretization. The small entries of the computed “aggregated ma-
trix” FSAI preconditioning matrix are dropped, and the resulting pointwise sparsity
pattern is used to construct the low density block sparsity pattern for the original
matrix. This approach usually produces a slight worsening of the preconditioner
quality together with a sometimes important saving of the CPU time. Experimental
results performed with the matrices arising from the MLPG discretization of the
axi-symmetric poroelastic problem considered in this work revealed no advantage
of using this prefiltration strategy instead of the trivial one (pointwise). We believe
the reason of this behavior is the small dimension (2) of blocks which corresponds
to the degrees of freedom per node, which makes the saving of the CPU time too
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small to pay for the increased number of iterations. In the section describing the
numerical results we limit ourselves to the basic prefiltration strategy.

3.3 Postfiltration of FSAI preconditioners

Following Kolotilina et al (1999) we also employed the technique called post-
filtration, which consists on a posteriori sparsification of an already constructed
FSAI preconditioner by using a small drop–tolerance parameter. The aim is to re-
duce the number of nonzero elements of the preconditioner factors to decrease the
arithmetic complexity of the iteration phase. Also, in a parallel environment, a sub-
stantial reduction of the communication complexity in the matrix-vector product
can be achieved.

We extend the postfiltration technique described in Kolotilina et al (1999) to non-
symmetric matrices as follows. In the nonsymmetric case both preconditioner fac-
tors, GL and GU , must be sparsified. We limit ourselves to nonsymmetric matrices
with a symmetric nonzero pattern (which is the common situation in matrices aris-
ing from i.e. discretization of PDEs) and assume SL = ST

U . We perform a symmetric
filtration of factors GL and GU by filtering out the same number of small entries (in
absolute value) of row i and column i of both preconditioner factors, respectively.
The postfiltrated FSAI preconditioner has been successfully employed in acceler-
ating iterative methods in the solution of e.g. FE problems (see Bergamaschi et al
(2005a,b, 2007)).

Banded FSAI preconditioners

In this paper we also propose a dropping strategy based on the distance of an entry
of the preconditioner from the diagonal. By this variant we keep all the elements
of GL of indices i, j such that |i− j|< nd where nd is an integer input value.

4 Parallelization of the MLPG code

The parallelization of the MLPG code is subdivided into two phases. The first phase
consists in the parallel assembly of the stiffness matrix. We choose to partition the
computational domain into np subdomains where np is the number of processors
employed. Moreover, every processor can access to information regarding every
node belonging to its influence domain, so that no communication is required in
this phase.

The second phase is represented by the iterative solution of the linear system Ax =
b – equation (8) with A,x,b used instead of K,u, f – by the above mentioned
BiCGSTAB method, accelerated by the FSAI preconditioner. In the parallel im-
plementation of this method, a number of linear algebra kernels require communi-
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cations among processors. Among this kernels the crucial one is represented by the
matrix-vector product.

The code is written in FORTRAN 90 and exploits the MPI library for exchanging
data among the processors.

4.1 Efficient matrix-vector product

Our implementation of the matrix-vector product is tailored for application to sparse
matrices and minimizes data communication between processors. Within the BiCGSTAB
algorithm, the vector Hu has to be calculated, where H ∈ {A,GL,GU} is an N×N
matrix. Each processor exchanges entries of its local components of vector u with
a very small number of other processors (compared to the total number p).

Let us consider a given processor with processor identifier (pid) say r,0≤ r≤ p−1.
Assume for simplicity that N is exactly np, and denote by S the indices of the
nonzero entries of matrix H

S = {(i, j) : hi j 6= 0}.

The set S is normally referred as the nonzero pattern of H. After distributing the
matrix, the subset Pr containing the indices corresponding to nonzero elements of
H belonging to processor r can be defined as

Pr = {(i, j) : rn+1≤ i≤ (r +1)n }∩S.

This set can be partitioned into two subsets

Pr
loc = {(i, j) ∈ Pr, rn+1≤ j ≤ (r +1)n} Pr

nonloc = Pr\Pr
loc.

For every processor r we also define the subsets Cr
k,R

r
k, k 6= r of indices as:

Rr
k = {i : (i, j) ∈ Pr

nonloc,kn+1≤ j ≤ (k +1)n}

and

Cr
k = { j : (i, j) ∈ Pr

nonloc,kn+1≤ j ≤ (k +1)n}

Processor r has in its local memory the elements of the vector u whose indices
lie in the interval [rn + 1,(r + 1)n]. Before computing the matrix-vector product,
for every k such that Rr

k 6= /0 processor r sends to processor k the components of
vector u whose indices belongs to Rr

k; it also gets from every processor k such
that Cr

k 6= /0, the elements of u whose indices are in Cr
k. We subdivided the overall

communication in communication phases. On each phase two communications are
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completed, one with a processor with pid less than r and another with a processor
with pid greater than r. When H ≡ A this communication is symmetric due to the
symmetric nonzero pattern of A inherited by the MLPG discretization here adopted,
and thus is performed by the MPI_SendRecv routine. In the case H ≡ GL(GU) in
each phase processor r sends data to one processor whose pid is k > r(k < r) and
receives data from one processor whose pid is k < r(k > r). This schedule is tuned
on our block-banded matrices and guarantees minimization of waiting times.

When all the communication phases have completed processors are able to com-
pute locally their part of the matrix-vector product. A scalability analysis of the
parallel sparse matrix–vector product implementation, was performed in Martinez
et al (2009) and an experimental study of the communication overhead was accom-
plished. As a result of this study the current version described here was developed
showing good scaling behavior even employing more than one thousand proces-
sors.

4.2 Parallel implementation of the FSAI preconditioner

We give in this section the main lines of the parallel implementation of the FSAI
preconditioner that has been carried out. For the details of the implementation the
reader is referred to the paper Bergamaschi et al (2005b).

We implemented the construction of the FSAI preconditioner for general nonsym-
metric matrices. Our code allows the specification of both A or A2 as sparsity
patterns with prefiltration and postfiltration. We used a block row distribution of
matrices A, GL and GU , that is, with complete rows assigned to different processors.
All these matrices are stored in static data structures in CSR format.

Even in the nonsymmetric case, we assumed a symmetric non zero pattern for
matrix A and set SL = ST

U . The preconditioner factor GL is computed by rows while
GU is computed by columns. In this way no added row exchanges is needed respect
to the SPD case. Every processor computes a set of rows of GL and a set of columns
of GU , completely in parallel. Matrix GU is stored in CSC format only during the
computation phase and it is transposed in parallel to CSR format before the start of
the iterative solver.

5 Numerical results for axial-symmetric MLPG discretizations

5.1 Problem description

The MLPG1 axi-symmetric poroelastic model is used to simulate the land subsi-
dence above a compacting disk-shaped reservoir. Consider the depletion of a cylin-
drical volume with small thickness and vertical axis, embedded in a linear elastic,
homogeneous and isotropic porous half-space bounded by a horizontal plane at
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Figure 1: Schematic representation of the land subsidence problem due to the com-
paction of a deep disk-shaped reservoir in a semi-infinite medium.

z = 0 representing the ground surface (see Fig.1). The problem of predicting the
land deformation due to a uniform pore pressure variation ∆p prescribed within the
reservoir has been theoretically solved by Geertsma with the aid of the nucleus of
strain concept.

A regular nodal pattern is used, with spacing ∆r = ∆z = d, over a rectangular cross-
section domain θ = θ extending from the land surface down to 1000 m (−1000≤
z ≤ 0 m) and for 3000 m in the radial direction (0 ≤ r ≤ 3000 m) (see Fig.2).
Table 1 display the number of nodes and the dimension N of the resulting linear
system for different d-values. The porous medium is characterized by E = 833.33
MPa and ν = 0.25, corresponding to a uniaxial vertical compressibility equal to
10−3 MPa−1. The values of r(k)

0 and r(k) i.e. the size of Ω
(k)
s and the support of

w(k), respectively, are r(k)
0 = αd and r(k)

0 = βd. The optimal values for α = 1.425
(α = 1.3 for problem #4) and β = 2.2 were experimentally found, while the values
of the other parameters are shown in Table 1. The reader is referred to Ferronato
et al (2007b) for further details on problem description.

All test cases were run on the HPCx supercomputer located at Daresbury (UK).
HPCx is available for HPC-Europa visitors at EPCC (Edinburgh Parallel Comput-
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Figure 2: Sketch of the rectangular domain with a regular node pattern.

ing Center). HPCx is at the time of writing 43th in the TOP 500 list of fastest
machines in the world.

5.2 HPCx architecture overview

The HPCx system consists out of 160 IBM eServer 575 logical partitions (LPARs)
for the compute and 8 IBM eServer 575 LPARs for login and disk I/O. Each eServer
LPAR contains 16 processors, the maximum allowable by the hardware. The main
HPCx service provides a total of 2560 processors for computation (however the
largest CPU count for a single job is 1024).

The eServer 575 compute nodes utilize IBM Power5 processors. The Power5 is a
64-bit RISC processor implementing the PowerPC instruction set architecture. It
has a 1.5 GHz clock rate, and has a 5-way super-scalar architecture with a 20 cycle
pipeline. There are two floating point multiply-add units each of which can deliver
one result per clock cycle, giving a theoretical peak performance of 6.0 Gflop/s.

The level 1 cache is split into a 32 Kbyte data cache and a 64 Kbyte instruction
cache. The level 1 data cache has 128-byte lines, is 2-way set associative and write-
through. Inter node communication is provided by an IBM’s High Performance
Switch (HPS), also known as “Federation.” Each eServer node has two network
adapters and there are two links per adapter, making a total of four links between
each of the computing nodes and the switch network. Intra node communication is
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Table 1: Problem description. nr number of horizontal divisions, nz number of
vertical divisions, nodes = (nr + 1)(nz + 1), nnz number of nonzero entries of co-
efficient matrix A

#problem nr nz d nodes N nnz
1 300 100 10 30401 60802 4415972
2 750 250 4 188501 377002 27689972
3 1500 500 2 752001 1504002 110879972
4 3000 1000 1 3004001 6008002 443759972

accomplished via shared memory.

5.3 Results with the FSAI preconditioner using prefiltration

In this section we report the results of our preconditioning strategy for the 4 test
problems. We employed the pointwise prefiltration strategy described in the pre-
vious section. For each problem, the performance of the FSAI preconditioner is
compared to that of the diagonal (JACOBI) preconditioner, which is easier to im-
plement and parallelize. We denote with δ the prefiltration parameter and with ε

the postfiltration threshold. Tprec is the CPU time to evaluate the preconditioner,
Tsol the elapsed time for the BiCGSTAB iteration and T is the total time also com-
prehensive of matrix assembly. We use left preconditioning for the BiCGSTAB
method. The initial guess is chosen to be x0 = Mb, where M is the computed
FSAI sparse approximate inverse of A and b is the right hand side. The iteration is
stopped when the residual rk satisfies:

‖rk‖ ≤ tol1 + tol2‖b‖ (14)

where we set tol1 = tol2 = 10−12 (except for problem #4, for which we set tol1 =
tol2 = 10−10 in an attempt to reduce the large number of CPU hours consumed by
every run of the code needed to solve this problem). This choice guarantees that
the initial residual norm is reduced by a factor 1012 if the 2-norm of the right hand
side is not too small. However, if ‖b‖ � 1, a common situation in linear systems
arising from discretization of PDEs with no source terms, the iteration is stopped
when the 2-norm of the residual is less than 10−12 (10−10 for problem # 4).

In Tables 2–5 we report the performance of the FSAI-BiCGSTAB algorithm with
various combination of δ , ε and the initial nonzero pattern (A or A2). The results
presented in the Tables have been produced on the HPCx supercomputer with a
fixed number of processors for a given problem. In the majority of the test problems
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Table 2: Problem #1, solved using 16 processors.

FSAI preconditioner
δ PATT ε nnzprec iter Tprec Tsol T
0.0 A2 0.0 15133684 121 5.02 1.12 8.64
0.01 A2 0.0 8175388 155 1.19 0.90 4.48
0.1 A2 0.05 2405604 212 0.64 0.76 3.83
0.0 A 0.0 4415972 202 0.34 0.87 3.57
0.05 A 0.0 1267960 288 0.16 0.91 3.44
0.05 A 0.05 850538 283 0.17 0.86 3.47
0.1 A 0.1 780598 324 0.16 0.97 3.60

JACOBI preconditioner
60802 513 0.0 1.06 3.47

Table 3: Problem #2, solved using 32 processors.

FSAI preconditioner
δ PATT ε nnzprec iter Tprec Tsol T
0.0 A2 0.0 95882884 322 16.3 13.5 38.2
0.01 A2 0.1 10450762 680 4.2 7.5 19.9
0.1 A2 0.0 33611662 444 1.9 19.3 29.5
0.1 A2 0.1 6402086 778 2.1 8.3 18.6
0.0 A 0.0 27689972 566 1.2 10.1 19.4
0.001 A 0.1 6389734 769 1.1 7.6 16.9
0.01 A 0.01 10906790 682 0.7 7.6 16.6
0.05 A 0.05 5276438 713 0.7 7.0 15.8
0.1 A 0.0 6370476 941 0.6 9.1 17.7

JACOBI preconditioner
377002 1434 0.001 9.50 17.7

we see that the best sparsity pattern is represented by A, being that based on A2

generally too costly to compute. The only exception is provided by the largest
test case # 4 where the A2 pattern with δ = 0.1 and ε = 0 reveals the optimal
combination of parameters. Generally, choosing δ and ε parameters is problem
dependent. However, the previous results would suggest to choose δ ∈ [0.05,0.1]
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Table 4: Problem # 3, solved using 128 processors.

FSAI preconditioner
δ PATT ε nnzprec iter Tprec Tsol T
0.0 A2 0.0 385264884 616 16.6 35.5 64.8
0.001 A2 0.0 293151928 674 8.6 28.8 50.2
0.01 A2 0.1 37431220 1692 4.5 20.0 36.3
0.1 A2 0.0 134723052 936 2.2 23.6 38.3
0.1 A2 0.05 55603242 1082 2.4 14.8 29.8
0.0 A 0.0 110879972 1159 1.4 29.4 44.7
0.01 A 0.0 49513966 1947 1.1 24.7 28.7
0.01 A 0.01 48010926 1952 1.0 25.9 39.4
0.1 A 0.0 25490982 1493 0.7 15.9 28.6

JACOBI preconditioner
1504002 2881 0.002 21.2 33.6

and ε ≤ 0.05.

5.4 Banded FSAI preconditioner

In the following Tables 6 and 7 we report some results of the banded FSAI precon-
ditioner on problems #2 and 4, which we regard as representative of the whole set
of results. We selected to use the pattern of A with neither pre nor postfiltration.
Note that the two extreme limit cases nd = 0 and nd = N, where N is the num-
ber of rows of the coefficient matrix, corresponds to point JACOBI and FSAI(A)
preconditioners, respectively.

From Table 7 we can observe that only in the larger problem there is an optimal
nd value, which yields the smallest CPU time. This optimal value is to be related
to the mesh size, namely the values of nr and nz. It turns out that 4080 is equal to
max |i− j|,ai j 6= 0. This result suggests that a pattern simply based on the nonzero
distribution of powers of A may not be the optimal choice. Finding more efficient
patterns for the FSAI preconditioner is still an open problem.

5.5 An illustration of parallel performance and scaling

To illustrate the scalability of our code, we report in this section the results ob-
tained on the largest problems # 2,3 and 4 using up to 512 processors on the HPCx
machine. Throughout the whole section we will denote with Tp the CPU elapsed
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Table 5: Problem # 4, solved using 128 processors.

FSAI preconditioner
δ PATT ε nnzprec iter Tprec Tsol T
0.0 A2 0.0 1544528884 1009 66.5 256.2 417.6
0.1 A2 0.0 539415898 1475 8.2 172.8 277.7
0.0 A 0.0 443759972 1810 4.8 196.2 294.6
0.001 A 0.01 264183448 2199 4.0 200.2 297.6

JACOBI preconditioner
6008002 5204 0.018 355.2 449.1

times expressed in seconds (unless otherwise stated) when running the code on p
processors. In figure 3 we display the total Tp CPU time vs the number of proces-
sors for the above mentioned problems and using either the FSAI or the JACOBI
preconditioner to accelerate the parallel BiCGSTAB solver.

It can be observed that the CPU time decreases as the number of processors in-
creases, for both preconditioners. The solid line accounting for the FSAI precon-
ditioner is always under the dot-dashed line representing the use of the JACOBI
preconditioner. This shows the superiority (more evident on problem # 4) of the
proposed approach with respect to the classical diagonal preconditioner.

Table 6: Problem # 2, banded FSAI preconditioner, with different number of diag-
onals, nd using 32 processors.

nd nnzprec iter Tprec Tsol T
0 377002 1434 0.001 9.60 17.80
1 1129504 1347 0.057 11.48 19.77
2 1880504 1339 0.064 11.15 19.30
5 4124492 1009 0.10 9.80 18.15
10 5241980 1063 0.12 10.30 18.64
20 5241980 1063 0.12 10.30 18.64
300 5241980 1063 0.12 10.30 18.64
501 10100480 1190 0.22 12.98 21.34
510 15711980 780 0.50 10.10 18.73
N 27689972 566 1.17 10.13 19.40



208 Copyright © 2009 Tech Science Press CMES, vol.49, no.3, pp.191-214, 2009

Table 7: Problem # 4, banded FSAI preconditioner, with different number of diag-
onals, nd using 256 processors.

nd nnzprec iter Tprec Tsol T
0 6008002 5771 0.004 187.4 236.5
1 17998004 5765 0.78 204.6 254.7
5 65997992 5130 0.54 235.5 285.6
10 83967980 4931 0.66 226.1 274.9
2040 15711980 3720 1.42 208.7 259.7
4080 371174386 1980 2.33 112.4 164.2
N 443759972 1935 2.85 120.5 173.2

It can be seen that in each problem the two lines come closer when the number
of processor is large, thus accounting for a slight loss of efficiency of the FSAI
preconditioner.

We note also that the gap between the two lines increases with the size of the prob-
lem, thus indicating that finer discretizations may need more sophisticated precon-
ditioners than the simple JACOBI preconditioner.

In order to further compute the efficiency of the parallel iterative solver in our code,
and observing that the number of BiCGSTAB iterations is depending on the number
of processor, we first computed an average time per iteration

Tp =
Tsol

iter
,

expressed in milliseconds (ms) in Tables 8, 9 and 10. Then we computed a relative
measure of the parallel efficiency achieved by the solver defining as S(p̄)

p the pseudo
speedup computed with respect to the smallest number of processors ( p̄) used to
solve the given problem:

S(p̄)
p =

Tp̄ p̄
Tp

.

We will denote E(p̄)
p the corresponding scaled relative efficiency, obtained accord-

ing to

E(p̄)
p =

S(p̄)
p

p
=

Tp̄ p̄
Tp p

.
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Figure 3: Scaling results: overall CPU time Tp vs number of processors, for prob-
lems #2, #3 and #4, using FSAI or JACOBI preconditioners.

Note that we could not solve the largest problems with a smaller number of proces-
sors due to memory limitations.

In Tables 8, 9 and 10, we show that the FSAI-BiCGSTAB algorithm is almost per-
fectly scalable, with the relative efficiency of the 78% in the worst case. In some
instances, both the preconditioners (FSAI and JACOBI) display the so called “su-
perspeedup” with an efficiency larger than 100%. This is likely to be ascribed to
cache effects. Finally it can also be observed that employing the FSAI precondi-
tioner yields a number of iterations and total CPU time which is smaller than using
JACOBI preconditioner, irrespective of the number of processors employed. These
results confirm that FSAI preconditioner with pre and post filtration represents an
efficient and scalable preconditioner for the iterative solution of MLPG models.
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Table 8: Timing results and scaled efficiency for solving problem #2.

Procs iter Tprec Tsol Tp Tp (ms) E(p̄)
p

FSAI(A,ε = 0.05), δ = 0.05 preconditioner
2 750 7.6 151.6 286.2 202.1
4 804 3.9 86.2 154.0 107.2 0.94
8 763 2.0 38.8 72.6 50.9 0.99
16 712 1.0 18.4 35.5 25.8 0.98
32 713 0.7 7.0 15.8 9.8 >1.00
64 742 0.4 3.8 9.3 5.1 >1.00
128 725 0.4 2.2 6.2 3.0 >1.00

JACOBI preconditioner
2 1354 0.031 222.1 349.3 164.0
4 1447 0.015 115.6 179.1 79.89 >1.00
8 1302 0.007 47.7 79.5 36.6 >1.00
16 1273 0.003 26.0 42.1 20.4 1.00
32 1434 0.001 9.5 17.7 6.6 >1.00
64 1336 0.001 4.8 9.7 3.6 >1.00
128 1274 0.001 2.8 6.3 2.2 >1.00

6 Conclusions

An efficient parallel meshless model, based on the MLPG method, is developed for
axi-symmetric poroelastic models. The parallelization strategy allows every pro-
cessor to construct concurrently its local part of the stiffness matrix without any
communication with any other processor. We also developed a preconditioned par-
allel solver based on the BiCGSTAB method for the solution of the linear system
arising from the MLPG discretization. The study carried on in this paper on a class
of approximate inverse preconditioner (FSAI) with various strategies to reduce the
fill in of the preconditioner together with the use of an efficient parallel matrix
vector product, reveal that the FSAI preconditioner can be conveniently used to ac-
celerate the BiCGSTAB method in the solution of MLPG discretization of poroe-
lastic models. In particular, the FSAI preconditioners show their superiority with
respect to the classical and “perfectly parallelizable” JACOBI preconditioner, both
in terms of iteration number and CPU time, irrespective of the number of proces-
sors employed. Therefore, the proposed parallel method reveals a promising tool
for solving large-scale realistic geomechanical problems.
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Table 9: Timing results and scaled efficiency for solving problem #3.

Procs iter Tprec Tsol Tp Tp (ms) E(p̄)
p

FSAI(A,ε = 0.0), δ = 0.1 preconditioner
16 1619 3.3 177.6 266.6 109.7
32 1702 1.9 99.4 144.6 58.4 0.94
64 1491 1.1 44.2 67.4 29.6 0.93
128 1493 0.7 15.9 28.6 10.7 >1.00
256 1363 0.6 8.4 17.5 6.2 >1.00

JACOBI preconditioner
16 2999 0.015 250.3 336.2 83.5
32 3303 0.008 153.6 196.8 46.5 0.90
64 2669 0.008 57.9 80.4 21.7 0.96
128 2881 0.002 21.2 33.6 7.4 >1.00
256 2871 0.001 12.7 21.7 4.4 >1.00

Table 10: Timing results and scaled efficiency for solving problem #4.

Procs iter Tprec Tsol Tp Tp (ms) E(p̄)
p

FSAI(A2,ε = 0.0), δ = 0.1 preconditioner
64 2051 15.4 502.2 704.7 244.9
128 1475 8.2 172.8 277.7 117.2 >1.00
256 1546 4.6 96.7 153.3 62.5 0.98
512 1640 2.9 64.2 99.5 39.1 0.78

JACOBI preconditioner
64 5657 0.02 808.6 994.2 142.9
128 5204 0.02 355.2 449.1 68.3 >1.00
256 5771 0.02 180.2 231.7 31.2 >1.00
512 5841 0.01 80.2 111.1 13.7 >1.00
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