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Vortex Ring Formation within a Spherical Container with
Natural Convection

Gerardo Anguiano-Orozco1,2 and Rubén Avila 3

Abstract: A numerical investigation of the transient, three dimensional, laminar
natural convection of a fluid confined in a spherical container is carried out. Initially
the fluid is quiescent with a uniform temperature Ti equal to the temperature of the
wall of the container. At time t=0, the temperature of the wall is suddenly lowered
to a uniform temperature Tw=0. The natural convection, that conducts to a vortex
ring formation within the sphere, is driven by a terrestrial gravity force (laboratory
gravity) and by the step change in the temperature of the wall. A scaling analy-
sis of a simplified transient, two dimensional model, formulated in the cylindrical
coordinate system, provides a qualitative description of the flow in the spherical
enclosure, from start up (including the three stages of the transient process: bound-
ary layer development, stratification and cooling-down) to the time at which the
system reaches the new thermal equilibrium condition (uniform temperature Tw)
without motion. The governing three dimensional Navier-Stokes equations for an
incompressible fluid, formulated in the Cartesian coordinate system, have been nu-
merically solved by using the h/p spectral element method. The Rayleigh number
is in the range: 1× 103 ≤ Ra ≤ 1.5× 105. The average Nusselt number Nu as
a function of time is evaluated at the wall of the container. The results provided
by the spectral element method are in agreement with the scaling analysis results
for low Ra numbers, Ra ≤ 1× 104. As the Ra number is increased, in the range:
1× 105 ≤ Ra ≤ 1.5× 105, the flow becomes unstable and oscillatory in the strati-
fication stage. The temperature, vorticity and pressure fields for the three stages of
the transient process are presented.
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1 Introduction

Non-steady and three dimensional heat transfer analysis of a fluid confined in
closed containers, has been the subject of a great number of investigations. The
research work aimed to: (i) quantify the heat transfer from the wall of the container
to the fluid (or the reverse), (ii) predict the flow patterns to obtain an optimal heat
transfer rate, or (iii) estimate the map of instabilities of the system, to obtain the
relevant parameters that lead to transition of the flow; have been carried out by
experimental techniques, numerical solutions, instability analysis techniques or by
scaling analysis methods. However the study of the three dimensional, transient
natural convection of a fluid confined in spherical enclosures, has been limited,
even though this system appears frequently in industrial applications and natural
phenomena. In industry the motion by natural convection of a great mass of natural
gas or fuel liquids within spherical reservoirs, is an important mechanical design
parameter, particularly if the container is located in regions where the ambient tem-
perature may change suddenly. In nature, the natural convection of fluids within
spherical enclosures is found in drops, and in the core of stars and planets.

In the literature there are few papers dealing with the subject of non-steady nat-
ural convection in spherical enclosures [Whitley-III and Vachon (1972); Chow
and Akins (1975); Hutchins and Marschall (1989); Zhang, Khodadadi, and Shen
(1999)]. However it is not possible to find a full three dimensional, unsteady numer-
ical analysis of the flow, particularly at high Rayleigh numbers Ra, where the flow
becomes oscillatory with erratic motion [Chow and Akins (1975)]. Whitley-III and
Vachon (1972) carried out a numerical solution of the Navier-Stokes equations for-
mulated in terms of stream function and vorticity. Their simplified two dimensional
axisymmetric model was solved by using the finite difference numerical method.
In their physical model it was assumed that the temperature at the wall of the sphere
was suddenly increased. Their main findings are the following: (i) higher veloc-
ities are located near the wall, (ii) a semi-circular flow pattern is obtained where
the upward heated flow forces the cooler fluid to the lower region of the sphere,
(iii) heat transfer by convection dominates that by conduction, and (iv) in the re-
gion surrounding the bottom, oscillations occur in the temperature field. Chow and
Akins (1975) carried out an experimental investigation of the pseudosteady-sate
natural convection of water contained within spherical containers of different sizes.
The pseudosteady-state condition was reproduced by continuously increasing the
temperature of the external bath surrounding the sphere such that the temperature
difference between the bath and the center of the sphere had a constant value. Flow
patterns, the effect of the Rayleigh number Ra on the location of the circulation
center of the vortex in the sphere, and the heat transfer rate correlation (average
Nusselt number Nu as a function of the Ra number) were reported for the case of
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a sudden increase of the temperature at the wall of the sphere. The main findings
of their research are the following: (i) laminar flow prevails below Ra numbers
of about 1× 107, (ii) at small times after the beginning of the heating the fluid
near the wall moved up along the wall and down in the large central core, (iii) as
the Ra number is increased between 1× 105 and 1× 107, the circulation center
is displaced towards the wall and downward from the horizontal line (along the
equator), and (iv) turbulent flow (or perhaps transitional flow) was found for Ra
numbers greater than 107. At these high Ra numbers they found that the circu-
lation center was initially above the horizontal axis but moved down after a short
time, but after a certain time the fluid at the bottom moved vertically in a swirl and
spread out somewhere near the center, leading to an erratic fluid motion with an
irregular flow pattern. Hutchins and Marschall (1989), carried out a numerical in-
vestigation of the pseudosteady-state natural convection of the fluid inside a closed
spherical container. They solved the two dimensional governing equations (formu-
lated in spherical coordinates and in terms of the stream function and vorticity) by
a finite difference method. The range of the Ra number that they used in their cal-
culations was 1×105 < Ra < 1×108 and the Prandtl number Pr was in the range
0.7 < Pr < 8. A heating condition (at t=0 a step increase of the temperature at the
wall was assumed) of the fluid from the wall was studied. Their main findings are
the following: (i) the circulation moves towards the wall for increasing Ra number,
and (ii) high temperature gradients appear close to the wall in the lower hemi-
sphere, The main drawback of the work carried out by Hutchins and Marschall
(1989) is that their model was two-dimensional and it was not able to reproduce
the experimental data produced by Chow and Akins (1975), in the sense that for
Ra > 1× 107, the flow is oscillatory. Zhang, Khodadadi, and Shen (1999) carried
out a numerical study of the pseudosteady-state natural convection within spherical
containers partially filled with a porous medium. The analysis was very similar
to the investigation previously performed by Hutchins and Marschall (1989). The
governing two dimensional equations formulated in the spherical coordinate sys-
tem and in primitive variables were solved by using the finite-volume method. In
the first part of their paper (system without porous medium), Zhang, Khodadadi,
and Shen (1999), attempted to reproduce the experimental findings previously pub-
lished by Chow and Akins (1975). Their main findings corresponding to the part
without porous medium are the following: (i) at the early stages the dominant heat
transfer mechanism is by conduction, then the flow pattern leads to a temperature
field in which the isotherm lines are concentric circles independent of the polar
angle, (ii) as time elapses, natural convection is dominant and the isotherm lines
become skewed, as the Ra number is increased the degree of skew is higher, and
(iii) the center of the circulation pattern is dependent on the Ra number and moves
towards the wall as Ra increases. The lack of a three dimensional simulation did
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not allow to Zhang, Khodadadi, and Shen (1999) to reproduce the experimental
findings previously reported by Chow and Akins (1975), particularly for the cases
with Ra > 1×107, in which the flow is oscillatory.

In this paper we present a numerical solution of the natural convection of a fluid that
is confined in a spherical enclosure. The non-steady, three dimensional, Boussinesq
governing equations are solved by using the h/p spectral element method. The Ra
numbers taken into account in this study are in the range 1×103 ≤ Ra≤ 1.5×105.
For the low Ra number regime, Ra ≤ 1×104, the flow pattern is two dimensional
and does not present oscillations. However as the Ra number is increased an os-
cillatory behaviour of the flow is observed. For low Ra numbers, the heat transfer
rate at the wall of the sphere (the average Nusselt number Nu) is a monotonic de-
creasing function of time, but at high Ra number, due to the oscillations of the
flow field, the average Nu number, also shows an oscillatory behaviour. In or-
der to understand the whole cooling down process, the transient evolution of the
system is analyzed by performing a scale analysis, which is based in a simplified
transient, two dimensional model that is formulated in the cylindrical coordinate
system. The whole cooling down process has been divided into three stages (i) the
boundary layer development stage, (ii) the stratification stage, and (iii) the cooling
down stage. The vortex ring formation theory, that takes into account the vorticity
field and the circulation in the flow domain, has been used to estimate the charac-
teristic time scales and the amount of entrainment, from the flow adjacent to the
wall towards the core of the sphere. In section 2 the description of the physical
model under study is presented. In section 3 we present the governing equations.
In section 4 we present an overview of the spectral element method that we used
to solve the governing equations. Section 5 shows the process that we follow to
develop the scaling laws, together with the obtained numerical results for the three
stages. A comparison between the numerical solution and the scaling laws results
is also presented in section 5. In section 6 we present a discussion on the general
characteristics of a three dimensional unstable oscillating vortex ring. Finally in
section 7 the concluding remarks are presented.

2 Physical Model

The physical system under study is an initially quiescent incompressible fluid that
is confined in a spherical container. The fluid and the wall of the container are ini-
tially at the same uniform temperature Ti. At time t=0, the temperature of the wall
is suddenly changed to a uniform temperature Tw. In all the cases analyzed in this
paper we have assumed that Ti > Tw. The gravity force acting on the fluid has a con-
stant value and it is oriented along the x3 direction of a Cartesian coordinate system
(see Fig. 1). The temperature gradients that appear in the interior of the fluid due to
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Figure 1: Physical model of the non-steady natural convection in spherical contain-
ers. The origin of the Cartesian coordinate system is located at the centre of the
sphere.

the step change in the temperature of the wall, lead to a time dependent magnitude
of the buoyancy force which promotes the presence of natural convection motion.
The induced convective flow patterns are responsible for the heat transfer process
from the fluid towards the wall. The time that must be elapsed prior the system
attains a new equilibrium condition at some subsequent time, strongly depends on
the flow patterns of the fluid which appear during the transient process from t=0 to
the new equilibrium state.

3 Mathematical model

We assume that the spherical enclosure contains a Newtonian, viscous, incompress-
ible fluid. The physical properties of the fluid remain constant with the exception
of the density whose variation with temperature (linearized over the range of inter-
est, Boussinesq approximation) is taken into account in the buoyancy term of the
momentum equation. In the model it is also assumed that the thermal energy dissi-
pation rate by viscous heating is neglected. By using the following dimensionless
variables (denoted by the use of the superscript ∗):
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x∗j =
x j

R
, v∗j =

Rv j

α
, t∗ =

αt
R2 , T ∗ =

T −T
T i−Tw

, p∗ =
R2 p
ρoα2 , r∗ =

r
R

, (1)

where x j are the Cartesian coordinates (using indicial notation), v j are the veloc-

ities of the fluid, R is the radius of the sphere, r =
(
x2

1 + x2
2 + x2

3
)1/2 is the radial

coordinate of a point in the sphere, α is the thermal diffusivity, t is the time, p is
the pressure, ρo is the reference fluid density, Tw is the temperature of the wall, T i

is the initial average temperature of the fluid and T is the average temperature of
the fluid as a function of time, the dimensionless governing equations are written
as follows (leaving out the superscript ∗):
Continuity equation:

∇ ·v = 0 (2)

Momentum equation:

Dv
Dt

=−∇p+Pr∇
2v+RaPrT i3 (3)

Energy equation:

DT
Dt

= ∇
2T (4)

where Ra is the Rayleigh number at the start up of the transient process which is
defined as

Ra =
βg3∆T R3

να
, (5)

Pr is the Prandtl number Pr = ν/α , the dimensional ∆T = T i−Tw, g3 is the ter-
restrial gravity acceleration (laboratory gravity along the unit base vector i3) and β

is the thermal expansion coefficient. Initially the fluid and the wall of the container
are at the same uniform dimensional temperature Ti = T i, at a certain instant, the
dimensional temperature of the wall is suddenly reduced to a uniform dimensional
temperature Tw. Referring to the dimensionless temperature T , see Eq. (1), at t=0,
the temperature within the sphere is T (x, t = 0) = 0, whereas the temperature at the
wall is T (xw, t = 0) = −1. As time elapses, the dimensionless temperature of the
points within the sphere acquires positive values at the points with higher temper-
ature than the dimensionless instantaneous average value < T > (t), and negative
values at the points with lower temperature than the instantaneous average value
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Figure 2: Spectral element method mesh with 256 non-regular hexahedra macro-
elements with polynomial expansion of order 5. The algorithm used in the genera-
tion of the mesh, includes a central regular hexahedron. The origin of the Cartesian
coordinate system is located at the centre of the sphere, see Fig. 1.

< T > (t). As time t → ∞ the points in the container tend to acquire the tempera-
ture of the wall, hence the instantaneous average temperature < T > (t) also tends
to the temperature of the wall, consequently the dimensionless temperature in the
whole domain (including the points at the wall) tends to zero, see Eq. (1). At the
solid wall, r = R, it is assumed a no slip boundary condition, hence v = 0. In this
investigation the Prandtl number was fixed to one, whereas the Ra number, at the
beginning of the transient process, was varied in the range 1×103 < Ra < 1.5×105.
The dimensional values of the radius of the sphere R, temperature of the wall Tw and
thermo-physical properties were selected as follows: R = 1 m, Tw = 0oC, ρo = 1
kg/m3, α = 1 m2/s, βg3 =−0.01 m/K s2, specific heat capacity Cp=1 J/kg K, ther-
mal conductivity k = 1 W/m K and kinematic viscosity ν = 1 m2/s.

4 Numerical method

The set of Eqs. (2)-(4) has been solved by using the h/p spectral element method
[Patera (1984); Rønquist (1988); Karniadakis and Sherwin (1999)]. This method-
ology is a special case of the method of weighted residuals which leads to the
Bubnov-Galerkin formulation (the expansion functions used to approximate the
dependent variables, are the same as the weight functions). Using the spectral ele-
ment method, the computational domain is subdivided into large non-overlapping,
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non-regular hexahedra (structured mesh), isoparametric macro-elemental regions
(h-element size). Inside them, high order piecewise polynomial expansions (p-
polynomial order) are defined. The spectral element method uses a polynomial
nodal expansion based on Lagrange polynomials, which are associated with a set
of nodal points that are located at the zeros of the Gauss-Lobatto-Legendre poly-
nomials. The numerical quadrature is performed using a Gauss-Lobatto-Legendre
quadrature rule, which corresponds to the same choice of the nodal points. Details
of the numerical algorithm for the solution of the fluid equations are reported by
Rønquist(1988), and Karniadakis and Sherwin(1999). The spectral element method
has been successfully used to solve fluid dynamics problems as well as problems
in different fields of science and technology [Avila and Solorio (2009); Mitra and
Gopalakrishnan (2006); Wu, Liu, Scarpas, and Ge (2006); Wu, Al-Khoury, Kasber-
gen, Liu, and Scarpas (2007)]. In order to increase the performance of the spectral
element method, very recently it has been successfully combined with numerical
algorithms such as the fictitious domain approach and the Least-Squares method
[Parussini (2007); Parussini and Pediroda (2007)]. After performing several tests
to reach mesh independent results, we decided to discretize the three dimensional
computational domain by using 256 non-regular hexahedra spectral elements with
a piecewise polynomial expansion of order 5. Fig. 2 shows the numerical mesh.
Notice that by using non-regular hexahedra with straight sides to generate the ge-
ometry of the container, it is not possible to obtain a perfect spherical shape. In
order to approximate more accurately the spherical geometry we discretized the
computational domain by using grids with 500 and 720 elements, with polynomial
expansions of order 5. However as the number of elements is increased, the com-
puter time required to solve the governing equations is considerably higher, on the
other hand the results obtained with the 256 elements grid, were very similar to
those results obtained with the 720 elements grid. The accuracy of the solution was
not substantially increased probably because the numerical algorithm used to gen-
erate the grid requires, as a restriction, to have an hexahedron located at the centre
of the sphere. From the central hexahedron the algorithm distributes the macro-
elements within the sphere. In this research we use a container with dimensional
radius R = 1 m, then the volume of the sphere is V = 4.188 m3. The mean radius
R and volume V̂ of the quasi-sphere shown in Fig. 2 (calculated by taking into
account the Gauss-Lobatto-Legendre points located at the surface) are: R = 0.985
m, and V̂ = 4.1284 m3, respectively. A remark can be given at this point. The au-
thors want to mention that one of the advantages of using the Navier-Stokes equa-
tions formulated in the Cartesian coordinate system for the solution of problems
with spherical geometry, is that we are able to avoid the singularity that appears at
the poles of the sphere ("pole singularity"). It is well known that this singularity
appears when the governing equations are formulated in the spherical coordinate
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system. On the other hand, the drawback of using a mesh based numerical method
(for the solution of the equations formulated in the Cartesian coordinate system) is
that we have to discretize the domain by using non-regular hexahedra, which leads
to a non-exact representation of the spherical domain. This can produce errors in
the numerical solution of the fluid variables. Such limitation can be overcome by
using numerical techniques which are under development in the area of fluid dy-
namics. These numerical algorithms are based on a meshfree approach, an example
of this methodology is the Meshless Local Petrov-Galerkin (MLPG) method [Lin
and Atluri (2000); Lin and Atluri (2001); Atluri, Han, and Rajendran (2004); Avila
and Pérez (2008)]. Using meshfree numerical algorithms, the solution of spheri-
cal problems formulated in the Cartesian coordinate system may be reduced to the
proper location of MLPG particles (or nodes) within and at the wall of the spherical
cavity. Using the MLPG method we would be able to overcome simultaneously the
two difficulties: (i) the singularities at the poles and (ii) the accurate representation
of the spherical container.

5 Scaling analysis

In this section, scaling laws will be developed for the relevant parameters char-
acterizing the non-steady flow behaviour within the sphere. Scaling analysis has
been used as an effective and easy-to-use tool to understand the transient process
of cooling an initially homogeneous fluid by natural convection in vertical circu-
lar cylinders and in rectangular cavities [Patterson and Imberger (1980); Armfield,
Patterson, and Lin (2007); Lin and Armfield (2005)]. In this investigation we apply
the scaling analysis for two reasons: (i) to obtain scaling laws for the basic flow
features (such as velocity, thermal boundary layer thickness, and heat transfer rate)
that appear when an initially quiescent fluid at a uniform dimensional temperature
Ti is cooled by imposing a lower dimensional temperature Tw (Ti > Tw) on the wall
of the spherical container, and (ii) to obtain the formation time of the vortex ring
within the sphere and to estimate the rate of the entrainment of the cold flow adja-
cent to the wall, into the core of the vortex ring. Similarly to the scaling analysis
carried out by Lin and Armfield (2005), we assume that the flow within the sphere
is dominated by three different stages of development: (i) the boundary layer stage,
(ii) the stratification stage, and (iii) the cooling-down stage. In the scaling analysis,
we have assumed that the flow is laminar and axisymmetric, hence the analysis is
performed in the plane r-θ of the cylindrical coordinate system. The axisymmetric
assumption was considered because in the numerical simulations for the cases with
initial Rayleigh number Ra < 1×104, the flow behaves as two-dimensional, hence
the scaling analysis in the plane r-θ is fully justified. However for the cases with
initial Rayleigh number Ra = 1× 105 and Ra = 1.5× 105, the non-steady flow in



226 Copyright © 2009 Tech Science Press CMES, vol.49, no.3, pp.217-253, 2009

Figure 3: Average Nusselt number Nu as a function of time. Initial Rayleigh num-
ber Ra: (A) Ra = 1×103, (B) Ra = 1×104, (C) Ra = 1×105, (D) Ra = 1.5×105.
(a) Nu of the upper hemisphere, (b) Nu of the lower hemisphere. and (c) Nu of the
whole sphere.

the boundary layer and cooling-down stages behaves as two dimensional. But in
the stratification stage we have observed an oscillatory, unstable behaviour of the
flow field. Hence the scaling analysis is not valid in the stratification stage for these
particular cases (Ra = 1×105 and Ra = 1.5×105).

For the scaling analysis, the governing equations are the Navier-Stokes equations
formulated in the cylindrical coordinate system. Scaling laws will be obtained for
the dimensional parameters: (i) angular velocity uθ , (ii) the thermal boundary layer
thickness δT , and (iii) the start up time t. Additionally the scaling law for the local
Nusselt number Nu will be developed. The variables defined in Eq. (1) are used to
obtain the dimensionless values of uθ , δT and the start up time t.

The dimensional governing equations are the following:

Continuity equation
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Figure 4: Numerical simulation of the dimensionless temperature contours. The
boundary layer development stage: Top row, from left to right: t = 0.01, (-
0.63,0.36); t = 0.02, (-0.57,0.42) and t = 0.03, (-0.52,0.47). The stratification
stage: Middle row, from left to right: t = 0.06, (-0.39,0.51); t = 0.1, (-0.25,0.41)
and t = 0.14, (-0.15,0.27). The cooling-down stage: Bottom row, from left to right:
t = 0.2, (-0.08,0.14); t = 0.3, (-0.02,0.04) and t = 0.4, (-0.01,0.016). For initial
Rayleigh number Ra = 1×103.
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Energy equation

∂T
∂ t

+ur
∂T
∂ r

+
uθ

r
∂T
∂θ

=
α

r
∂

∂ r

(
r

∂T
∂ r

)
+

α

r2
∂ 2T
∂θ 2 (8)

Figure 5: Numerical simulation of the dimensionless temperature contours. The
boundary layer development stage: Top row, from left to right: t = 0.004, (-
0.72,0.28); t = 0.008, (-0.65,0.34) and t = 0.01, (-0.63,0.36). The stratification
stage: Middle row, from left to right: t = 0.02, (-0.57,0.42); t = 0.04, (-0.38,0.57)
and t = 0.06, (-0.25,0.37 ). The cooling-down stage: Bottom row, from left to right:
t = 0.1, (-0.13,0.22); t = 0.2, (-0.03,0.06) and t = 0.4, (-0.003,0.006). For initial
Rayleigh number Ra = 1×104.

5.1 Boundary layer development stage

At small times heat will be conducted out of the fluid creating a descending spher-
ical boundary layer of thickness O(δ t) which is governed by Eq. (8). Additionally
at small times, the velocity field is not fully developed hence the convective terms
of Eq. (8) are small, therefore there is a balance between the temporal term and the
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Figure 6: Numerical simulation of the dimensionless temperature contours. The
boundary layer development stage: Top row, from left to right: t = 0.001, (-
0.83,0.16); t = 0.002, (-0.78,0.21) and t = 0.003, (-0.74,0.25). The stratification
stage: Middle row, from left to right: t = 0.017, (-0.46,0.63); t = 0.025, (-0.45,0.75)
and t = 0.038, (-0.25,0.67). The cooling-down stage: Bottom row, from left to
right: t = 0.06, (-0.14,0.43); t = 0.2, (-0.007,0.015) and t = 0.4, (-0.0006,0.001).
For initial Rayleigh number Ra = 1.5×105.

conductive term along the radial direction, then we have:

δT = (αt)1/2 (9)

During the start up stage, the buoyancy forces accelerate the fluid, then it may be
assumed that the dominant balance at a certain position Rθ from the upper pole
of the sphere (and for Pr ≥ 1), is that between the buoyancy and viscous forces.
Then from the momentum equation along the angular direction θ (see Eq. (7)), we
can obtain a relationship for the boundary layer angular velocity during the start up
stage as

uθ ∼
βgθ

(
T i−Tw

)
ν

δ
2
T (10)
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Using Eq. (9) into Eq. (10) we have

uθ ∼
βg3 sinθ

(
T i−Tw

)
Pr

t (11)

where gθ = g3 sinθ , is the gravity force component acting along the θ direction (as
a function of the θ angle from the upper pole). As time elapses the boundary layer
will continue to grow until the heat conducted out through the wall is balanced
by that convected by the fluid motion towards the wall of the sphere. Balancing
these terms in the energy equation will yield a scaling for the time to reach the
conduction-convection balance:

uθ

r
∂T
∂θ
∼ α

r
∂

∂ r

(
r

∂T
∂ r

)
(12)

by substituting Eq. (11) into Eq. (12) we obtain

tb ∼

(
νRθ

αβg3 sinθ
(
T i−Tw

))1/2

∼ (Rθ)2

α

1

Ra1/2
θ

(13)

where Raθ is the Rayleigh number based on the position Rθ from the upper pole,
Raθ = βg3 sinθ

(
T i−Tw

)
(Rθ)3 /να . Eq. (13) provides the time tb at which the

conduction-convection balance is attained (for a certain angular position at the wall
Rθ , and for a given initial Rayleigh number Raθ ). Once tb is calculated, it is possi-
ble to evaluate the boundary layer thickness δT,b as (see Eq. (9)):

δT,b ∼
Rθ

Ra1/4
θ

(14)

and the angular velocity uθ ,b as (see Eq. (11)):

uθ ,b ∼
α

(Rθ)
Ra1/2

θ
(15)

The heat transfer (at the position Rθ ) across the spherical wall is represented by the
local Nusselt number Nu, which is defined as

Nu =
hR
k

, (16)
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where the local convective heat transfer coefficient h is defined as

h =
(

k
T i−Tw

∂T
∂ r

)
r=R

. (17)

Therefore, during the start up stage, the local Nusselt number can be written as

Nu∼ R
δT
∼ R

(αt)1/2 , (18)

hence in the conduction-convection balance stage we have

Nub ∼
R

δT,b
(19)

The results obtained by the numerical simulation (carried out in a Cartesian coor-
dinate system) and by the scaling analysis (performed in a cylindrical coordinate
system), for different initial Ra numbers in the range 1× 103 ≤ Ra ≤ 1.5× 105,
in which we have observed in the boundary layer development stage a two dimen-
sional behaviour, will be presented. The results of the scaling analysis for four
different initial Ra numbers are shown in Tab. 1. The dimensionless parameters tb,
δT,b, uθ ,b, and Nub (evaluated at θ = π/2), have been obtained by using Eqs. (13),
(14), (15) and (19) respectively and the variables defined in Eq. (1).

Table 1: Dimensionless scaling analysis results (at θ = π/2) for the boundary layer
development stage. tb see Eq. (13), δT,b see Eq. (14), uθ ,b see Eq. (15), Nub see
Eq. (19), to see Eq. (22) and u/2 see Eq. (24).

Ra Raθ tb to δT,b uθ ,b u/2 Nub
103 3875.7 0.039 0.031 0.19 39.6 31.6 5
104 38757.8 0.012 0.01 0.11 125.3 100 9
105 387578.4 0.0039 0.0031 0.062 396.3 316.2 16

1.5E105 581367.6 0.0032 0.0025 0.056 485.4 387.2 17.8

Fig. 3 shows the average Nusselt number Nu, evaluated at the wall of the container,
as a function of time. We present for each case under study (see Tab. 1) three
curves. The upper curve (a) is the Nun evaluated on the north (upper) hemisphere.
The lower curve (b) represents the Nus evaluated on the south (lower) hemisphere.
And the middle curve (c) corresponds to the Nuw evaluated on the whole spher-
ical wall. For the case with initial Rayleigh number 1× 103 (see Fig. 3A), the
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three curves overlap for dimensionless time t ≤ 0.03. The explanation of this be-
haviour is that at t ≤ 0.03, the flow patterns in both hemispheres is the same. This
condition can only be valid when the diffusion terms are dominant and the flow
remains adjacent to the wall (there is no entrainment of the cold fluid adjacent to
the wall towards the hot fluid in the core, see Sec. 5.2), hence at small times we
have the boundary layer development stage. It is observed that at tb ≈ 0.03, the
Nun ≈ Nus ≈ Nuw = Nu ≈ 3.3, which is in qualitative agreement with the scaling
analysis results (see Tab. 1). It has to be mentioned that in the scaling analysis
we have calculated the local Nu at the angular position θ = π/2, which is the
maximum local Nu number at the spherical wall, whereas in Fig. 3 we report the
average Nusselt number Nu. In terms of scaling analysis we may conclude that this
is qualitatively valid, because we only want to consider the order of approximation
between the scaling laws and the numerical simulations. Fig. 3A also shows that
for times t ≥ 0.03, begins the separation between the Nun and Nus curves. It is
seen that for times t ≥ 0.03, the negative slope of the Nun curve is reduced, and at a
certain time t ≥ 0.07 the slope becomes positive, afterwards the Nun curve attains
a maximum value at t ≈ 0.14. On the other hand, it is clearly observed that the
Nus curve always decreases, this behaviour of the heat transfer at the wall, is the
effect of two phenomena occurring in the south hemisphere: (i) the velocity of the
flow is reduced and (ii) the mass of fluid is reduced due to the stratification of the
cavity (by the entrained cold fluid adjacent to the wall in the region surrounding
the equator). Therefore we may conclude that in the time interval 0.03≤ t ≤ 0.14,
we have the stratification stage (which will be explained in Sec. 5.2). Fig. 3A
shows that for times t ≥ 0.14, the Nusselt numbers Nun and Nuw continuously de-
crease, which means that the dimensional average instantaneous temperature T (t)
is diminishing (tending to the dimensional value of the wall Tw) and the buoyancy
force is continuously reduced (cooling-down stage, see Sec. 5.3). A similar de-
scription can be given for the other cases shown in Fig. 3. When Ra = 1×104 (see
Fig. 3B), the boundary layer development stage ends at tb ≈ 0.01, with an average
Nusselt number Nu≈ 6.4, which is in qualitative agreement with the scaling anal-
ysis results (see Tab. 1). The stratification stage is in the interval 0.01 ≤ t ≤ 0.06,
and the cooling-down stage begins at t ≈ 0.06. When Ra = 1×105 (see Fig. 3C),
the boundary layer development stage ends at tb ≈ 0.004, with an average Nusselt
number Nu ≈ 9.2, which is in qualitative agreement with the scaling analysis re-
sults (see Tab. 1). The stratification stage is in the interval 0.004≤ t ≤ 0.046 (with
an oscillatory behaviour), and the cooling-down stage begins at t ≈ 0.046. Sim-
ilarly when Ra = 1.5× 105 (see Fig. 3D), the boundary layer development stage
ends at tb ≈ 0.003, with an average Nusselt number Nu ≈ 10.5, which is in qual-
itative agreement with the scaling analysis results (see Tab. 1). The stratification
stage is in the interval 0.003 ≤ t ≤ 0.036 (with an oscillatory behaviour), and the



Vortex Ring Formation within a Spherical Container 233

cooling-down stage begins at t ≈ 0.036.

Fig. 4 shows the dimensionless isotherm lines (see Eq. (1)) for the three stages
when the initial Rayleigh number is Ra = 1× 103. Panels on the top row show
the boundary layer development stage (at t = 0.01, t = 0.02 and t = 0.03). Panels
on the middle row show the stratification stage (at t = 0.06, t = 0.1 and t = 0.14).
And panels on the bottom row show the cooling-down stage (at t = 0.2, t = 0.3
and t = 0.4). The meridional plane shown in Fig. 4 (and in the whole set of figures
presented in this paper) corresponds to the plane whose normal unit vector is i1 (the
first base unit vector of the Cartesian coordinate system). In each of the figures, we
have plotted twenty nine dimensionless isotherm lines equally spaced between the
minimum and the maximum values of the temperature field. These values are writ-
ten within the round brackets in the caption of each figure. An additional isotherm
line is plotted in bold line, this isotherm represents the instantaneous dimensionless
average temperature < T >= 0, which has been obtained by taking the average of
the dimensionless temperatures of the fluid in the sphere (see Eq. (1)). Accord-
ing to the definition of both; the buoyancy term and the dimensionless temperature
(see Eqs. (3) and (1), respectively), the instantaneous dimensionless average tem-
perature < T >= 0 defines the boundary between the hot (buoyant) fluid and the
cold (descending) fluid. Notice that in the boundary layer development stage, the
isotherm lines are located adjacent to the cooled wall. And because the motion
of the fluid is mainly confined in the boundary layer (the diffusion effect is domi-
nant), the isotherm lines remain as concentric spheres. It is seen that at the end of
the boundary layer development stage (at time tb = 0.03), the hot fluid is confined
within an imaginary spherical enclosure, and it is surrounded by a mass of cold
fluid that is enclosed in an imaginary spherical gap. In order to compare the numer-
ical simulations with the scaling analysis, concerning the boundary layer thickness,
we have taken as the characteristic length scale of δT,b, the location of the instanta-
neous average temperature < T >= 0 within the flow domain. Fig. 4 (top row right
panel) shows that the average temperature < T >= 0 at tb = 0.03 defines a sphere
with radius Rb ≈ 0.75, hence the boundary layer thickness is δT,b ≈ 0.25, which is
of the same order of magnitude as the one calculated by the scaling analysis (see
Tab. 1). The stratification (middle row) and cooling-down (bottom row) stages will
be discussed in Secs. 5.2 and 5.3, respectively.

Fig. 5 shows the isotherm lines for the three stages when the initial Rayleigh num-
ber is Ra = 1× 104. The panels on the top row correspond to the boundary layer
development stage at t = 0.004, t = 0.008 and t = 0.01. It can be seen that the loca-
tion of the instantaneous average temperature < T >= 0 at tb = 0.01 (top row right
panel), resembles an imaginary sphere with radius Rb ≈ 0.8, therefore the bound-
ary layer thickness calculated by the numerical simulation is δT,b ≈ 0.2, which is
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also of the same order of magnitude as the one calculated by the scaling analysis
(see Tab. 1). Fig. 6 shows the isotherm lines for the three stages when the initial
Rayleigh number is Ra = 1.5× 105. The panels on the top row correspond to the
boundary layer development stage at t = 0.001, t = 0.002 and t = 0.003. It can
be seen that the location of the average temperature < T >= 0 at tb = 0.003 (top
row right panel), resembles an imaginary sphere with radius Rb ≈ 0.91, therefore
the boundary layer thickness calculated by the numerical simulation is δT,b ≈ 0.09,
which is also of the same order of magnitude as the one calculated by the scaling
analysis (see Tab. 1).

Figure 7: Stream lines at the end of the the boundary layer development stage. Left
panel Ra = 1×103 at tb = 0.03, middle panel Ra = 1×104 at tb = 0.01 and right
panel Ra = 1.5×105 at tb = 0.003.

5.2 Stratification stage

After the conduction-convection balance stage is attained, we have a spherical vol-
ume of hot fluid that is surrounded by a spherical gap of cold fluid (see Figs. 4-6).
Fig. 7 shows (at the end of the boundary layer stage at tb) the instantaneous stream-
lines for three initial Ra numbers: Ra = 1×103, Ra = 1×104 and Ra = 1.5×105.
It is clearly observed that the instantaneous stream lines in the sphere resemble a
spherical vortex ring, which has been the subject of numerous studies [Griffiths
and Campbell (1990), Lundgren and Mansour (1991), Lundgren, Yao, and Man-
sour (1992), Shusser and Gharib (2000), Rogers and Morris (2005)]. Shusser and
Gharib (2000) (and references therein) pointed out that one way to produce a vortex
ring is by releasing a lighter (or heavier) fluid into a different ambient fluid. In this
case the energy required for the vortex ring formation is provided by the action of
the buoyancy force. This ring is called a buoyant vortex ring. If the buoyancy is
confined to a limited volume of fluid (as is the subject of this paper) the physical
situation is known as a buoyant thermal. Shusser and Gharib (2000) putted forward
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Figure 8: Dimensionless circulation Γ (within the meridional plane whose unit
normal is i1) as a function of time. Initial Rayleigh number Ra: (A) Ra = 1×103,
(B) Ra = 1×104, (C) Ra = 1×105, (D) Ra = 1.5×105.

the hypothesis that the process of buoyant vortex ring formation consists of two
stages: (i) the continuous creation of the circulation and formation of the vortex ring
(boundary layer development stage), and (ii) the growth of the vortex ring due to
the accumulation of the generated circulation (stratification stage). By conducting
experimental and numerical investigations of the vortex ring formation in buoyant
thermals (downbursts), Lundgren, Yao, and Mansour (1992), estimated the char-
acteristic time scale for buoyant vortex ring formation to. In their formulation of
a simple mathematical model for an idealized microburst, they neglected diffusion
between the heavier (the downburst) and the lighter surrounding fluid, therefore
along the vortex ring formation process, a sharp density discontinuity across the
separating interface was always present. By assuming the Boussinesq approxima-
tion they obtained the following dimensional vortex ring formation characteristic
time scale
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to =
(

Rρ

g3∆ρ

)1/2

(20)

where ∆ρ = ρo−ρ , and ρ is the density of the fluid in the vortex ring. If we use
the Boussinesq approximation ∆ρ ∼ ρβ∆T , and substituting this expression in Eq.
(20), we have

to ∼
(

Rρ

g3ρβ∆T

)1/2

(21)

By using in Eq. (21) the definition of the Ra number given by Eq. (5) and by
assuming a Prandtl number Pr=1, we obtain the expression

to ∼
R2

α

1
Ra1/2 , (22)

which is of the same order of magnitude as Eq. (13), therefore to ∼ tb. Tab. 1
shows the comparison between the dimensionless vortex ring formation character-
istic time scales tb and to, it is observed that the agreement is satisfactory. Re-
garding the characteristic velocity of a buoyant vortex ring that moves within a
surrounding fluid at rest, it is supposed that due to the action of the viscous shear
stresses, the outer layer of the vortex will induce motion to the inner layers. Shusser
and Gharib (2000) pointed out that the characteristic velocity of the buoyant ring
must be defined as the velocity u acquired by the thermal after it has travelled one
characteristic length (the diameter of the thermal). They defined the characteristic
dimensional velocity u as

u = (4g3R∆ρ/ρ)1/2 (23)

Again by using in Eq. (23), the Boussinesq approximation, the definition of the
Ra number (see Eq. (5)) and assuming a Prandtl number Pr=1, we arrive at the
following expression:

u =
2α

R
Ra1/2 (24)

which is also of the same order as Eq. (15). Notice that Eq. (24), includes the factor
2, because it takes into account that the characteristic length scale of the buoyant
vortex ring is its diameter, hence we may write u/2 ∼ uθ ,b. Tab. 1 also shows the
comparison between the characteristic dimensionless velocity of a buoyant vortex
and the local dimensionless velocity scale uθ ,b obtained by the scaling analysis (re-
member that the variables introduced in Eq. (1) are used to obtain the dimensionless
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parameters shown in Tab. 1). The difference in the values is mainly because the ve-
locity scale proposed by Shusser and Gharib (2000) is an average value, whereas
uθ ,b is a local velocity evaluated at the angle π/2 from the north pole. Therefore
we may conclude that we have a successful agreement. Rosenfeld, Rambod, and
Gharib (1998) carried out a numerical investigation to study the formation process,
the evolution of the circulation, and the determination of the formation time scale
(the formation number) of laminar axisymmetric vortex rings. They pointed out
that the formation number is indicative of the time at which a vortex ring attains its
maximum circulation. Fig. 8 shows the effect of the initial Rayleigh number Ra on
the evolution of the circulation Γ of the vortex ring. The dimensionless circulation
Γ shown in Fig. 8 was calculated as Γ = Γm/(uθ R), where the dimensional uθ has
been evaluated at the end of the boundary layer stage, and at θ = π/2, see Tab. 1,
and Γm is the dimensional circulation which is calculated as

Γm =
∫

S
|ω̂1|ds = |ω̂1|Am, (25)

where |ω̂1| is the mean value of the magnitude of the dimensional vorticity compo-
nent ω̂1 within the plane whose unit normal is i1 (see Figs. 9 and 11 in which the
dimensionless vorticity ω1 is presented), and the dimensional surface of the plane
is: Am = πR2.

Table 2: Maximum dimensionless circulation Γmax and dimensionless time tm at
which the maximum value is attained see Fig. 8. Dimensionless time tp at which
initiates the first positive slope of the average Nusselt number Nu see Fig. 3.

Ra Γmax tm tp

103 0.32 0.072 0.07
104 0.61 0.035 0.025
105 1.03 0.012 0.01

1.5E105 1.16 0.01 0.008

Tab. 2 shows the maximum dimensionless circulation Γmax, the dimensionless time
tm at which Γmax is attained (the formation number) and the dimensionless time tp at
which initiates the first positive slope of the average Nusselt number Nu, see Fig. 3.
We may conclude that the time at which the maximum circulation is attained (the
formation number), is closely related with the time at which the average Nusselt
number Nu has the first positive slope (see Fig. 3). This is indicative of the intensity
of motion within the sphere, which allows an increase of the heat transfer process.

In order to study the transient flow behaviour within the spherical container in the
stratification stage, but in terms of the buoyant vortex ring theory, we take into ac-
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Figure 9: Numerical simulation of the dimensionless ω1 vorticity contours. The
the boundary layer development stage: Top row, from left to right: t = 0.004,
[(x2 = −0.96, x3 = −0.19, ω1 = −269.4), (x2 = 0.96, x3 = −0.19, ω1 = 269.4)];
t = 0.008, [(x2 = −0.96, x3 = 0.19, ω1 = −345.8), (x2 = 0.96, x3 = 0.19, ω1 =
345.8)] and t = 0.01, [(x2 =−0.96, x3 = 0.19, ω1 =−369.9), (x2 = 0.96, x3 = 0.19,
ω1 = 369.9)]. The stratification stage: Middle row, from left to right: t = 0.02,
[(x2 = −0.96, x3 = 0.19, ω1 = −442.0), (x2 = 0.96, x3 = 0.19, ω1 = 442.0)]; t =
0.04, [(x2 =−0.81, x3 = 0.54, ω1 =−524.2), (x2 = 0.81, x3 = 0.54, ω1 = 524.2)]
and t = 0.06, [(x2 =−0.81, x3 = 0.54, ω1 =−369.2), (x2 = 0.81, x3 = 0.54, ω1 =
369.2)]. The cooling-down stage: Bottom row, from left to right: t = 0.1, [(x2 =
−0.81, x3 = 0.54, ω1 = −180.6), (x2 = 0.81, x3 = 0.54, ω1 = 180.6)]; t = 0.2,
[(x2 = −0.81, x3 = 0.54, ω1 = −54.3), (x2 = 0.81, x3 = 0.54, ω1 = 54.3)] and
t = 0.4, [(x2 = −0.39, x3 = 0.18, ω1 = −6.8), (x2 = 0.39, x3 = 0.18, ω1 = 6.8)].
For initial Rayleigh number Ra = 1×104.

count three concepts: (i) the spherical vortex ring bubble, which has been studied
by Lundgren, Yao, and Mansour (1992), (ii) the formation of a vortex ring that is
confined within the head of a buoyant laminar starting plume, which has been inves-
tigated by Rogers and Morris (2009), and (iii) the modification of the spatial distri-
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Figure 10: Numerical simulation of the dimensionless pressure contours. The
boundary layer development stage: Top row, from left to right: t = 0.004, [(x2 =
0.0, x3 = −0.89, p = −1619.3), (x2 = 0.0, x3 = 0.89, p = 1664.4)], t = 0.008,
[(x2 = ±0.05, x3 = −0.88, p = −1631.8), (x2 = 0.0, x3 = 0.89, p = 1877.1)]
and t = 0.01, [(x2 = ±0.05, x3 = −0.88, p = −1513.7), (x2 = 0.0, x3 = 0.89,
p = 1920.2)]. The stratification stage: Middle row, from left to right: t = 0.02,
[(x2 = ±0.18, x3 = −0.39, p = −968.1), (x2 = 0.0, x3 = 0.89, p = 2247.2)], t =
0.04, [(x2 =±0.59, x3 =−0.04, p =−1001.7), (x2 = 0.0, x3 = 0.89, p = 3753.1)]
and t = 0.06, [(x2 = ±0.58, x3 = −0.12, p = −641.1), (x2 = 0.0, x3 = 0.89,
p = 2575.4)]. The cooling-down stage: Bottom row, from left to right: t = 0.1,
[(x2 =±0.39, x3 =−0.18, p =−302.0), (x2 = 0.0, x3 = 0.89, p = 1166.1)], t = 0.2,
[(x2 =±0.3, x3 =−0.15, p =−72.1), (x2 = 0.0, x3 = 0.89, p = 293.5)] and t = 0.4,
[(x2 = 0.0, x3 = −0.3, p = −8.2), (x2 = 0.0, x3 = 0.79, p = 14.3)]. For initial
Rayleigh number Ra = 1×104.

bution of vorticity that allows the manipulation of the net volume of fluid entrained
by the vortex ring, which has been investigated by Dabiri and Gharib (2004) and
Dabiri (2006). Based on these concepts, firstly, we assume that the surface tension
of the spherical bubble (our container) has an infinite value, therefore the bubble
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will not be deformed by the interaction with the surrounding fluid (pressure differ-
ence) [Lundgren, Yao, and Mansour (1992)]. Secondly the fluid confined within
our infinite surface tension bubble, has no mixing with the surrounding fluid, there-
fore the fluid within the bubble, behaves itself as an isolated vortex ring confined
in a compact structure of spherical shape. And thirdly by modifying the vorticity
distribution of the vortex ring via the variation of the initial Rayleigh number Ra,
the diffusive mechanism of the ambient fluid entrainment may be altered [Dabiri
and Gharib (2004); Dabiri (2006)]. It should be noted that the physical model of
this investigation; a spherical vortex ring confined in a compact structure that does
not allow the free growth of the vortex, can be considered as a limit case of the
investigation carried out by Dabiri and Gharib (2004).

Figs. 4-6 and 7, show that at the end of the boundary layer development stage we
have a vortex ring with the shape of a spherical hot bubble, surrounded by cold
mass of the same fluid. Fig. 4 shows that in the stratification stage (middle row),
the entrainment of cold fluid from the wall region, confines the hot fluid in the
upper part of the sphere. Note that due to the small velocity of the upward flow
in the core, the isotherm lines are not deformed (they remain as circles). Fig. 5
shows that in the stratification stage (middle row), the entrainment of cold fluid,
confines the hot fluid in the upper part of the sphere. Due to the high velocity of
the upward flow in the core, the isotherm lines become skewed. Note the increase
of the temperature gradient (heat transfer rate) at the wall of the upper hemisphere,
however in the lower hemisphere the heat transfer is reduced due to the stratification
process. Fig. 6 shows that in the stratification stage (middle row), the entrainment
of the cold fluid leads to an erratic and oscillatory motion of the fluid. In the left
panel t = 0.02, the flow in the core is upwards, whereas in the central panel t = 0.04,
the flow in the core is downwards, and in the right panel t = 0.06, the flow in the
core again is upwards. Due to the high velocity of the entrained fluid, the isotherm
lines are skewed. Note the high temperature gradient in the region surrounding the
north pole, however the heat transfer rate in the lower hemisphere is reduced.

Maxworthy (1972) developed a simple mechanistic theory to model the entrain-
ment of fluid into stable vortex rings. In his experimental investigation, he observed
the following behaviour: (i) the surrounding fluid is entrained into the vortex dur-
ing its formation, (ii) the vorticity in the vortex is not distributed linearly along the
radial direction, (iii) the vorticity distribution has a distinctly smaller slope close to
and at the symmetry axis than near the surface of the vortex ring, and (iv) the vor-
ticity was not concentrated in a thin core. Figs. 9 and 11 show (for the cases with
Ra = 1×104 and Ra = 1.5×105) the dimensionless vorticity field in the meridional
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Figure 11: Numerical simulation of the dimensionless ω1 vorticity contours. The
boundary layer development stage: Top row, from left to right: t = 0.001, [(x2 =
−0.98, x3 = 0.06, ω1 =−2408.6), (x2 = 0.98, x3 = 0.06, ω1 = 2408.6)], t = 0.002,
[(x2 =−0.96, x3 =−0.19, ω1 =−3158.8), (x2 = 0.96, x3 =−0.19, ω1 = 3158.8)]
and t = 0.003, [(x2 =−0.96, x3 =−0.19, ω1 =−3663.7), (x2 = 0.96, x3 =−0.19,
ω1 = 3663.7)]. The stratification stage: Middle row, from left to right: t = 0.017,
[(x2 =−0.98, x3 =−0.06, ω1 =−4714.1), (x2 = 0.98, x3 =−0.06, ω1 = 4714.1)],
t = 0.025, [(x2 = −0.74, x3 = 0.65, ω1 = −3524.9), (x2 = 0.74, x3 = 0.65, ω1 =
3524.9)] and t = 0.038, [(x2 =−0.81, x3 = 0.54, ω1 =−3040.9), (x2 = 0.81, x3 =
0.54, ω1 = 3040.9)]. The cooling-down stage: Bottom row, from left to right:
t = 0.06, [(x2 = −0.74, x3 = 0.65, ω1 = −1853.2), (x2 = 0.74, x3 = 0.65, ω1 =
1853.2)], t = 0.2, [(x2 = −0.81, x3 = 0.54, ω1 = −168.7), (x2 = 0.81, x3 = 0.54,
ω1 = 168.7)] and t = 0.4, [(x2 =−0.37, x3 = 0.27, ω1 =−16.1), (x2 = 0.37, x3 =
0.27, ω1 = 16.1)]. For initial Rayleigh number Ra = 1.5×105.

plane whose unit normal vector is i1;

ω1 =
(

∂v3

∂x2
− ∂v2

∂x3

)
. (26)

In each panel of the figures, we have plotted twenty nine dimensionless iso-contours
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of vorticity equally spaced between the minimum and the maximum values of the
ω1 field. The minimum and maximum values of ω1 as well as the position where
they take place, are written within the round brackets in the caption of each figure.
Note that the ω1 values on the right hand side of the meridional plane are positive
(clockwise rotation), whereas on the left hand side they are negative (counterclock-
wise rotation). The panels on the top row of Fig. 9 show the ω1 contours in the
boundary layer development stage (t = 0.004, t = 0.008 and t = 0.01). It is seen that
as time elapses: (i) the vorticity is increasing, (ii) the minimum and maximum val-
ues are distributed symmetrically with respect to the vertical axis, (iii) the position
of the minimum and maximum values does not change (x2 =±0.96, x3 =−0.19),
remaining close to the wall of the enclosure, (iv) in the core of the sphere the vor-
ticity is almost negligible, and (v) the vorticity gradient is higher close to the wall,
particularly in the neighbourhood of the equator. The panels on the middle row
of Fig. 9 show the ω1 contours in the stratification stage (t = 0.02, t = 0.04 and
t = 0.06). Note that as time elapses: (i) the vorticity reaches its maximum value,
and after t ∼ 0.04 the vorticity begins to decrease, (ii) the minimum and maximum
values are distributed symmetrically with respect to the vertical axis, (iii) the posi-
tion of the minimum and maximum values moves firstly upwards from x3 =−0.06
to x3 = 0.65 and secondly downwards from x3 = 0.65 to x3 = 0.54, but the radial
position of the minimum and maximum values is adjacent to the wall r ≈ 0.98,
(iv) the vorticity gradient is higher close to the wall, and it is located in the upper
hemisphere, (v) in the upper part of the core region the vorticity is accumulated,
and (vi) in the lower part of the sphere the gradient of vorticity is small. Hence it
is clearly observed than in the stratification stage the variation of vorticity is higher
at the surface of the sphere than at the core, and the vorticity is not concentrated
in a thin core [Maxworthy (1972)]. The panels on the bottom row of Fig. 9 show
the ω1 contours in the cooling-down stage (t = 0.1, t = 0.2 and t = 0.4), see Sec.
5.3. Note that as time elapses: (i) the vorticity is a decaying function of time, (ii)
the minimum and maximum values are distributed symmetrically with respect to
the vertical axis, (iii) the position of the minimum and maximum values moves
from the upper region close to the wall (x2 =±0.81, x3 = 0.54, r = 0.97), towards
the upper core region (x2 = ±0.39, x3 = 0.18, r = 0.42), and (iv) the vorticity is
evenly distributed in the sphere. A very similar description as the previous one
can be given for the vorticity contours shown in Fig. 11. The panels on the top
row show the ω1 contours in the boundary layer development stage (t = 0.001,
t = 0.002 and t = 0.003). Notice that as time elapses: (i) the vorticity is increasing,
(ii) the minimum and maximum values are distributed symmetrically with respect
to the vertical axis, (iii) the position of the minimum and maximum values moves
downwards from (x2 = ±0.98, x3 = 0.06, r = 0.98) to (x2 = ±0.96, x3 = −0.19,
r = 0.97), (iv) in the core the vorticity is almost negligible, and (v) the vorticity gra-
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dient is higher close to the wall, in the region surrounding the equator. Panels on the
middle row of Fig. 11 show the ω1 contours in the stratification stage (t = 0.017,
t = 0.025 and t = 0.038). Note that as time elapses: (i) the vorticity reaches its
maximum value, and after t ∼ 0.017 the vorticity decreases, (ii) the minimum and
maximum values are distributed symmetrically with respect to the vertical axis,
(iii) the position of the minimum and maximum values moves firstly upwards from
x2 = ±0.98, x3 = −0.06, r = 0.98, to x2 = ±0.74, x3 = 0.65, r = 0.98 and sec-
ondly downwards from x2 =±0.74, x3 = 0.65, r = 0.98 to x2 =±0.81, x3 = 0.54,
r = 0.97, points (iv)-(vi) of the previous description for the case with Ra = 1×104,
apply for the case Ra = 1.5× 105, currently under discussion. The panels on the
bottom row of Fig. 11 show the ω1 contours in the cooling-down stage (t = 0.06,
t = 0.2 and t = 0.4), see Sec. 5.3. Note that as time elapses: (i) the vorticity is a
decaying function of time, (ii) the minimum and maximum values are distributed
symmetrically, (iii) the position of the minimum and maximum values moves from
the upper wall region (x2 = ±0.74, x3 = 0.65, r = 0.98) towards the upper core
region (x2 =±0.37, x3 = 0.27, r = 0.45), and (iv) the vorticity is evenly distributed
in the sphere.

Maxworthy (1972) qualitatively described the dynamical process of the entrain-
ment of fluid into the vortex. He pointed out that as the vorticity diffuses from
the interior of the vortex, the surrounding irrotational flow located in a thin layer
pick ups the vorticity, dissipation occurs, then the total pressure in the layer is re-
duced and it is unable to traverse the vortex contour. Hence the surrounding fluid
is entrained into the vortex ring, transporting the diffused vorticity with it. Fig.
10 shows the dimensionless pressure contours for the three stages of the transient
process when Ra = 1×104 (it should be mentioned that the pressure behaviour for
the other three cases analyzed in this paper is very similar, then it will not be dis-
cussed here). In each panel of the figure, we have plotted twenty nine dimensionless
iso-contours of pressure equally spaced between the minimum and the maximum
values of the pressure field. The minimum and maximum values of the pressure
as well as the position where they take place, are written within the round brackets
in the caption of the figure. It is clearly shown that in the boundary layer develop-
ment stage (t = 0.004, t = 0.008 and t = 0.01), the minimum (negative) value of
the pressure at t = 0.004 is located in the lower part of the sphere along the verti-
cal axis (x2 = 0.0, x3 = −0.89), whereas the maximum (positive) value is located
at (x2 = 0.0, x3 = 0.89). As time elapses: (i) the change of the vertical position
x3 of the maximum and minimum values is small, (ii) at t = 0.008 and t = 0.01
there are two minimum (negative) pressures in the lower part of the sphere, which
are distributed symmetrically with respect to the vertical axis, (iii) the maximum
(positive) pressure in the upper part is increased, and (iv) the minimum (negative)



244 Copyright © 2009 Tech Science Press CMES, vol.49, no.3, pp.217-253, 2009

pressure in the lower part slightly oscillates. Panels on the middle row show the
stratification stage (t = 0.02, t = 0.04 and t = 0.06). Note that as time elapses:
(i) the minimum (negative) pressure in the lower part of the sphere slightly oscil-
lates, (ii) the maximum (positive) pressure in the upper part reaches its maximum
value, (iii) the vertical location of the minimum (negative) pressure moves up from
x3 =−0.39 to x3 =−0.04 and then moves down to x3 =−0.12, and (iv) there are
two minimum (negative) pressures in the lower part of the sphere, which are dis-
tributed symmetrically with respect to the vertical axis, the minimum values move
towards the wall. Panels on the bottom row show the cooling-down stage (t = 0.1,
t = 0.2 and t = 0.4), see Sec. 5.3. Note that as time elapses: (i) the minimum
(negative) pressure in the lower part diminishes its magnitude, (ii) the maximum
(positive) pressure in the upper part also diminishes its magnitude, (iii) the ver-
tical location of the minimum (negative) pressure moves down, (iv) the location
of the maximum (positive) pressure also moves down, and (v) the two minimum
(negative) pressures in the lower part of the sphere, which are distributed symmet-
rically with respect to the vertical axis, move towards the core. It is interesting
to mention that in the stratification stage the minimum (negative) pressure region
initially located close to the south pole, ascends towards the equator and occupies
a large portion of the spherical cavity, specially from the equator to the south pole.
It should be noted that in the stratification stage the pressure in the neighborhood
of the south pole is higher than the pressure in the equatorial region, hence the fluid
in the boundary layer is unable to traverse the vortex contour and entrainment sets
in [Maxworthy (1972)]. At the onset of the entrainment, the stratification stage of
the spherical container is initiated [Narain (1973)]. In order to develop scaling laws
for the time that the stratification stage takes on, we assume that once the boundary
layer is fully developed, the fluid in the sphere is stratified by the cooled fluid from
the boundary layer. Following Lin and Armfield (2005) we assume that the dimen-
sional time ts for the full stratification of the whole fluid in the sphere will be at
the moment when the volume of the fluid flowing within the descending boundary
layer Qbl , is equal to the volume of the sphere Vsphere. The rate of flow fluid through
the boundary layer at π/2 is estimated as

Qbl = uθ Abl (27)

where Abl is the area through which pass the boundary layer flow, it is defined as

Abl = π
(
2RδT,b−δ

2
T,b
)

(28)

The dimensional time for the stratification of the fluid within the sphere ts is ob-



Vortex Ring Formation within a Spherical Container 245

tained as

ts =
Vsphere

Qbl
=

4
3

R3

uθ

(
2RδT,b−δ 2

T,b

) (29)

The total elapsed time at the end of the stratification time is the summation tbs = tb +
ts. Tab. 3 shows the dimensionless time tbs for different initial Rayleigh numbers
Ra and the dimensionless time tbsnum obtained from the numerical simulation (see
Fig. 3). We assume that the stratification stage ends when the average Nusselt
number attains its maximum value. After this time we assume that the cooling
down process sets in.

Table 3: Dimensionless scaling analysis results (at θ = π/2) for the time at which
ends the stratification stage tbs = tb + ts. tb see Eq. (13), ts see Eq. (29). For
dimensionless tbsnum values see Fig. 3.

Ra Raθ tbs tbsnum

103 3875.7 0.136 0.14
104 38757.8 0.063 0.06
105 387578.4 0.031 0.046

1.5E105 581367.6 0.028 0.038

5.3 Cooling-down stage

During the whole process of the formation of the vortex ring, the fluid in the sphere
is continuously cooled down due to the heat transfer through the wall of the con-
tainer. The non-steady process finishes when the whole body of fluid has the same
dimensional temperature as the temperature of the wall, T (t) = Tw, or the dimen-
sionless temperature at each point of the fluid is T (t) = 0, see Eq. (1). Taking into
account that all the released heat to fully cool down the fluid in the sphere must
pass through the spherical wall, the dimensional energy balance in the sphere can
be written as [Mattor, Durgin, Bloznalis, and Schoenberg (1992); Lin and Armfield
(2005)]

−hAsphere
(
T −Tw

)
= ρVsphereCp

dT
dt

, (30)

where h is the average heat transfer coefficient evaluated at the boundary of the
sphere and Asphere is the surface of the spherical wall. Carrying out the integration
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and taking into account that the average heat transfer coefficient h is a function of
time, the dimensional average temperature is written as;

T (t) = Tw +
(
T i−Tw

)
exp
[
−

Asphere

ρVsphereCp

∫ t

0
h(t)dt

]
(31)

or

−Tw∗ =
T (t)−Tw

T i−Tw
= exp

[
−

Asphere

ρVsphereCp

∫ t

0
h(t)dt

]
, (32)

where Tw∗ is the dimensionless temperature at the wall of the sphere. The average
heat transfer coefficient h(t) may be estimated from the average Nusselt number
Nu(t) as

h(t) =
Nu(t)k

R
, (33)

the Nu(t) number at the wall of the container is calculated as

Nu(t) =
1

Asphere

∫
Asphere

Nu dA =
1

Asphere

∫
Asphere

[
R

k
(
T (t)−Tw

)qrad

∣∣∣∣∣
r=R

]
dA, (34)

where qrad is the heat flux evaluated at r = R, in the Cartesian coordinate system, it
is calculated as

qrad

∣∣∣∣∣
r=R

=−k∇T ·η , (35)

η is the outward unit vector normal to the surface of the sphere. The dimensionless
expression of Eq. (34) is written as

Nu(t) =
1

Tw∗

1
Asphere

∫
Asphere

∇T ·ηdA. (36)

Eq. (36) has been used to calculate the average Nusselt number Nu plotted in Fig.
3. In this investigation two procedures have been used to calculate the dimension-
less temperature at the wall of the sphere Tw∗ . In the first procedure we obtain an
average value of Tw∗ . This has been calculated by taking the mean value of the di-
mensionless temperature calculated at the Gauss-Lobatto-Legendre points (of the
spectral element method) located on the surface of the sphere. In the second pro-
cedure we use the Lumped Capacity method represented by Eqs. (30)-(33). Fig.
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12 shows the dimensionless temperature at the wall of the sphere −Tw∗ as a func-
tion of time for the four cases: Ra = 1× 103, Ra = 1× 104, Ra = 1× 105 and
Ra = 1.5×105. It can be seen that at small initial Ra number (Ra = 1×103), the
dimensionless temperature at the wall of the sphere −Tw∗ evaluated by taking the
average of the Gauss-Lobatto-Legendre points, follows the analytical solution for
the pure conductive regime −T cond

w∗ (t) (plotted as a continuous line). It is seen that
at Ra = 1× 103, the solution obtained by the Lumped Capacity method is higher
than the averaging procedure. As the initial Ra number is increased,−Tw∗ decreases
much faster than the conductive regime, hence the Lumped Capacity method and
the averaging process are close each other. For Ra ≥ 1× 105, the mixing by the
entrainment leads to a decrease of the time for cooling down. The continuous line
in the graphs of Fig. 12, represents the analytical solution of the dimensionless
temperature at the wall −T cond

w∗ (t) for the pure conductive case. In the conductive
regime the temperature −T cond

w∗ (t) as a function of time of the fluid confined in a
spherical container with initial uniform dimensional temperature T i and uniform
dimensional wall temperature Tw = 0, is given as [Carslaw and Jaeger (1959)]:

−T cond
w∗ (t) =

T cond
av (t)−Tw

T i−Tw
=

6
π2

∞

∑
n=1

1
n2 exp

[
−αn2

π
2t/R2] (37)

where T cond
av (t) is the dimensional average temperature of the fluid in the sphere.

From Fig. 12 we conclude that the upper limit of the time to attain the full cooling
down of the fluid in the sphere is provided by the pure conductive process. It is
shown that by pure conduction, the required time is tc ∼ 0.4.

6 Unstable vortex rings

In the previous sections we have shown that at low initial Rayleigh numbers, Ra≤
1× 104, the flow in the sphere behaves as two-dimensional and no oscillations
appear, however as the initial Ra number is increased in the range 1×105 ≤ Ra≤
1.5× 105, the flow pattern shows an oscillatory, unstable behaviour. Chow and
Akins (1975), in an experimental investigation, have reported that for Ra numbers
greater that 1× 107 (in a pseudosteady-state natural convection process), the flow
is turbulent or perhaps transitional (unstable flow). They also found an oscillatory
behaviour (up and down flow) with an erratic motion and irregular flow pattern. Fig.
13 shows, for the initial Rayleigh number Ra = 1.5×105 case, the time evolution of
the flow pattern in the time interval 0.016 ≤ t ≤ 0.049, which corresponds mainly
to the stratification stage, see Fig. 3. For this initial high Ra number case, the
velocity of the descending cold fluid adjacent to the wall of the sphere, which also
ascends in the core region, is capable to generate (in the region around the vertical
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Figure 12: Dimensionless temperature at the wall of the sphere Tw∗ . Initial Rayleigh
number Ra: (A) Ra = 1×103, (B) Ra = 1×104, (C) Ra = 1×105, (D) Ra = 1.5×
105. Circles: Averaging process of the Gauss-Lobatto-Legendre points. Asterisks:
Lumped Capacity method, see Eq. (32). Continuous line: Analytical solution for
the pure conductive case T cond

w∗ , see Eq. (37).

axis), a shear instability that leads to the formation of an internal vortex ring that
spreads out as time elapses, simultaneously the center of the external vortex ring,
slightly moves down, see the first and second rows from top to bottom. Notice that
initially the center of the internal vortex ring that appears due to the shear instability
(Kelvin-Helmholtz instability) is located in the upper part of the sphere, and at
t = 0.025 (end of the second row from top to bottom) the center of the growing
vortex has moved towards the equator. In the third row it is possible to observe how
the size of the internal vortex ring diminishes, and the center of the external vortex
moves up, towards the equator. At the end of the third row (t = 0.03), we observe
that the internal vortex ring vanishes. In the fourth row, from top to bottom, we



Vortex Ring Formation within a Spherical Container 249

observe that due to the internal thermal conditions, a new shear instability appears,
conducting to the formation of an internal double vortex ring located in the upper
part of the sphere. Simultaneously, the center of the external vortex ring slightly
moves down, see panel at the end of the fourth row (t = 0.039). In the fifth row, it is
possible to observe that the size of the new internal double vortex ring is increased
and the center of the external vortex ring moves slightly down, see the panel at the
end of the fifth row, t = 0.044. In the sixth row, it is shown how the internal double
vortex ring again vanishes, whereas the center of the external vortex ring moves
up, from the south hemisphere towards the equator region, see the panel at the end
of the sixth row, t = 0.049. After this time, the cooling-down of the fluid does not
allow the formation of an additional internal vortex ring.

Fig. 14 shows at t = 0.018 (at the beginning of the internal vortex ring formation),
the stream lines for the Ra = 1.5×105 case. We observe that along the vertical axis
in the lower part, the flow is parallel (without vorticity, see Fig. 11, middle row at
t = 0.017), whereas in the upper region, the internal three-dimensional vortex ring
is forming.

7 Conclusions

Numerical simulations of the formation of a vortex ring that is confined in a spher-
ical cavity, have been carried out by using the spectral element method. A scaling
analysis has been used to develop the scaling laws for the relevant parameters char-
acterizing the non-steady flow behaviour within the sphere. Three stages along
the full cooling down process have been identified, and the the scaling laws devel-
oped for each stage, have been successfully compared with the results provided by
the numerical method. At low Ra numbers the convective flow behaves as non-
oscillatory and two-dimensional, hence the behaviour of the flow pattern is very
similar to the results reported previously in the literature. However for high Ra
numbers, we have found that the flow pattern shows an oscillatory, unstable be-
haviour. Numerical simulations of this irregular and oscillatory flow pattern, to
the knowledge of the authors, have not been previously reported. In order to de-
velop the scaling laws for the entrainment stage, we used the vortex ring formation
theory, hence the circulation, vorticity and pressure fields were presented. We con-
clude that the amount of entrainment (and the rate of cooling) strongly depends on
the pressure and vorticity fields. The results shown in this paper can be used in
engineering applications, where the motion of the fluid within spherical contain-
ers, and its impact on the integrity of the spherical structure, should be taken into
account to increase the performance of the containers.
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Figure 13: Unstable vortex ring. Time evolution of the convective patterns, for
Ra = 1.5× 105. From top to bottom: first row: t=0.016, t=0.017, t=0.018,
t=0.019, t=0.020. Second row: t=0.021, t=0.022, t=0.023, t=0.024, t=0.025. Third
row: t=0.026, t=0.027, t=0.028, t=0.029, t=0.030. Fourth row: t=0.035, t=0.036,
t=0.037, t=0.038, t=0.039. Fifth row: t=0.040, t=0.041, t=0.042, t=0.043, t=0.044.
Sixth row: t=0.045, t=0.046, t=0.047, t=0.048, t=0.049.
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Figure 14: Unstable internal vortex ring formation at t = 0.018, for Ra = 1.5×105.

DGAPA-UNAM (PAPIIT project IN102506-3) and DGSCA-UNAM through the
Visualization Observatory (Ixtli project). Most of the computations were carried
out in the supercomputers of DGSCA-UNAM.
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