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Free Vibration Analysis of a Circular Plate with Multiple
Circular Holes by Using the Multipole Trefftz Method

Wei-Ming Lee' and Jeng-Tzong Chen’

Abstract: This paper presents the multipole Trefftz method to derive an analyt-
ical model describing the free vibration of a circular plate with multiple circular
holes. Based on the addition theorem, the solution of multipoles centered at each
circle can be expressed in terms of multipoles centered at one circle, where bound-
ary conditions are specified. In this way, a coupled infinite system of simultaneous
linear algebraic equations is derived for the circular plate with multiple holes. The
direct searching approach is employed in the truncated finite system to determine
the natural frequencies by using the singular value decomposition (SVD). After
determining the unknown coefficients of the multipole representation for the dis-
placement field, the corresponding natural modes are determined. Some numeri-
cal eigensolutions are presented and further utilized to explain some physical phe-
nomenon such as the dynamic stress concentration. No spurious eigensolutions are
found in the proposed formulation. Excellent accuracy, fast rate of convergence and
high computational efficiency are the main features of the present method thanks
to the analytical procedure.

Keywords: free vibration, plate, the multipole Trefftz method, addition theorem,
SVD

1 Introduction

Circular plates with multiple circular holes are widely used in engineering struc-
tures [Khurasia and Rawtani (1978)], e.g. missiles, aircraft, etc., either to reduce
the structure weight or to increase the range of inspection. In addition, the rotat-
ing machinery such as disk brake system, circular saw blades, and hard disk for
data storage is the practical application for the title problem [Tseng and Wickert
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(1994)]. These holes in the structure usually cause the change of natural frequency
as well as the decrease of load carrying capacity. It is important to comprehend
the associated effects on the work of mechanical design or the associated controller
design. As quoted by Leissa and Narita [Leissa and Narita (1980)]: “the free vi-
brations of circular plates have been of practical and academic interest for at least
a century and a half”, we revisit this problem by proposing an analytical approach
in this paper.

Over the past few decades, most of the researches have focused on the analyti-
cal solutions for natural frequencies of the circular or annular plates [Vogel and
Skinner (1965); Vera, Sanchez, Laura and Vega (1998); Vega, Vera, Sanchez, and
Laura (1998); Vera, Laura and Vega (1999)]. Recently, some researchers intended
to extend an annular plate to a circular plate with an eccentric hole. Cheng et
al. [Cheng, Li, and Yam (2003)] encountered difficulty and resorted to finite ele-
ment method to implement the vibration analysis of annular-like plates due to the
complicated expression for this kind of plate. Laura ef al. [Laura, Masia, and Ava-
los (2006)] determined the natural frequencies of circular plate with an eccentric
hole by using the Rayleigh-Ritz variational method where the assumed function
does not satisfy the natural boundary condition in the inner free edge. Lee et al.
[Lee, Chen and Lee (2007); Lee and Chen (2008a)] proposed a semi-analytical ap-
proach to the free vibration analysis of a circular plate with multiple holes by using
the indirect boundary integral method and the null field integral equation method,
respectively. They pointed out that some results of Laura et al. [Laura, Masia,
and Avalos (2006)] are not accurate enough after careful comparisons. However
spurious eigenvalues occur even though the complex-valued kernel function is em-
ployed, when the boundary element method (BEM) or the boundary integral equa-
tion method (BIEM) is used to solve the eigenproblem [Lee and Chen (2008a)]. It
is well known that spurious and fictitious frequencies stem from the non uniqueness
of solution. Specifically, spurious eigenvalues arise from the incomplete solution
representation such as the real-part BEM, multiple reciprocity method. Therefore
how to construct the complete solution representation and to keep spurious eigen-
value away is our concern.

The Trefftz method was first presented by Trefftz in 1926 [Trefftz (1926)]. On the
boundary alone, this method is proposed to construct the solution space using trial
complete functions which satisfy the given differential equation [Kamiya and Kita
(1995)]. Just as the BEM, BIEM or the method of fundamental solution [Reut-
skiy (2005); Alves and Antunes (2005); Chen, Fan, Young, Murugesan and Tsai
(2005); Reutskiy (2006); Reutskiy (2007)], the Trefftz method is also categorized
as the boundary-type method which can reduce the dimension of the original prob-
lem by one. Consequently the number of the unknowns is much less than that of
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the domain type methods such as the finite difference method (FDM) or the finite
element method (FEM). Moreover the Trefftz formulation is regular and free of the
problem of improper boundary integrals. However, almost all the problems solved
by using the Trefftz method are limited to the simply-connected domain. The ex-
tension to problems with multiple holes, i.e. multiply-connected domain, is our
concern in this paper.

The concept of multipole method to solve multiply-connected domain problems
was firstly devised by Zaviska [Zaviska (1913)] and used for the interaction of
waves with arrays of circular cylinders by Linton and Evans [Linton and Evans
(1990)]. Recently, one monograph by Martin [Martin (2006)] used these and other
methods to solve problems of the multiple scattering in acoustics, electromag-
netism, seismology and hydrodynamics. However, the biHelmholtz interior prob-
lem with the fourth order differential equation was not mentioned therein.

This paper proposed the multipole Trefftz method to solve plate problems with
the multiply-connected domain in an analytical way. When considering a circular
plate with multiple circular holes, the transverse displacement field is expressed as
an infinite sum of multipoles at the center of each circle, including an outer circu-
lar plate and several inner holes. By using the addition theorem, it is transformed
into the same coordinate centered at the corresponding circle, where the boundary
conditions are specified. According to the specified boundary conditions, a cou-
pled infinite system of simultaneous linear algebraic equations is obtained. Based
on the direct searching approach [Kitahara (1985)], the nontrivial eigensolution
can be determined by finding the zero singular value of the truncated finite system
through the technique of singular value decomposition (SVD). After determining
the unknown coefficients, the corresponding natural modes can be obtained. Sev-
eral numerical examples are presented and the proposed results of a circular plate
with one or three circular holes are compared with those of the semi-analytical so-
lutions [Lee and Chen (2008a)] and the FEM using the ABAQUS. Since the BIEM
or BEM results in spurious eigenvalues for problems with holes, the appearance of
spurious solutions by using the present method will be examined here. In addition,
the results of eigensolution for the plate with two holes can be used to account for
the dynamic stress concentration which occurs in the area between two holes when
they are close to each other.

2 Problem statement of the plate eigenproblem

A uniform thin circular plate with H circular holes centered at the position vector
O (k=0,1, ..., Hand Oy is the position vector of the center of the outer circular
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plate) has a domain Q which is enclosed with the boundary

H
B= B, (1)
k=0

as shown in Figure 1, where R; denotes the radius of the kth circle. The governing
equation of the free flexural vibration for the thin plate is expressed as:

Viw(x) = Atw(x), x€Q, ()

where V* is the biharmonic operator, w is the lateral displacement, A* = w?poh/D,
A is the dimensionless frequency parameter, @ is the circular frequency, pg is the
volume density, / is the plate thickness, D = EA3 /12(1 — u?) is the flexural rigidity
of the plate, E denotes the Young’s modulus and p is the Poisson’s ratio.

Figure 1: Problem statement for an eigenproblem of a circular plate with multiple
circular holes

The solution of Eq. (2) in the polar coordinates can be represented as

w(p,0) =wi(p,0)+wap,9), 3)

where wi (p, ¢) and wy(p, @) are solutions of the following equations, respectively,
VZwi(p, ) +A%wi(p,9) =0, @)
Viwa(p,9) — A*wa(p,9) = 0. )
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Egs. (4) and (5) are the so-called Helmholtz equation and the modified Helmholtz
equation, respectively. From solutions of Eqgs. (4) and (5), the solution for Eq.(3)
can be explicitly expressed in a series form as follows:

w(p,0) =Y Wu(p)e™, (6)

m=—oo

where Wy, (p) is defined by

Win(P) = ' Im(Ap) +c3 m()Lp)“‘Cg1 m(Ap) +ci' Kn(Ap), (N

in which ¢ (i = 1, 4) are the coefficients, J,, and Y,, are the mth order Bessel
functions; and I, and K,, are the mth order modified Bessel functions. Based on
the characteristics of functions at p=0 and p — oo, the appropriate Bessel function
and the modified Bessel are chosen to represent the transverse displacement field
for the outer circular plate and the inner circular holes.

The radial slope, bending moment and effective shear force are related to the trans-
verse displacement by

_9w(p,9)
9(P7¢)—Ty ®)
2
mlp.9) = i¥w(p.0) + (1) 522, ©
9 e (D) 29 (1aw(p.0)
(p.0) = 3 (Putpo)) + (1= (1) 5o |2 (28| o

3 Analytical derivations for the eigensolutions of a circular plate with multi-
ple circular holes

Considering a circular plate with H circular holes, the lateral displacement of Eq.
(6) can be explicitly expressed as an infinite sum of multipoles at the center of each
circle,

oo

w(X:P0, 00,01, 01, P, O1) = Y, (ahTm(Apo)e™® + b Ln(Apo)e™®)

m—=—oo

oo

H
+ Y | Y dHY (Ape)e™ bk K (Ap)e™ |, (11)
k=1 |m

—=—o0

where (po, ®o), (P1,01), --., (PH, Q) are the corresponding polar coordinates for
the field point x with respect to each center of circles. The coefficients of aX, and
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b’,jl, k=0,..., H; m=0, £1, £2, ...can be determined by applying the boundary
condition on each circle. The Bessel function J and the modified Bessel function
I are chosen to represent the outer circular plate due to the request of finite value
at p=0. For the inner holes, the Hankel function (J+iY) and the modified Bessel
function K are taken for their values being finite as p — oo.

Based on the Graf’s addition theorem for the Bessel functions given in [Watson
(1995)], we can express the Bessel functions in the following form,

Tu(Ap)e™® = Y Jun(Arg)e "% g, (Ap,)e™r, (12)

n—=—oo

Ln(Apr)e™ = Y Ly n(Arp)e ™%, (Ap, )™, (13)

n=—oo

oo

1 , L H, ()00, (Ap, )™, p, < riy
HYY (App)emde = { = o . , (14
Y Jnon(Arp)e O H, Y (Ap,)em %, py > 1y

Nn——oo0

(=

Ko (Apu)eint — L (1) Knn(Arip)e' 0L, (A py)e™®,  p, < 1,
m(App)e”™ ™ = ¢ " :
Y (=" " hyn(Arip)e el g, Kq.(App)e indp, Pp > Tip

n——oo
(15)
where (pp, ¢,) and (pg, @) in Fig. 2 are the polar coordinates of a field point x with

respect to O, and Oy, respectively, which are the origins of two polar coordinate
systems and (ry,, 6,) are the polar coordinates of O, with respect to Oy.

By substituting the addition theorem of the Bessel functions H (/l px) and K;, (A py)into

Eq. (11), the displacement field near the circular boundary By under the condition
of po > ryo can be expanded as follows:

oo

w(x:p0,90) = ), (dndm(Apo)e™® + by Ln(Apo)e™™)

H oo (e}
CEE e E s o e
=1 —=—o0 n=—oo

oo

+blrcn Z (—1)’"_"Im,n(lrko)ei(’"_")e"ol(n(lpo)ei”% . (16)

n——oo
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Figure 2: Notation of the Graf’s addition theorem for Bessel functions

Furthermore, Eq. (16) can be rewritten as

w(X; o, ¢o)
Z elm%< (Ap0)dp, +In(Apo)by,
H oo
+ Z Z A )Lpo a + Z B )Lpo)bk]>, (17)
k=1 | n=—c0 n=—oo
where
Afrm(APO) :ei(nim)ekojn—m(lrkO) ;51)(1130) (18)
BE (Apo) = (—1)" e B0 (Ario)Km(Apo). (19)

By differentiating Eq. (17) with respect to py, the slope 6 near the circular bound-
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ary By is given by

m—=—oo

6 (x; po, #o) = Z e'm¢°<7u’ (Apo)ay, + AL, (2po)by,

H
+)
k=1

i mn APO Cl + Z D APO)bk]>a (20)

where C*, (Apo) and DX (A po) are obtained by differentiating AX, (A po) and BX,, (1 o)
in Egs. (18) and (19) with respective to pg.

By substituting Eq. (11) into Eq. (9) and applying the addition theorem under the
condition p, < ry, the field of bending moment, m(x), near the circular boundary
B, (p=1,..., H) can be expanded as follows:

m—=—oo

m(x;pp, 9p) = Z e’m¢”<Ep(7LPp)a51+F£(/1Pp)bﬁ

H
+ Z [ Z mn A‘pP a + Z A’pp)bk]>a (21)
0

k= n=-—oo n=-—oo
k#p
where
En(Apy) = 0y (App) +ict, (Apy), (22)
3 (App) = 0t (Apy), (23)
i(n—m)Op oyt —
£ (Apy) = ¢ ) a?(lpp)Jna?(lrkp), k=0 ’ 24)
e o) (APp)Hy o (Arip), Kk #0,p
i(n—m)6, 1 —
£ (Ap,) = e . 0 (APp) ln—m(ATip), k=0 ’ (25)
(_l)mel(n_m)ekp agq(lpp)anm(lrkp)’ k#0,p
in which the moment operator o (Ap) from Eq. (9) is defined as
X5 (A 2
aiap)=p{(1-w 2 1) 527 %20} 6)

where the upper (lower) signs refer to X=J, Y, (I, K), respectively. The differential
equations of the Bessel function have been used to simplify X (Ap).
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Similarly, the effective shear operator X (Ap) derived from Eq. (10) can be ex-
pressed as shown below:

ﬁé(xmzb{[m%l—u)i(zp)ﬂX’";S’;’”—m%l—mxm(“’)}, o

p3

and the field of effective shear, v(x), near the circular boundary B, (p = 1,..., H)
can be given by

VP9 = Y e’m¢"<G” (App)al+ HE(Apy)b,
H
>
k=1
k#p
where Gh(Ap,), Hh(Ap,), G~ (Ap,) and HX,(Ap,) are obtained by replacing
X (Ap,) in Egs. (22)-(25) with BX (Ap,).
For an outer clamped circular plate (u = 8 = 0) containing multiple circular holes

with the free edge (m = v = 0), applying the orthogonal property of {e"?"} to
Eqgs.(17), (20), (21) and (28), respectively, and setting p, equal to R, gives

Z Gl (App)as + Z App)bk]>, (28)

n——oo n——oo

H o (o)
In(ARO)D, + I (ARG, — 3 { ¥ oAk ORaE+ BWROW;} 0

k=1 |[n=—o0 n=—oo

ALy (ARo )l + AL (ARO)EY, £ AR+ T D%(M@b’;} 0

n=—oo

“Y|fc
H (e}
ELOR,)dt FLORWo+ ¥ [ Y EC (AR ¥ F,,'anRp)bﬁ} 0
k=0 Y77
K

n=-—oo

D
H oo
LR+ HL(AR B+ ¥ [ Y GL (R Y HanRp)bf,] 0
k=0 Y°°°7 e
k#p

(29)

form=0, £1,£2,...,n=0,%1,%2,...,and p=1, ..., H. Eq. (29) is a coupled infi-
nite system of simultaneous linear algebraic equations which is the analytical model
for the free vibration of a clamped circular plate containing multiple holes with the
free edge. In order to evaluate the numerical results in the following section, the in-
finite system of Eq. (29) is truncated to a (H+1)(2M+1) finite system of equations,
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ie. m=0, 1, £2, ...., £M. According to the direct-searching scheme, the natural
frequencies are determined as the minimum singular value of the truncated finite
system by using the SVD technique. Once the eigenvectors (i.e. the coefficients
aﬁ1 and b’,‘n, k=0,..., H; m=0, £1, £2,..., =M) are found, the associated natural
modes can be obtained by substituting them into the multipole representation for
the transverse displacement of Eq.(11).

4 Numerical results and discussions

To demonstrate the validity of the proposed method, the FORTRAN code was im-
plemented to determine natural frequencies and modes of a circular plate with mul-
tiple circular holes. The same problem was independently solved by using the FEM
(the ABAQUS software) for comparison. In all cases, the inner boundary is subject
to the free boundary condition. The thickness of plate is 0.002m and the Poisson’s
ratio u=1/3. The general-purpose linear triangular elements of type S3 were em-
ployed to model the plate problem by using the ABAQUS software. Although the
thickness of the plate is 0.002 m, these elements do not suffer from the transverse
shear locking based on the theoretical manual of the ABAQUS.

Case 1: A circular plate with an eccentric hole [Lee and Chen (2008a)]

A clamped circular plate containing an eccentric hole with a free edge as shown
in Fig. 3 is considered. The lower eight natural frequency parameters versus the
number of coefficients in Eq. (11), N(2M + 1), are shown in Fig. 4. It can be seen
that the proposed solution converges fast by using only a few numbers of coeffi-
cients. Values of m and n in the mode (m,n) [Lee and Chen (2008a)] shown in Fig.
4 are numbers of diametrical nodal lines and circular nodal lines, respectively. For
the mode (m, 0) in Fig. 4, two corresponding modes are clearly distinguished by
the subscript. The subscript 1 denotes the straight diametrical nodal line, while the
subscript 2 denotes the curved diametrical nodal line [Lee and Chen (2008a)]. It
indicates that the required number of coefficients (M) equals to that of diametrical
nodal lines except to the mode with the subscript 2 due to the more complicated
configuration. That is the reason why the higher mode (1, 1) can be roughly pre-
dicted by using only M=1 (or N=3). Figure 5 indicates the minimum singular value
of Eq. (29) versus the frequency parameter A when using thirteen numbers of coef-
ficients (N=13). Since the direct-searching scheme is used, the drop location indi-
cates the eigenvalue. No spurious eigenvalue is found by using the present method.
The FEM was employed to solve the same problem and its model needs 164580
elements and 83023 nodes to obtain acceptable results for comparison. The lower
six natural frequency parameters and modes by using the present method, the semi-
analytical method [Lee and Chen (2007)] and the FEM are shown in Fig. 6. The
results of the present method match well with those of FEM by using the ABAQUS
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Case I:

Geometric data:
Roy=Im

R1=0.4m

e=0.5m
thickness=0.002m
Boundary condition:
Inner circle : free

Outer circle: clamped

Figure 3: A clamped circular plate containing an eccentric hole with a free edge
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Figure 4: Natural frequency parameter versus the number of coefficients of the
multipole representation for a clamped circular plate containing an eccentric hole
with a free edge (Rp=1.0, Rj=0.4 and e¢/R(=0.5)
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Figure 5: The minimum singular value versus the frequency parameter for a
clamped circular plate containing an eccentric hole with a free edge (Ro=1.0,
R1=0.4 and e¢/R(=0.5)

software.
Case 2: A circular plate with two holes

To investigate the hole-hole interaction, a circular plate containing two identical
holes with various ratio of L/a shown in Fig. 7 is studied, where a is the radius of
circular holes and L is the central distance of two holes. The radii of the circular
plate and the circular hole are 1 m and 0.1 m and the dimensionless distance of two
holes L/a is chosen as 2.1, 2.5 and 4.0 in the numerical experiments. From the
numerical results, the space of two holes has a minor effect on the lower natural
frequency parameters. Figure 8 is the fundamental natural mode for the cases of
L/a=2.1 and L/a=4.0. It can be seen that the zone of the maximum deformation,
enclosed with the dashed line, for the case of L/a=2.1 is significantly less than
that of L/a=4.0. It can account for the dynamic stress concentration in the case
of L/a=2.1 [Lee and Chen (2008b)] because the distortion energy caused by the
external loading concentrates in the smaller area.

Case 3: A circular plate with three holes [Lee and Chen (2008a)]

In order to demonstrate the generality of the present method, a circular plate with
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circular plate with two holes (a) L/a=2.1,

Figure 8: The fundamental modes of a
A1 =3.1720 (b) L/a=4.0, A; = 3.1800
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Case 3:
Geometric data:
Ro=Im
R;=0.4m
Ry=0.2m
R:=0.2m

> 00=(0.0,0.0)
0,=(0.5,0.0)
0,=(-0.3,0.4)
0;=(-0.3,-0.4)
thickness=0.002m
Boundary condition:

Inner circles: free

Outer circle: clamped,

Figure 9: A clamped plate containing three holes with free edges
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Figure 10: Natural frequency parameter versus the number of coefficients of the
multiple representation for a clamped circular plate containing three holes with
free edges
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Figure 11: The minimum singular value versus the frequency parameter for a
clamped circular plate containing three holes with free edges

three holes is considered as shown in Fig 9. The lower six natural frequency pa-
rameters versus the number of coefficients in Eq. (11) are shown in Fig. 10. When
the number of holes increases, the fast convergence rate can still be observed. The
fourth mode shows a lower convergence rate due to the complex geometrical con-
figuration. Figure 11 indicates the minimum singular value of Eq. (29) versus the
frequency parameter A when using thirteen terms of Fourier series (N=13). There
is no spurious eigenvalue [Lee and Chen (2008a)] since zero divided by zero is
analytically determined in the present method. To achieve the satisfactory solution
for comparison, the model of FEM needs 308960 elements. The lower six natural
frequency parameters and modes by using the present method, the semi-analytical
method [Lee and Chen (2008a)] and the FEM are shown in Fig. 12. Good agree-
ment between the results of the present method and those of the ABAQUS is ob-
served.

5 Concluding remarks

By using the addition theorem, the multipole Trefftz method has successively de-
rived an analytical model for a circular plate containing multiple circular holes.
According to the specified boundary conditions, a coupled infinite system of si-
multaneous linear algebraic equations was derived without any approximation. By
using the direct-searching method, natural frequencies and natural modes of the
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stated problem were given in the truncated finite system. The proposed results
match well with those provided by the FEM with more fine mesh to obtain accept-
able data for comparison. No spurious eigenvalue occurs in the present formula-
tion. Moreover, the proposed eigensolutions have attempted explanations for the
dynamic stress concentration when two holes are close to each other. Numerical
results show good accuracy and fast rate of convergence thanks to the analytical
approach.
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