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Numerical Simulations of Flows over a Pair of Cylinders at
Different Arrangements using the Immersed Boundary
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Abstract: In the context of computational fluid dynamics a numerical investiga-
tion of incompressible flow around fixed pairs of rigid circular cylinders was carried
out. The two-dimensional filtered Navier-Stokes equations with the Smagorinsky
sub-grid scale model were solved using a Cartesian non-uniform grid. The im-
mersed Boundary Method with the Virtual Physical Model was used in order to
model the presence of two circular cylinders embedded in the flow. The fractional
time step method was used to couple pressure and velocity fields. The simulations
were carried out for Reynolds number equal to 72,000 for pitch ratio equal to 2
and different arrangements regarding the relative positions of the cylinders. The
flow interference between the two cylinders, the vortex shedding process and the
behavior of the dynamic coefficients were investigated. The results of the present
study were compared with experimental data from the literature. The Immersed
Boundary Method has showed to be efficient in the simulation of flows, taking into
account the presence of multi-body compositions.
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1 Introduction

Flows over circular cylinders have been studied by many researchers. For high
Reynolds number, the non-linear effects become important and the Linear Stability
Analysis (LSA) of the steady-state flow does not predict the correct dimension-
less frequency associated to the flow instability [Mittal (2008)]. According to this
author the RANS equations with a turbulence model are employed to obtain a time-
averaged flow. In these situations, LSA can provide useful information about the
stability of these flows. [Liu and Yu (2008)] have considered the flows generated
by a circular cylinders moving with a constant velocity. They assumed viscous
and incompressible steady flows. For the analyses, they have considered the cou-
pling method of natural boundary element and mixed finite element for stationary
Navier-Stokes equations in unbounded domains. The authors observed that increas-
ing the order of the artificial boundary condition and refining the mesh decreases
the solutions error.

Flow over a pair of circular cylinders has also been studied and appears in a large
number of engineering applications. Depending on the arrangement of these cylin-
ders, relative to the flow, a wide variety of phenomena can be observed. In the
present paper a detailed numerical study of the flow over a pair of cylinders in dif-
ferent arrangements is presented. The main goal of the study is to have a better
understanding of the flow around a bundle of risers, which are subjected to shear
flow due to maritime currents. These risers are used to transport oil to the offshore
platforms. The flow around risers is very complex and changes in intensity and
direction with the water depth. From the phenomenological point of view, the in-
terference of the flow around bluff bodies is responsible for the changing in the
characteristics of the fluid load acting over these immersed bodies. Furthermore,
flow over circular cylinders is related to different fundamental fluid-dynamic phe-
nomena, such as boundary-layer separation, shear-layer development and vortex
dynamics [Akbari and Price (2005)].

The tandem and side-by-side arrangements are the most extensively studied in the
literature [Sumner, Price and Païdoussis (1999), Carmo and Meneghini (2006),
Deng, Ren, Zhou and Shao (2006)]. However, the most general form is the stag-
gered arrangement [Sumner, Richards and Akosile (2005)]. According to the liter-
ature there are different interference regimes, which have been identified by flow
visualization in experimental works. The wake behavior of a pair of cylinders can
be classified in groups, according to the pitch ratio. The authors [Sumner, Price
and Païdoussis (1999)] have identified three types of behavior based on the pitch
ratio. The first type is the behavior which is similar to that observed for a single
bluff body, when the cylinders are in contact. In the second type, the recirculation
zone has limited growth in the flow direction and has lateral expansion for moder-
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ate pitch ratio. The last type exhibits recirculation around each cylinder similar to
what is verified for single circular cylinder. Figure 1 illustrates the flow patterns for
two circular cylinders of equal diameters in steady cross-flow, for different angles
of incidence.

The objective of the present paper is twofold: (i) to apply the Immersed Boundary
Methodology to simulate the flow over stationary pair of cylinders; (ii) to analyze
the interference effect between the cylinders and to characterize the mechanism
of vortex shedding in various configurations. Regarding the simulation results,
the vorticity contours and the time histories of lift and the drag coefficients, for
Reynolds number equal to 72,000, are presented. The outline of the paper is as fol-
lows: we first describe the mathematical model for incompressible flows together
with the mathematical methodology in Section 2. In Section 3, we describe the
numerical algorithm used and in the Section 4 we present the numerical results.
Finally, in Section 5 the concluding remarks are presented.

 

 
 

(a) (b) 

 

(c) 

 Figure 1: Flow patterns for two circular cylinders of equal diameters: (a) closely
spaced; (b) moderately spaced; (c) widely spaced. R is the reattachment and G is
the gap (adapted from [Summer, Richards and Akosite (2005)]).
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2 Modeling methodology

The methodology used in the present work is based on the Immersed Boundary
Method (IBM) [Peskin (1977)] associated with the Virtual Physical Model [Lima
e Silva, Silveira-Neto and Damasceno (2003)]. This methodology is based on the
Navier-Stokes equations with an added force source term. This force term acts
so that the fluid perceives the existence of the immersed body, thus making the
exchange of information between both domains. In this methodology a mixed
Eulerian-Lagrangean formulation is used, where an Eulerian grid (fixed) describes
the flow and a Lagrangean grid (which can be fixed or not) describes the immersed
bodies. Figure 2 shows these grids for a two-dimensional domain with an arbitrary
interface. These meshes are geometrically independent, which allows the modeling
of flows around complex, movable or deformable geometries without the need of
any remeshing process. Both domains are physically coupled by a force field ob-
tained at the Lagrangean points, which is then distributed over the Eulerian nodes
in the body’s neighborhood.

In recent years, the IBM has promoted many researches and applications, as can be
cited: problems of fluid-structure interaction [Griffith and Peskin (2005), Lee, Ha,
Yoon and Balachandar (2009)], flows over bodies with complex geometry, with
arbitrarily movement [Kim and Choi (2006)], fluid-solid flows [Su, Lai and Lin
(2007)].

2.1 Mathematical formulation for the fluid

One approach, which is not very common to solve the Navier-Stokes flows, is the
so called velocity-vorticity formulation [Nicolás and Bermúdez (2007)]. In this
work, the two-dimensional viscous, incompressible flows can be modeled by the
filtered Navier-Stokes equations in primitive variables [Báez and Nicolás (2009)],
velocity and pressure, as follows:

∂ui

∂ t
+

∂ (uiu j)
∂x j

=− 1
ρ

∂ p
∂xi

+
∂

∂x j

[
νe f

(
∂ui

∂x j
+

∂u j

∂xi

)]
+ fi (1)

∂ui

∂xi
= 0 (2)

where ρ [kg/m3] and νe f [m2/s] are the specific mass and the effective viscosity,
respectively; ui [m/s] isi-th component of the filtered velocity, p [N/m2] is the
filtered pressure, and fi [N] is the i-th component of the Eulerian vector force,
which is calculated by the distribution of the components of the Lagrangean vector
force as:

f (~x) = ∑
k

Di j (~x−~xk)F (~xk)∆S2 (~xk) (3)
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Figure 2: llustration of the Eulerian and Lagrangean meshes.

In Eq. (3) ~x[m] and ~xk[m] are the position vectors of the Eulerian and Lagrangean
points, respectively,∆S[m] is the distance between two Lagrangean points as shown
in Fig. 3(a), ~F (~xk)[N] is the i-th component of the Lagrangean force over the in-
terface, and Di j[m−2] is the interpolation/distribution function proposed by [Peskin
and McQueen (1994)].
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Figure 3: (a) Illustration of the distance between two Lagrangean points and of the
vectors~x and~xk; (b) illustration of a particle of fluid on the interface.
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2.2 Mathematical formulation for fluid-solid interface: the Virtual Physical
Model

The Virtual Physical Model enables to calculate the Lagrangean force field based
on the momentum balance over a fluid particle placed on the Lagrangean points, as
shown in Fig. 3(b). Applying Newton’s second law to such a particle of fluid, the
Lagrangean force is found to be given by:

~F (~xk, t) = ρ
∂~V (~xk, t)

∂ t︸ ︷︷ ︸
~Fa

+ρ~∇
[
~V (~xk, t)~V (~xk, t)

]
︸ ︷︷ ︸

~Fi

−µ~∇
[
~∇~V (~xk, t)+~∇T~V (~xk, t)

]
︸ ︷︷ ︸

~Fv

+~∇p(~xk, t)︸ ︷︷ ︸
~Fp

(4)

where ~Fa[N] is the force engendered by the particle acceleration, ~Fi[N] is the inertial
force, ~Fv[N] is the viscous force and ~Fp[N] is the pressure force. These terms are
calculated using an approximation based on Lagrange polynomials. Once obtained
the force given by Eq. (4), it is distributed to Eulerian nodes according to Eq. (3),
in order to obtain the Eulerian force field that accounts for the immersed bodies.

2.3 Turbulence model

The turbulence phenomenon is one of the most challenging problems of modern
physics and is among the most complex and fascinating phenomena found in nature.
Due to several practical implications in different sectors, the number of research
related to understanding and control of turbulent flow has increased dramatically.
According to [Vertnik and Šarler (2009)] those flows could be well predicted by
the direct numerical simulation (DNS), but only for low Reynolds number. In their
work, a low-Re k− ε model was used for the solution of incompressible turbulent
flow by a mesh-free method. The suitability of various turbulence models was also
investigated for highly complex swirling flows in tangential inlet cyclones [Karagoz
and Kaya (2009)]. In the present paper, the turbulence model used is based on the
filtering process, using the so-named box filter. The turbulent viscosity is given as
a function of the strain rate and of the scale length as [Smagorinsky (1963)]:

vt = (Csl)
2
√

2S̄i jS̄i j (5)

where the strain rate S̄i j is given as follows:

S̄i j =
1
2

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
(6)
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where l =
√

∆x∆y is the characteristic sub-grid length, and Cs is the Smagorin-
sky constant. The analytical value for homogeneous and isotropic turbulence is
Cs = 0.18. Here, the sub-grid turbulent viscosity plays the role of stabilizing the
numerical instabilities. In the present work, these instabilities are characteristics of
the central difference scheme, which is used for both advective and diffusive terms.

In all simulations a damping function was used in the outlet of the domain. This
function absorbs the vortex in the outlet, avoiding reflections that could propagate
from the outlet towards the inlet of the domain. This function is given by [Meitz
and Fasel (2000)]:

g(ε) = 1−6ε
5 +15ε

4−10ε
3 (7)

with:

ε =
i− i1
i2− i1

(8)

where i is the grid number. The points i1 and i2 (i1 ≤ i≤ i2) indicate the initial and
final grid points of the damped zone. This damping function has the form shown in
Fig. 4.

 
Figure 4: Damping function.
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3 Discretization method

A number of mesh-free methods have been developed [Vertnik and Šarler (2009)]
in recent years, to circumvent the polygonisation problem found in the classical
numerical methods. Here, the momentum and continuity equations are numerically
solved using the finite difference method through the fractional step method based
on the pressure correction concept [Chorin (1968)]. Given the initial velocity, the
pressure and the force fields, an estimated velocity field is obtained. These velocity
field is used to calculate the pressure correction, solving a system of linear algebraic
equations, for which the MSI (Modified Strongly Implicit Procedure), developed by
[Scheneider and Zedan (1981)], is used. The Poisson equation gives the coupling
between Eqs. (1) and (2). Also, it provides values of pressure that allow that
the velocities components, obtained using the Navier-Stokes equations, satisfy the
mass conservation condition. The time discretization is done by the second order
Runge-Kutta method. The estimation of the velocity is calculated as:

ũn+1
i −un
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∆t
=− 1

ρ

∂ pn

∂xi
−
[

∂ (uiu j)
∂x j

]n

+
∂

∂x j

[
ve f

(
∂ui

∂x j
+

∂u j

∂xi

)]n

+ f n
i (9)

where ũi [m/s] is the estimated velocity component, ∆t [s] is the computational
time step and n is the substep index. The Poisson equation for pressure correction,
p
′n+1, with the source term given by the divergent of the estimated velocity, is given

by:

∇
2 p
′n+1 =

ρ~∇~̃un+1

∆t
(10)

The velocity field is updated by solving the following equation:

un+1
i = ũn+1

i − ∆t
ρ

∂ p
′n+1

∂xi
(11)

The previous pressure field pn and the correction pressure p
′n+1 are used to calcu-

late the updated values of the pressure field, according to:

pn+1 = pn + p
′n+1 (12)

4 Numerical results

In the present study, the cylinders are assumed to have equal diameters d and the
distance between their centers is designated byPfor all configurations (tandem,
side-by-side and staggered). The incidence angle between the flow direction and
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the line connecting the centers of the cylinders is indicated by φ . Figure 5 presents
the configurations used herein: Fig. 5(a) depicts the tandem arrangement; Fig.
5(b) indicates the staggered arrangement, in which the upstream cylinder is fixed,
while the downstream cylinder position defines the incidence angle 0◦ < φ < 90◦;
and Fig. 5(c) illustrates the side-by-side arrangement. In all the simulated cases,
the pair of cylinders is symmetrically placed in a uniform grid. The distance from
the surface of each cylinder to the borders of the uniform region is 1.25d in the x
direction and 2d in y direction.

 
                                  (a)                                 (b)                          (c) 
 Figure 5: Scheme of the two cylinders: (a) tandem arrangement (φ = 0◦); (b)

staggered arrangement (0◦ < φ < 90circ); (c) side-by-side arrangement (φ = 90◦).

The simulations were performed at Reynolds numbers Re = 72,000. The dimen-
sionless time was defined as T = tU/d, where t [s] is the physical time. The time
step was set as ∆t = 1× 10−5[s] at the first iteration and was increased gradually
up to ∆t = 1×10−3[s] during the first 100 iterations. After that, the time step was
calculated so that the stability criterion is attained. The grid used is 600x300 points
in x and y directions, respectively.

4.1 Characteristics of vortex shedding

In order to investigate the effect of the cylinders proximity on vortex shedding,
simulations were performed for cylinders in tandem, staggered and side-by-side
arrangements. For all cases, the pitch ratio was assumed to be P/d = 2. The vor-
ticity contours shown in Fig. 6 put in evidence very interesting characteristics of
the flow as the incidence angle changes. In Fig. 6(a) it can be observed that for
the tandem arrangement, the shear layers of cylinder A involves cylinder B with
only one vortex wake formed behind the downstream cylinder. The interaction
between the two shear layers occurs only behind cylinder B, which is inside the
wake of cylinder A. There is a ‘2S’ mode of vortex shedding, composing the clas-
sical Von Kármán Street. According to [Naudascher and Rockwell (1994)], vortex
shedding behind the upstream cylinder (in the present case cylinder A) is not per-
ceived for pitch ratios smaller than 3.8. For low Reynolds number (Re = 220),
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[Deng, Ren, Zhou and Shao (2006)], concluded that for two-dimensional simula-
tions, each cylinder yielded a vortex wake only for P/d ≥ 4. They also stated that,
even in three-dimensional flows for this configuration and P/d ≤ 3.5, the flow is
quasi two-dimensional. For7◦ < φ < 15◦, the internal shear layer from the up-
stream cylinder collides with the frontal part of the downstream cylinder. As the
incidence angle increases, the vortex wake becomes irregular behind the cylinder
B. For φ = 7◦, the ‘2S’ mode of vortex shedding is observed. Increasing the angle
φ , vortices pairs as well as single vortices are observed, composing the wake, as
shown in Fig. 6(d). From Figs. 6(f) to 6(i) it is observed a different behavior of
the flow. In the region near the cylinders, two wakes are formed: the wake from
cylinder A is narrow, while the wake from the cylinder B is wide. However, it is
not possible to classify the vortex shedding mode. The wake becomes complex and
disorganized. It should be noted that these vorticity fields are qualitatively similar
to the standard behavior presented in Fig. 1.

Simulations have also been performed with two circular cylinders in a side-by-side
arrangement for the same pitch ratio and the same Reynolds number. In this con-
figuration, the line defined by the centers of the two cylinders is oriented perpen-
dicularly to the oncoming flow. For this case, the classification of vortex shedding
in phase or anti phase, adopted in the present work, is the same used by [Wang and
Zhou (2005)]. This classification is illustrated in Fig. 7. An anti-phase wake, with
symmetric vortex shedding around the central line of the flow, can be observed in
Fig. 6(j). As time passes, it is observed a gap between the two wakes at approx-
imately 10d downstream of the cylinders. Anti-phase wake was also observed by
other authors at other Reynolds number and pitch ratio. [Wang and Zhou (2005)]
verified this behavior for pitch ratio equal to 3 and Re = 5,900. According to those
authors, the anti-phase vortex shedding is relatively stable, while the in-phase vor-
tex shedding mode is unstable.

4.2 Drag and lift coefficients

Figure 8 shows the time histories of the drag coefficient Cd for the upstream cylin-
der.

It can be seen that the values of this coefficient do not experience large changes
in magnitude for φ ≤ 60◦. However, the fluctuations increase considerably and
become more irregular for φ = 75◦. For φ = 90◦ the signal becomes periodic.

Figure 9 shows the time histories of the drag coefficient for the downstream cylin-
der, whose amplitudes, for low incidence angles (φ ≤ 30◦) are slightly greater than
the amplitudes obtained for the upstream cylinder.

For φ = 45◦ and φ = 60◦, the drag fluctuations for both cylinders exhibit the same
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Figure 6: Vorticity contours for Re = 72,000: (a)φ = 0◦; (b)φ = 7◦; (c)φ = 9◦;
(d)φ = 11◦; (e)φ = 15◦; (f)φ = 30◦; (g)φ = 45◦; (h)φ = 60◦; (i)φ = 75◦; (j)φ = 90◦.
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Figure 7: Illustrative scheme of vortex shedding in phase and anti-phase.
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Figure 8: Time histories of Cd for the upstream cylinder (cylinder A) at Re =
72,000.

behavior. Increasing the angle of incidence to φ = 75◦, the fluctuations become
slightly lower than the counterparts of the upstream cylinder. For the side-by-side
arrangement (φ = 90◦), the amplitudes of the fluctuations for both cylinders are the
same, as expected.

Figure 10 shows the time histories of the lift coefficient Cl for the upstream cylinder.
It can be observed the small amplitudes and mean values close to zero, for φ < 75◦.

On the other hand, for φ ≥ 75◦, a considerable increase in the amplitude of the
fluctuations with respect to the previous incidence angles occurs. In general, the
lift coefficient history is more regular than the drag coefficient history. The mean
values of C` become different from zero. By increasing the incidence angle to
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Figure 9: Time histories of Cd for the downstream cylinder (cylinder B) at Re =
72,000.
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Figure 10: Time histories of Cl for the upstream cylinder (cylinder A) at Re =
72,000.
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φ = 90◦, the amplitudes become slightly smaller than the amplitude for φ = 75◦.
The phase shift observed in the time histories for φ = 90◦ is due to anti-phase vortex
shedding.

Figure 11 shows the time history of the lift coefficient for the downstream cylinder
(cylinder B). For all incidence angles, the fluctuations observed are larger than for
cylinder A. It can also be noted that the amplitudes of the fluctuations increase as
the incidence angle increases, and do not present null mean as noted for cylinder A
for φ < 75◦ except for φ = 0◦.
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Figure 11: Time histories of Cl for the downstream cylinder (cylinder B) at Re =
72,000.

In the following, the mean values of the dynamic coefficients, for the upstream
and downstream cylinders, are compared with the experimental results provided
by [Sumner, Richards and Akosile (2005)] for pitch ratio equal to 2 and Reynolds
number equal to 72,000 for different incidence angles. Figure 12(a) shows the mean
values of the drag coefficient for cylinder A. For φ < 15◦, the Cd decreases slightly
and then increases gradually with the increase of φ . When φ ≤ 65◦, the mean values
of the drag coefficient are smaller from that of the single cylinder (Cd = 1.17), with
differences up to 27%. For φ > 65◦ the mean values ofCdare larger than for a single
cylinder, with a maximum difference of 11%. For φ = 90◦, the maximum value of
the drag coefficient (20% greater than to for a single cylinder) was obtained.

For the downstream cylinder (cylinder B), considered in Fig. 12(b), the mean values
obtained for the drag coefficient are positive in the entire range of incidence angle
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Figure 12: Mean drag coefficients versus φ for Re = 72,000: (a) cylinder A; (b)
cylinder B. Full symbols: present work; empty symbols: [Sumner, Richards and
Akosile (2005)].

and it increase gradually, as this angle increases. In the research work reported
herein, negative values of the drag coefficient were not obtained, as opposed to
what can be observed in the experimental results reported by [Sumner, Richards
and Akosile (2005)].

On the other hand, for high values of φ , the present results show quite good agree-
ment with the experimental results. It seems that the differences between results
obtained in the two works can be reduced by the use of more accurate turbulence
models, as well as by performing full three-dimensional simulations.

Figure 13 shows the mean values of the lift coefficient Cl . Figure 13(a) shows the
variations of the mean values of this coefficient for the upstream cylinder, which
take values close to zero, for incidence angles φ < 75◦, and values different from
zero in the range 75◦ < φ < 90◦. On the other hand, for the downstream cylinder
considered in Fig. 13(b), the mean values of the lift coefficient increase in modulus,
up to φ = 15◦. After that, the values of the mean lift coefficient decrease, in mod-
ulus, for incidence angles up to φ = 45◦. For φ > 45◦, the mean values of Cl are
positive. Another aspect to be pointed out is that the present results for upstream
cylinder are in good agreement with the corresponding acquired counterparts for
the entire range of φ . Nevertheless, for the downstream cylinder, the agreement
of the results obtained for φ < 15◦ with those presented by [Sumner, Richards and
Akosile (2005)] is not in good agreement, and further investigations are required to
confirm this point.
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Figure 13: Mean lift coefficients versus φ for Re = 72,000: (a) cylinder A; (b)
cylinder B. Full symbols: present work; empty symbols: [Sumner, Richards and
Akosile (2005)].

5 Concluding remarks

In the present work, an extensive numerical investigation about interference ef-
fects between two circular cylinders in the subcritical Reynolds number regime
Re = 72,000 was undertaken in such a way that the pair of circular cylinders of
equal diameters was arranged in different configurations. The numerical results in
terms of the vorticity contours, the time histories and the mean values of the dy-
namic coefficients were obtained for both cylinders, for a pitch ratio equal to 2 and
for the incidence angle φ ranging from 0◦ to 90◦. The variations of the dynamic
coefficients were related to the changes in the flow patterns as change the cylinder
configurations. For the tandem arrangement and φ = 7◦, the downstream cylinder
is inside the wake of the upstream cylinder. As the incidence angle increases up to
15˚ it was observed a new behavior in the wake. The internal shear layer from the
upstream cylinder collides against the frontal part of the downstream cylinder.

For 15◦ < φ ≤ 75◦, it can be observed two wakes from the cylinders, one narrow
and the other wide. For the side-by-side configuration, the wakes are independent.
It was verified that these behaviors are more significant on the dynamic coefficients
of the downstream cylinder as compared with the upstream cylinder.

Forφ ≤ 60◦ the upstream cylinder presented mean values approximately equal to
zero for the lift coefficient while for the downstream cylinder the mean values are
different from zero. The results for the upstream cylinder presented good agree-
ment with the experimental acquired counterparts obtained by [Sumner, Richards
and Akosile (2005)] for all incidence angles considered herein. Nonetheless, for
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the downstream cylinder the results must be improved, although they presented
good agreement with experimental counterparts for φ > 15◦. The difference be-
tween the numerical and experimental results can be attributed mainly to the two-
dimensionality of the simulations.
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