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Numerical Inversion of Multi-Parameters in
Multi-Components Reactive Solutes Transportation in an

Undisturbed Soil-Column Experiment
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Abstract: In this paper, an undisturbed soil-column infiltrating experiment is in-
vestigated, and a mathematical model describing multi-components solutes trans-
port behaviors in the column is put forward by combing hydro-chemical analysis
with advection dispersion mechanisms, which is a group of advection-dispersion-
reaction partial differential equations. Since the model involving six reaction coef-
ficients which can not be obtained directly, an optimal perturbation regularization
algorithm of determining these parameters is performed, and numerical simulations
under different conditions are carried out. Furthermore, the inversion algorithm is
applied to solve the real inverse problem by utilizing the measured breakthrough
data. The reconstruction data basically coincide with the measured data show-
ing that the inversion algorithm is efficient to the inverse problem of determining
multi-parameters in a group of advection-dispersion equations arising in solutes
transportation. The model and the inversion coefficients can be utilized to describe
the experimental process and the experimental result.

Keywords: Multi-components solutes transport; soil-column experiment; break-
through data; inverse problem of multi-parameters identification; optimal perturba-
tion regularization algorithm; simulation; numerical inversion.

1 Introduction

Soil and groundwater pollution has become a serious threat to sustainable develop-
ment throughout the world. It is important for pollution controlling and remedy-
ing to characterize contaminants transport behaviors quantitatively in the soil and
groundwater. From the 1980s, there has been much researches on solutes transport
models and inverse problems [Yeh (1986); Nielsen, Van Genuchten, and Biggar
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(1986); Van Genuchten and Wagenet (1989); Sun (1994, 1996); Atmadja and Bagt-
zoglou (2001); Mahar and Datta (2001); Zhang and Bennett (2002)]. In mathemat-
ics, convection-dispersion equation(s), stochastic model, and hydro-geochemical
model have widely applications on the researches of solute transport behaviors,
especially for single solute transport, or non-reactive solutes transport in porous
medium. However, there seem to have few effective methods in a view of applying
mathematics for multi-components reactive solutes transportation. Although there
are some researches by combing convection dispersion mechanism with geochem-
ical analysis, the researching methods mainly focus on numerical simulations and
parameter discussions depending upon extra experiments and experimental data
analysis [Miller and Benson (1983); Cederberg and Street (1985); Rafael and An-
tonis (1997); Kenneth (1998); Delolme, Hebrard, Spadini, and Gaudet (2004)].

Actually, since some model parameters can not be measured directly in many cases,
we are always encountering with inverse problems of identifying and determining
the parameters when coping with problems of soil and groundwater. It is notice-
able that with development of computational techniques, inverse problem methods
and inversion algorithms have been developed and utilized in a wide variety of
applications in science and engineering [Toride, Leij, and Van Genuchten (1995);
Engl, Hanke, and Neubauer (1996); Keung and Zou (1998); Guo and Zou (2001);
Ling and Atluri (2006); Liu (2006); Li, Tan, Yao, Wang, and Liu (2008)]. Most
of the numerical methods are based on regularization strategies so as to overcome
ill-posedness and data noises, and one should choose suitable regularization algo-
rithms for different kinds of inverse problems. For example, method of fundamen-
tal solutions [Ling and Takeuchi (2008); Marin (2009)], one-step group preserving
scheme and lie-group estimation method [Liu, Liu, and Hong (2007); Liu, Chang,
and Chang (2008)], level set method [Shim, Ho, Wang, and Tortorelli (2008); Lin,
Chen, Cheng, and Wang (2009)], and optimal perturbation algorithms [Su (1995);
Li, Cheng, Yao, Liu and Liu (2007)] have been testified to be effective methods
in dealing with corresponding inverse problems. As for the inverse problem of
multi-parameters identification of multi-components reactive solutes transport with
limited experimental data, the situation becomes very complicated. One difficulty
is how to give quantitative analysis on physical/chemical reactions occurring in
the solutes transportation, the other is how to uniquely determine multi-parameters
with higher precision as can as possible.

This paper will deal with a multi-parameters inversion problem arising from an
undisturbed soil-column infiltrating experiment. As we know, there are disturbed
and undisturbed soil-column experiments. For an undisturbed soil-column experi-
ment, the soil may preserve its original structure and ingredient which can result in
complicated physical/chemical reactions in the solutes transportation in the liquid
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and solid phases when solute ions are being penetrated through the column with
the inflow. On the other hand, there are quite a few investigations on disturbed soil-
column experiments, but few for undisturbed experiments in the literatures we have
[Pang and Close (1999); Inoue, Simunek, Shiozawa, and Hopmans (2000); Kamra,
Lennartz, Van Genuchten, and Widmoser (2001); Cui, Li, Li, and Yang (2004)].
The reason may be that for an undisturbed soil-column experiment involving in
multi-components reactive solutes transportation, it is not easy to describe compli-
cated physical/chemical reactions possibly occurring in the column in mathematics
[Zhang and Su (2004); Zhang, Xu, and Zhang (2006)].

As stated above, an effective way of researching multi-components reactive solutes
transport is to combine hydro-chemical analysis with advection dispersion mecha-
nisms to get a coupled model. Actually, for a real solutes transport problem, when
geochemical analysis and preliminary principles known, the problem left is to iden-
tify and determine the model parameters in mathematics as can as possible. In this
paper, we will employ a modified optimal perturbation regularization algorithm
to determine reaction coefficients so as to explore transport behaviors of multi-
components reactive solutes, and give a good-fit reconstruction to the measured
breakthrough data for an undisturbed soil-column infiltrating experiment.

The paper is arranged as follows.

In section 2, a real soil-column infiltrating experiment carried out in Zibo, Shan-
dong Province, China is introduced. In section 3, by combing hydro-chemical anal-
ysis with advection dispersal principles, a mathematical model describing multi-
component solutes transport behaviors in the column is put forward, which is a
group of advection-dispersion-reaction equations, and an inverse problem of deter-
mining multi-parameters in the model ensues based on the additional breakthrough
data. Section 4 gives a modified optimal perturbation regularization algorithm with
which numerical simulations are carried out under different conditions. In section
5, the optimal perturbation algorithm is applied to solve the real inversion problem,
and the reaction coefficients are worked out by which the measured breakthrough
data are reconstructed successfully. Finally, several conclusions and discussions
are given in section 6.

2 The soil-column experiment

In order to describe and reveal transport behaviors and characteristics of the solutes
ions when they penetrating through the soils, soil-column infiltrating experiments
are often carried out in Lab or in field. This paper will deal with an undisturbed
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soil-column experiment1. The experiment was carried out in a laboratory in Zibo,
Shandong Province, China, by taking an original soil-column nearby a coal mine
region, and infiltrating with the coal mine water. The soil belongs to sub-sandy clay
whose main components are calcium sulphate, limestone, and magnesium sulfate,
etc. On the other hand, SO2−

4 , and Ca2+ and Mg2+ are rich in coal-mine water. So,
an undisturbed soil-column infiltrating experiment was done so as to investigate
transport behaviors of acid mine pollutants when across through the sulphates soils.

The experimental device is installed by three parts: infiltrating system, soil-column
system and sample collector system. The diameter of the lucite tube loading the
soil-column is 20cm, the height of the column is 45cm, the total infiltrating time
with the coal mine water is 119 hour, and the total infiltrating quantity is about 70
liter.

Throughout the experiment, the fluid that reaches the bottom of the column was col-
lected as samples by time and analyzed immediately, and then the solutes concen-
trations at the bottom of the column were obtained which are called breakthrough
data. Although quite a few solutes ions were taken into considerations in hydro-
chemical testing and analysis, we will pay attention to three kinds of solutes ions
which are SO2−

4 , Ca2+ and Mg2+. As for other solutes ions, we will take Cl− as
example to do hydro-dynamical dispersal analysis due to its conservative property.
In the follows, some basic parameters for the experiment which can be estimated
directly are listed in Tab.1, and the measured breakthrough data of the four solutes
ions are plotted in Fig.1, respectively.

Table 1: Basic parameters in the soil-column experiment

l[cm] aL[cm] v[cm/s] D[cm2/s] T1[h]
45 1 3.76e-3 3.76e-3 119

Where l is the length of the column, aL is the dispersitivity which is determined
based on known experimental results [Sun, 1996], v is the average pore water ve-
locity which is estimated by the experiment, and then the dispersion coefficient is
obtained by D = aLv; T1 denotes the total infiltration time with the coal mine water.

By Fig.1, and noting that initial concentrations in the inflow of the four kinds of
ions are known as [Ca2+]0=338.28 mg/L, [SO2−

4 ]0=1062.9 mg/L, [Mg2+]0=104.42
mg/L and [Cl−]0=219.1 mg/L, respectively, we can find that the first outflow con-
centrations of Ca2+, SO2−

4 and Mg2+ at t = 0.5 h are almost double more than

1 The experiment was supplied by The Inspecting Station of Geology and Environment in Zibo,
Shandong.
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Figure 1: Breakthrough data of the four solutes ions.

those in the inflow, and their breakthrough data go down rapidly at the initial stage,
and then decrease with time going on. Maybe rapid dissolutions of ion species hap-
pened in the solid phase into the liquid phase for the three solutes ions, and after the
short dissolution stage, some chemical decay reactions may play an important role
for their transporting behaviors through the column, and the solutes concentrations
in the outflow have decreasing trends. As for Cl−, its concentration only has small
changes so that we think there are no more physical/chemical reactions occurring
to it.

Let us investigate main physical/chemical reactions between solid and liquid phases
in the column for the three solutes ions of Ca2+, SO2−

4 and Mg2+. Noting that there
exist quite a few calcium sulphate (CaSO4), crystallized gypsum (CaSO4 · 2H2O)
and magnesium sulfate (MgSO4 ·7H2O) in the experimental soil, which could have
some reactions of dissolution and precipitate with the inflow infiltrating into the
column. We will consider the following reactions:

CaSO4→ Ca2+ +SO2−
4 (1)
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MgSO4 ·7H2O→Mg2+ +SO2−
4 +7H2O (2)

Ca2+ +SO2−
4 +2H2O→ CaSO4 ·2H2O↓ (3)

Mg2+ +2OH−→Mg(OH)2 ↓ (4)

where (1) and (2) represent dissolution reactions, and (3) and (4) represent precip-
itation reactions. In the next section, we will construct a mathematical model of
partial differential equations based on the above chemical reactions and hydrody-
namic dispersion mechanism.

3 Mathematical model and the inverse problem of determining multi-parameters

Denote c1, c2, c3 and c4 as the concentrations of Ca2+, SO2−
4 , Mg2+, and Cl− at

time t and space point x in the liquid phase respectively, and s1,s2 represent the
intrinsic concentrations of calcium sulphate and crystallized magnesium sulfate in
the soils respectively, and ka, ks denote dissolved coefficients of the calcium and the
crystallographic magnesium sulfate, and kg, km denote precipitation coefficients of
the gypsum and magnesium hydrate respectively.

By general advection-dispersion mechanism combing with the analysis of chemical
reactions as indicated in (1), (2), (3) and (4), a transport model for the four kinds
of solutes ions penetrating through the column can be described as follows for
0 < x < l, and 0 < t < T1:

∂c1
∂ t = D ∂ 2c1

∂x2 − v ∂c1
∂x + kas1− kgc1c2,

∂c2
∂ t = D ∂ 2c2

∂x2 − v ∂c2
∂x + kas1− kgc1c2 + kss2,

∂c3
∂ t = D ∂ 2c3

∂x2 − v ∂c3
∂x + kss2− kmc3,

∂c4
∂ t = D ∂ 2c4

∂x2 − v ∂c4
∂x .

(5)

Furthermore, suppose that s1(t) = s10 exp(−kat), and s2(t) = s20 exp(−kst), here
s10 = s1(0), s20 = s2(0), and setting r1 = ka, r2 = kas10, r3 = kg, r4 = ks, r5 = kss20,
and r6 = km, we can get the following equations:

∂c1
∂ t = D ∂ 2c1

∂x2 − v ∂c1
∂x + r2e−r1t − r3c1c2,

∂c2
∂ t = D ∂ 2c2

∂x2 − v ∂c2
∂x + r2e−r1t − r3c2c1 + r5e−r4t ,

∂c3
∂ t = D ∂ 2c3

∂x2 − v ∂c3
∂x + r5e−r4t − r6c3,

∂c4
∂ t = D ∂ 2c4

∂x2 − v ∂c4
∂x .

(6)

It is noticeable that the six parameters r j( j = 1,2, · · · ,6) are unknown which rep-
resent the chemical reactions occurring in the soil-column. Denote Ci = ci/ci0(i =
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1,2,3,4), here ci0(i = 1,2,3,4) are the initial concentrations of the four ion species
in the inflow. Let Z = x/l, T = vt/l, P = vl/D, and a j = r jl/v( j = 1,2, · · · ,6), we
have the following dimensionless model:

∂C1
∂T = 1

P
∂ 2C1
∂Z2 − ∂C1

∂Z + 1
c10

a2e−a1T − c20a3C1C2,
∂C2
∂T = 1

P
∂ 2C2
∂Z2 − ∂C2

∂Z + 1
c20

a2e−a1T − c10a3C1C2 + 1
c20

a5e−a4T ,
∂C3
∂T = 1

P
∂ 2C3
∂Z2 − ∂C3

∂Z + 1
c30

a5e−a4T −a6C3,
∂C4
∂T = 1

P
∂ 2C4
∂Z2 − ∂C4

∂Z .

(7)

For the above advection-dispersion-reaction equations, the initial conditions are
given as

Ci(Z,0) = 0, i = 1,2,3,4, (8)

and the boundary conditions are set to be

Ci(0,T ) = 1,
∂Ci

∂Z
(1,T ) = 0, i = 1,2,3,4. (9)

Then a forward problem is formulated by the dimensionless model (7) together
with the initial boundary value conditions (8) and (9). Just as stated in the above,
by the soil-column experiment, the so-called breakthrough data are obtained which
given in Fig.1. In other words, we have the following measured breakthrough data:

Ci(1,Tk) = Ĉi k, i = 1,2,3,4, k = 1,2, · · ·K, (10)

where K represents the number of measured breakthrough data. As a result, an
inverse problem of identifying the unknown parameters a j( j = 1,2, · · · ,6) in the
model (7) is encountered which is the forward problem (7)-(9) with the additional
condition (10).

In the follows, an optimal perturbation regularization algorithm will be introduced,
and the unknown reactive coefficients can be determined with which the measured
breakthrough data will be reconstructed.

4 Optimal perturbation algorithm and numerical simulations

4.1 The inversion algorithm

Denote a = (a1,a2, · · · ,a6)T , then it is transformed to the following minimization
problem to solve the above inverse problem (7)-(10) numerically:

min
Sa
{ max

i=1,2,3,4

K

∑
k=1

[Ci(1,Tk;a)−Ĉik]2 +α||a||22}, (11)



60 Copyright © 2009 Tech Science Press CMES, vol.51, no.1, pp.53-72, 2009

where Sa denotes an admissible set of the unknown parameters vector, for example
for positive constant E, Sa = {a : ||a||2 ≤ E, a j > 0, j = 1,2, · · · ,6} is suitable, and
α > 0 is regularization parameter, K is the number of the samples given in (10). In
the concrete computations, the above minimization problem (11) can be solved by
obtaining an+1 for given an by the following iteration procedure:

an+1 = an +σσσan, n = 0,1, · · · , (12)

here σσσan = (δan
1,δan

2, · · · ,δan
6)

T is called perturbation vector for each n, which is
worked out by minimizing the following functional for given an:

F(σσσan) = max
i=1,2,3,4

K

∑
k=1

[Ci(1,Tk;an +σσσan)−Ĉik]2 +α||σσσan||22, (13)

If the best perturbation σσσan is obtained by minimizing (13), then the optimal param-
eter can be approximated by iterations (12) as long as the perturbation satisfying a
given precision. The iterative procedures are listed below:

Step 1. Given initial iteration vector an (n = 0,1, · · · ), compute the output errors

Ei =
K

∑
k=1

[Ci(1,Tk;an)−Ĉik]2, i = 1,2,3,4

for the four ions respectively, and suppose the largest error is Em, where m is one
number from 1 to 4, then define the error functional as follows:

F(σσσan) = Em +α||σσσan||22. (14)

Step 2. By the above expression (14), and utilizing ordinary optimal perturba-
tion algorithm [Li, Cheng, Yao, Liu and Liu (2007); Li, Tan, Yao, Wang, and Liu
(2008)], the perturbation vector can be worked out via

σσσan = (α I+GT G)−1 GT (ηηηm−ξξξ m), (15)

where G =(gk j)K×6,gk j = [Cm(1,Tk; an +τ e j)−Cm(1,Tk;an)]/τ, k = 1, · · · ,K, j =
1, · · · ,6, here e j = (0, · · · ,1, · · · ,0)T ( j = 1, · · · ,6) is basis functions of R6; and

ξξξ m =(Cm(1,T1;an),Cm(1,T2;an) · · · ,Cm(1,TK ;an))T , ηηηm =(Ĉm1,Ĉm2 · · · ,ĈmK)T ,

(16)

and τ is numerical differential step.
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Step 3. If the perturbation satisfies a given precision eps by ||σσσan||2 ≤ eps, then
the algorithm is terminated, and an+1 = an +σσσan is taken as the parameter solution
what we just want to determine; otherwise, go to Step 1 by replacing an with an+1.

In the follows, numerical simulations for determining the reaction coefficients will
be carried out based on the inverse problem (7)-(10) by applying the above optimal
perturbation regularization algorithm. All computations are performed in a PC of
Dell Dimension 9200.

4.2 Impacts of regularization parameters with numerical differential steps

Set the true coefficient vector as atrue = (1, 0.5, 0.01, 1, 0.8, 1.5), and the additional
data are generated by substituting the true coefficient into the forward problem
(7)-(10) to work out. In this subsection, we will perform the algorithm by fixing
initial iteration a0 = 0 so as to investigate impacts of regularization parameters with
numerical differential steps on the inversion algorithm.

1) τ = 0.1

By applying the above inversion algorithm with convergent precision as eps =
2e− 4, the reaction coefficient can be reconstructed and the inversion results to
different regularization parameters are listed in Tab.2, where αrepresents regular-
ization parameter, n denotes number of iterations, ainv represents reconstruction
coefficients vector, and Err = ||atrue− ainv||2/||atrue||2 denotes relative inversion
error.

Table 2: Impacts of regularization parameters with τ = 0.1

α n ainv Err
≤ 4.5e-4 divergent or failure

4.6e-4 270 (0.9680, 0.4566, 0.0100, 0.9877, 0.7700, 1.5000) 2.77e-2
4.7e-4 373 (1.0010, 0.5025, 0.0100, 0.9800, 0.7543, 1.5001) 2.24e-2
4.8e-4 383 (1.0071, 0.5114, 0.0100, 0.9761, 0.7448, 1.5000) 2.72e-2
4.9e-4 382 (1.0055, 0.5098, 0.0100, 0.9762, 0.7443, 1.5001) 2.72e-2
5.0e-4 386 (1.0040, 0.5069, 0.0100, 0.9774, 0.7475, 1.5000) 2.54e-2
5.1e-4 730 (1.0388, 0.5604, 0.0100, 0.9674, 0.7258, 1.5001) 4.77e-2
5.2e-4 749 (1.0218, 0.5331, 0.0100, 0.9792, 0.7522, 1.5001) 2.89e-2
5.3e-4 821 (1.0259, 0.5396, 0.0100, 0.9769, 0.7472, 1.5000) 3.29e-2
5.4e-4 589 (1.0719, 0.6174, 0.0100, 0.9456, 0.6804, 1.5001) 8.39e-2
≥ 5.5e-4 divergent

By Tab.2, we find that regularization parameters should be chosen in a suitable
range for a given differential step. In this example, optimal regularization param-
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eters should belong to a trustworthy domain of [4.6e-4, 5.4e-4] in which the algo-
rithm is convergent, and the inversion errors belong to [0.0224, 0.0839]. Fig.2 plots
inversion errors varying with regularization parameters in such case for α ∈[4.5e-4,
5.42e-4].

2) τ = 0.01

In this case, the convergent precision is taken as eps = 1e−4, the inversion results
are listed in Tab.3, where α also represents regularization parameter, and n, ainv,
and Err have the same meanings as used in Tab.2.

 

Figure 2: Inversion errors with regularization parameters for τ = 0.1.

By Tab.3, we find that regularization parameter should be chosen a little larger
in the case of τ = 0.01 than that of τ = 0.1, and optimal regularization parameters
should belong to a trustworthy domain of [0.00390, 0.00394] in which the inversion
errors are smaller than 0.0754. In addition, we also find that convergent precision
plays a special role in the realization of the inversion algorithm. Fig.3 plots the
inversion errors vary with the convergent precisions for α =0.0039.

3) τ = 0.001

In this case, the convergent precision is taken as eps = 2e− 5, and the inversion
results are listed in Tab.4, where α , n, ainv, and Err also have the same meanings
as in Tab.2.
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Table 3: Impacts of regularization parameters with τ = 0.01

α n ainv Err
≤ 3.88e-3 divergent

3.89e-3 1282 (1.1570, 0.7920, 0.0100, 0.8988, 0.5913, 1.5002) 1.79e-1
3.90e-3 842 (1.0099, 0.5201, 0.0100, 0.9296, 0.6458, 1.5000) 7.54e-2
3.91e-3 1034 (1.0186, 0.5322, 0.0100, 0.9387, 0.6645, 1.5001) 6.76e-2
3.92e-3 1072 (1.0301, 0.5502, 0.0100, 0.9366, 0.6608, 1.5000) 7.22e-2
3.93e-3 1230 (1.2696, 1.1004, 0.0100, 0.8612, 0.5291, 1.5003) 3.20e-1
3.94e-3 1065 (1.0300, 0.5497, 0.0100, 0.9358, 0.6594, 1.5000) 7.28e-2
3.95e-3 divergent
3.96e-3 1285 (1.1528, 0.7825, 0.0100, 0.9002, 0.5943, 1.5002) 1.74e-1
≥ 3.97e-3 divergent

 

Figure 3: Inversion errors with convergent precisions for α =0.0039 and τ =0.01.

By Tab.4, we can find that regularization parameter should be chosen much more
larger in the case of τ = 0.001 than those of τ = 0.1 and τ = 0.01, and optimal
regularization parameters should belong to a trustworthy domain of [0.010, 0.014]
in which the inversion errors belong to [5.80e-2, 2.10e-1]. In addition, by the above
computations, we can also see that the smaller of numerical differential steps, the
greater of number of iterations, and the larger of the inversion errors. For the inverse
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Table 4: Impacts of regularization parameters with τ = 0.001

α n ainv Err
≤ 9e-3 divergent or failure
1.00e-2 2836 (1.1848, 0.8592, 0.0100, 0.8890, 0.5749, 1.5002) 2.10e-1
1.10e-2 4140 (1.0146, 0.5254, 0.0100, 0.9348, 0.6830, 1.5000) 5.80e-2
1.20e-2 2365 (1.0034, 0.5093, 0.0100, 0.9358, 0.6585, 1.5001) 6.87e-2
1.25e-2 4317 (1.0065, 0.5145, 0.0100, 0.9347, 0.6561, 1.4999) 7.00e-2
1.30e-2 3764 (1.0972, 0.6650, 0.0100, 0.9334, 0.6552, 1.5001) 1.10e-1
1.40e-2 4829 (1.0264, 0.5435, 0.0100, 0.9391, 0.6661, 1.5001) 6.87e-2
≥ 1.50e-2 divergent

problem investigated here, it seems to be better to perform the inversion algorithm
with relatively large numerical differential steps. In the follows, the inversion al-
gorithm will be applied to solve the inverse problem (7)-(10) of determining the
unknown parameters by real measured breakthrough data.

4.3 Numerical convergence of the inversion algorithm

In this subsection, we will investigate convergence of the above inversion algorithm
by numerical testification. According to the above computations, also set the true
parameter as atrue = (1, 0.5, 0.01, 1, 0.8, 1.5) as that in the last subsection, and
choose numerical differential step as τ = 0.1, regularization parameter as α=5e-4,
and initial iteration as zero. The inversions errors vary with number of iterations
are plotted in Fig.4.

By the computations and Fig.4, we can see that the more of iterations, the smaller
of the inversion errors showing that the inversion algorithm is at least of numerical
convergence.

5 Determination of model parameters and reconstruction of the breakthrough
data

It is much more complicated to solve a real problem with real data than to do
numerical simulations. As for a regularization algorithm, it always needs larger
regularization parameters for real problems than for artificial simulations. In the
concrete computations for the inverse problem of (7)-(10) with the real break-
through data, we will choose large regularization parameters and numerical dif-
ferential steps based on the numerical simulations carried out in the last section.

By setting initial iteration as a0 = 0, convergent precision as eps = 1e− 5, and
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Figure 4: Inversion errors with number of iterations.

choosing regularization parameter as α=0.0392, and numerical differential steps
vector as τ = 0.1, the six parameters in the model (7) can be worked out, which is

ainv = (0.0226, 7.9755, 11.2678, 10.8256, 1.8089, 0.0379), (17)

Furthermore, by substituting the above inversion coefficients into the model (7),
the breakthrough data can be reconstructed which are plotted in Fig.5 as compared
with the real measured data.

On the other hand, define average absolute and relative computational errors for the
four solutes ions by

Erri
abs = ||ηηη i−Ci(1,T ; ainv)||2, i = 1,2,3,4, (18)

and

Erri
rel = Erri

abs/||ηηη i||2, i = 1,2,3,4, (19)

respectively, where ηηη i is the measured breakthrough data vector given in (16) (i =
1,2,3,4), ainv is the inversion coefficients vector given by (17), and Ci(1,T ;ainv) is
the reconstruction breakthrough data for i = 1,2,3,4, respectively. The computa-
tional errors are listed in Tab.5.



66 Copyright © 2009 Tech Science Press CMES, vol.51, no.1, pp.53-72, 2009

 
Figure 5: Reconstruction data and real breakthrough data.

Table 5: Computational errors for the four kinds of solutes ions

Ca2+ SO2−
4 Mg2+ Cl−

Errabs 0.2068 0.4010 0.1372 0.4011
Errrel 0.0358 0.0756 0.0312 0.1010

By Fig.5 and Tab.5, we can see that the reconstruction breakthrough data are ba-
sically agree with the real data, and the relative inversion errors are not too large
showing that the inversion for the reaction coefficients in model (7) are satisfactory.

6 Discussions and conclusions

6.1 On the reaction coefficients

Let us come back to original dimensions for the six reaction coefficients given by
(17). Noting a j = r jl/v for j = 1,2, · · · ,6, and with hour as time dimension we
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have

rinv = (0.0068, 2.3990, 3.3894, 3.2563, 0.5441, 0.0114), (20)

by which we get
ka = 0.0068[/h], ks = 3.2563[/h], kg = 3.3894[L/g/h], km = 0.0114[/h];
and
s10 = 352.9[g/L], s20 = 0.1671[g/L].

By the above parameters, we can see that the dissolution speed of calcium sulphate
is much smaller than that of crystallized magnesium sulfate in the column, and the
precipitation speed of gypsum is much greater than that of magnesium hydrate in
the column. Moreover, there are plenty of calcium sulphates in the original soils as
compared with the crystallized magnesium sulfate, and calcium sulphate plays an
essential role throughout the solutes transport process.

6.2 On space distributions with time

By substituting the inversion coefficients into the forward problem, we can get
time-space concentration distributions of the four ions. Fig.6, Fig.7, Fig.8, and
Fig.9 plot space distributions of the four solutes ions at different time, respectively.

By the above figures, we find that there really occurred dissolution processes for the
solutes of Ca2+, SO2−

4 and Mg2+ as soon as the experiment began, which resulted in
increasing trends of the space distributions at the initial stage; and with time going
on, precipitation actions or some decay actions played dominating roles so that the
space distributions were in decreasing situations until they arrived at asymptotic
equilibriums. However, as for Cl−, all of its space distributions were in a falling
mode at the interval of t ∈ (0, 4h), which maybe resulted from convection actions,
and after t > 5h, it reached its equilibrium rapidly.

On the other hand, we can see that Mg2+ participated chemical reactions with Ca2+

and SO2−
4 , but it displayed different behaviors, and got its equilibrium at about

t = 6h which is greatly ahead of Ca2+ and SO2−
4 . It is fortunate that the above

statements are basically in keeping with those inferences given in section 2.

6.3 On the model and the inversion algorithm

By the numerical simulations and data reconstruction results, we can see that based
on inversion method, it is feasible to combine hydro-chemical analysis with advection-
dispersion principles on the researches of multi-components reactive solutes trans-
port behaviors. The reconstruction breakthrough data basically coincide with the
measured data, and the model with the reaction coefficients can be utilized to de-
scribe the solutes transport behaviors in the experiment and explain the experimen-
tal results to some extent.
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Figure 6: Space distributions of Ca2+.

 

Figure 7: Space distributions of SO2−
4 .
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Figure 8: Space distributions of Mg2+.

 

Figure 9: Space distributions of Cl−.
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However, at the initial stage of t ∈ (0, 0.5h) for the experiment, it is still a trouble
to describe the solutes transport behaviors with much more accuracy due to lack of
measured data. Maybe better experimental devices, and other mathematical tools
are needed.

As for the inversion algorithm utilized in this paper, it is an improvement to the
ordinary optimal perturbation algorithm which can be applied to solve parameters
identification problem numerically arising from a group of equations. Just as stated
in subsections 4.2 and 4.3, it needs suitable conditions in realization of the inversion
algorithm. For example, regularization parameters should be in a trust range so
that an optimal solution can be obtained for given numerical differential step, and
differential steps should not be too small. We will make more investigations on the
optimal inversion algorithm in our sequent works.
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