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The Chebyshev Tau Spectral Method for the Solution of
the Linear Stability Equations for Rayleigh-Bénard

Convection with Melting

Rubén Avila1, Eduardo Ramos2 and S. N. Atluri 3

Abstract: A Chebyshev Tau numerical algorithm is presented to solve the per-
turbation equations that result from the linear stability analysis of the convective
motion of a fluid layer that appears when an unconfined solid melts in the presence
of gravity. The system of equations that describe the phenomenon constitute an
eigenvalue problem whose accurate solution requires a robust method. We solve
the equations with our method and briefly describe examples of the results. In the
limit where the liquid-solid interface recedes at zero velocity the Rayleigh-Bénard
solution is recovered. We show that the critical Rayleigh number Rac and the crit-
ical wave number ac are monotonically decreasing functions of the rate of melting
of the solid. We conclude that the parameters Rac and ac are independent functions
of the Prandtl number in the range 1 ≤ Pr ≤ 10,000. We also show that as the Pr
number is reduced, Pr < 1, the critical parameters are nonmonotonic functions of
the rate of melting.

Keywords: Tau-Chebyshev method, spectral method, stability analysis, phase
change, melting.

1 Introduction

The melting of a solid body heated from below under the influence of the Earth’s
gravity force may lead to the instability and natural convective motion of the grow-
ing liquid phase. The melting of the solid material results in time-dependent phys-
ical and geometrical conditions of the liquid phase, which in turn have a large
influence on the stability and convective flow pattern selection. A fundamental un-
derstanding of the onset of convective motion and the resulting flow patterns in the

1 Departamento de Termofluidos, Facultad de Ingeniería, Universidad Nacional Autónoma de Mé
xico, Mexico D.F. C.P. 04510, ravila@servidor.unam.mx

2 Centro de Investigación en Energía, Universidad Nacional Autónoma de México, AP. P. 34, 62580,
Temixco Mor. México, erm@mazatl.cie.unam.mx

3 Center for Aerospace Research & Education, University of California, Irvine



74 Copyright © 2009 Tech Science Press CMES, vol.51, no.1, pp.73-92, 2009

fluid layer may lead to an increase in the performance of devices used in a large
field of engineering applications such as in material processing [Langlois (1985)]
and thermal energy storage [Sparrow, Schmidt, and Ramsey (1978); Zhang, Su,
Zhu, and Hu (2001)]. In core melt progression studies, in hypothetical severe
accidents in nuclear reactors, it has been concluded that an understanding of the
convective motion in the molten material is crucial for the implementation of se-
vere accident management strategies [Asmolov, Ponomarev-Stepnoy, Strizhov, and
Sehgal (2001)]. In nature, the stability conditions, and the onset of natural con-
vection in the liquid phase, contribute to an increase in the rate of melting of ice
in the Earth’s polar regions and glaciers. Another important geophysical system
that continuously undergoes melting is the shallower level of the Earth’s mantle
(partial melting of the mantle rocks) [Ribe (1985)]. It is well known that the solu-
tion of problems in science and engineering where a moving interface is present,
must be addressed by using sophisticated numerical techniques, which are based
either on methodologies that require a numerical grid (finite elements, control vol-
umes, spectral elements, etc.) or on meshfree numerical algorithms (meshless local
Petrov Galerkin methods or meshfree local radial basis function collocation meth-
ods); see for example [Atluri and Zhu (1998); Lin and Atluri (2001); Avila and
Solorio (2009); Kosec and Šarler (2009)].

The first systematic study of the stability of a fluid layer heated from below, in the
presence of body forces, was performed by Rayleigh in a classical paper [Rayleigh
(1916)] aimed to identify the conditions that lead to the onset of fluid motion.
Rayleigh considered an infinite fluid layer of constant height and his analysis was
restricted to linear perturbations. He established a set of equations derived from the
fundamental principles of mass, momentum and energy conservation, that consti-
tute an eigenvalue problem and solved them with an essentially analytical method.
Reviews of Rayleigh’s theory and its numerous extensions and generalizations can
be found in monographes such as for example [Chandrasekhar (1961); Koschmieder
(1993) and Getling (1998)]. A great deal of knowledge on the problem is now avail-
able, but it is recognized that in most cases, the solution of the equations must be
sought by using numerical techniques. The stability of a fluid layer generated by
the melting of a solid and consequently confined in a region whose height is a func-
tion of time has been studied less. This problem presents features similar to those
of the classical Stefan problem where the position of the liquid-solid interface is
a part of the solution. In the literature, the problem has been addressed by using
various degrees of approximation. [Sparrow, Lee, and Shamsundar (1976)] con-
ducted a numerical investigation of the convective instability of a melt layer heated
from below; in their analysis, the temporal variation of the velocity and temperature
perturbations was neglected. By using a shooting technique to solve the stability
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equations, they found a nonmonotonic variation of the critical Rayleigh number
with the Stefan number of the system. [Liu (2006); Liu (2008); Liu, Chang, and
Chang (2008)] have described in detail, the general characteristics of the shoot-
ing numerical technique. [Hwang (2001) and Smith (1988)] considered that the
liquid-solid interface moves with a constant velocity, however, this assumption is
inconsistent with observations of [Boger and Westwater (1967)] and with the well
known theory on the Stefan problem [Stefan (1891); Carlslaw and Jaeger (1959)].
[Kim, Lee, and Choi (2008)] considered essentially the same problem which is the
subject of the present investigation, however they used an outward shooting scheme
to solve a different version of the set of stability equations.

In this paper, we present the numerical solution of the stability equations for Rayleigh-
Bénard convection in systems with melting from below. We have developed a ro-
bust and well founded numerical algorithm in which the velocity and temperature
perturbations are approximated by using Chebyshev polynomials. This spectral
numerical technique has been widely used to carry out linear stability analysis in
thermal and fluid dynamics applications [Ming-Liang, Huai-Chun, and Tat-Leung
(2009)]. We have imposed the boundary conditions of the stability equations by
using the Chebyshev Tau method [Orszag (1971)].

In section 2 we present the physical and mathematical models of the system under
analysis. Section 3 shows: (i) the base solution of the pure conductive system, (ii)
the equations for the velocity and temperature perturbations of the base solution and
(iii) the definition of the similarity variable η that is used to formulate the Rayleigh-
Bénard problem with melting (with independent variables time t and height of the
fluid layer H(t)) in terms of one independent variable [Kim, Lee, and Choi (2008)].
The Chebyshev Tau spectral method that we use to solve the stability equations is
presented in section 4. In section 5 we present the numerical results corresponding
to the critical Rayleigh number Rac and critical wave number ac for different values
of the rate of melting λ of the solid phase. Finally the concluding remarks are
presented in section 6.

2 Mathematical model

The system under analysis is composed of a two-dimensional solid, which is semi-
infinite in the horizontal dimension, sitting on a horizontal plate. A constant body
force is assumed to act in the vertical direction y. At time t > 0, the temperature of
the horizontal plate is set to a value higher than the melting temperature of the solid
and a liquid layer develops between the plate, which is kept at constant temperature,
and the lower part of the solid. This situation is sketched in Fig. 1. Initially, heat is
transferred purely by conduction from the bottom plate to the system, subsequently
melting the solid material, and given that the system is uniform in the horizontal
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direction x, the solid melts uniformly, hence the liquid region has a uniform height
H(t). As the liquid layer grows, a critical value is reached such that convective
motion becomes the mechanism more stable for heat transfer.

Figure 1: Sketch of the physical situation analyzed

Considering the Boussinesq approximation, the conservation equations for the liq-
uid phase are:
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where (u,v) is the velocity vector, ρ is the density of the fluid, p is the pressure, g
is the acceleration of gravity acting along the −y direction, T is the temperature of
the fluid and α is the thermal diffusivity of the liquid phase.
We assume that the liquid follows the state equation
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ρ = ρr (1−β (T −Tr)) (5)

where β is the coefficient of thermal expansion and the subindex r denotes a refer-
ence value. The boundary conditions considered are:

(u,v) = 0 at the bottom wall, and at y = H(t)

T = Tw at the bottom wall

T = Tm at y = H(t)

−k ∂T/∂y = L dH/dt at y = H(t),

where k is the thermal conductivity of the liquid, L is the latent heat and Tm is the
melting temperature.

3 Base solution

At time t > 0, the solid starts melting, however the fluid is motionless, i.e. u, v =0.
Taking the origin of coordinates at the middle height of the fluid layer (see Fig. 1),
the temperature To and pressure po in the liquid phase, for the base state, have the
distributions described by [Carlslaw and Jaeger (1959)]

To = Tw−
Tw−Tm

erfλ
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2(αt)1/2 )
))

dξ , (7)

and the liquid-solid interface recedes according to

H(t) = 2λ (αt)1/2. (8)

The rate of melting λ is defined in terms of the Stefan number St by the equation

π
1/2

λeλ 2
erf(λ ) = St, where St =

Cp(Tw−Tm)
L

. (9)

The stability of the base solution is examined using the standard method, wherein a
perturbation of the base solution is defined according to the following expressions:
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(u,v) = (u′,v′), T = To(y, t)+T ′ and p = po(y, t)+ p′. (10)

The equations governing the perturbations are:
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The pressure perturbation is eliminated using Eqs. (12) and (13) to get

∂∇2v′
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4v′−gβ
∂ 2T ′

∂x2 , (15)

and the equation for the temperature perturbation is
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At this point, it is convenient to define the variables

η =
2y
H

, v∗ =
H
2α

v′ and T ∗ =
βgH3

8αν
T ′, (17)

Notice that η is the similarity variable, and if the origin is located at the middle
height of the fluid layer, η is in the range −1≤ η ≤ 1.
In terms of η , v∗ and T ∗, Eqs. (15) and (16) can be written as
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We now proceed with the standard modal analysis along the x direction by defining
Fu and FT as:

v∗ = Fv(η)eikx and T ∗ = FT (η)eikx. (20)

Upon substituting the previous expressions in equation (18), we get

(
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)2
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24
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where a = kH is the wave number, τ = 4αt/H2 is the scaled time and Pr = ν/α is
the Prandtl number. Following a similar procedure, Eq. (19) may be written as

4
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where the Rayleigh number Ra is defined as

Ra =
βg(Tw−Tm)H3(t)

να
, (23)

and the scaled base temperature is T̄o = (To−Tw)/(Tw−Tm).
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Six boundary conditions are required to solve Eqs. (21) and (22). The following
four boundary conditions indicate that the perturbations vanish at the horizontal
boundaries [Bourne (2003)], hence

Fv (η =−1) = FT (η =−1) = Fv (η = 1) = FT (η = 1) = 0. (24)

Two additional boundary conditions are used to define the kind of surface in contact
with the fluid. In the case of a rigid lower hot surface and a rigid interface, we have

DFv (η =−1) = DFv (η = 1) = 0. (25)

The last boundary condition DFT (η = 1) = 0 has been introduced since it is as-
sumed that at the interface (η = 1) the heat flux, towards the solid phase due to
the perturbation of the temperature FT , is equal to zero. This assumption is valid
because the temperature of the solid phase at η → ∞ is equal to the melting tem-
perature and hence, there is no heat transfer in the solid phase.

4 Numerical method

We use expansions in Chebyshev polynomials to approximate the solution to Eqs.
(21) and (22) and boundary conditions Eqs. (24) and (25). It is possible to expand
the variables Fv (η) and FT (η) in the interval −1≤ η ≤ 1 as:

Fv (η) =
∞

∑
n=0

avnTn (η) , FT (η) =
∞

∑
n=0

aT nTn (η) (26)

where Tn (η) are the nth-degree Chebyshev polynomials of the first kind, which
satisfy the orthogonality relation [Orszag (1971); Dongarra, Straughan, and Walker
(1996)]∫ 1

−1
Tn (η)Tm (η)

(
1−η

2)−1/2
dη =

π

2
cnδnm (27)

where c0 = 2, cn = 1 for n > 0.

In the numerical procedure we seek an approximate solution of the equations of the
form

Fv (η) =
N

∑
n=0

avnTn (η) , FT (η) =
N

∑
n=0

aT nTn (η) . (28)

Equations for the expansion coefficients avn and aT n are generated by substituting
Eq. (28) into Eqs. (21) and (22), and applying the orthogonality property (27). It is
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possible to find in the published literature explicit formulae to relate the expansion
coefficients an in the series

f (η) =
N

∑
n=0

anTn (η) , (29)

to the expansion coefficients bn of various linear operators L̂ represented as

L̂ f (η) =
N
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Specifically, expressions for the following operators: L̂ f (η)= d4 f (η)/dη4, L̂ f (η)=
d2 f (η)/dη2 and L̂ f (η) = ηd f (η)/dη , in terms of Chebyshev polynomials are
available in references [Orszag (1971)] or [Gottlieb and Orszag (1977)]. However,
the corresponding expressions for the operators: L̂ f (η) = ηd3 f (η)/dη3 and
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)
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(see Eqs. (43) and (51) below), are not available in the literature, so they were
generated through a computational procedure in which the polynomials Tn(η) (or
their derivatives) in Eq. (31) are represented by the recursive relation

T0(η) = 1, T1(η) = η (32)

and

Tn+1(η) = 2ηTn(η)−Tn−1(η), for n≥ 1 (33)

and then, the term ηm of Eq. (31) is expanded using the following expression in
terms of the Chebyshev polynomials [Thacher (1964)]:
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In the summation of Eq. (34), it must be considered that the first term is to be
divided by two. After these substitutions, the coefficients of the Chebyshev poly-
nomials Tn(η), see Eq. (34), are the coefficients bn of the operator

L̂ f (η) = η
mFv(η) =

N

∑
n=0

bnTn (η) . (36)

The derivative of T̄o with respect the similarity variable η , which is used in the
perturbation equation for the temperature, see Eq. (22), has been evaluated fol-
lowing two methodologies. In the first procedure, the function erf(0.5λ (1+η)) is
approximated using its Taylor expansion of ninth degree
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Each term in Eq. (38), is expanded to have the following expressions:(
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(42)

Consequently, the term on the right hand side of Eq. (22) may be written as

1
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In the second procedure, the derivative of the error function erf(0.5λ (1+η)) was
evaluated as

d
dη
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erf
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))

=
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The Chebyshev approximation polynomial PN (η) of degree ≤ N for a function
f (η) over [−1,1] can be written as a sum of Chebyshev polynomials Tj (η) [Math-
ews and Fink (2004)]

f (η)≈ PN (η) =
N

∑
j=0

c jTj (η) . (45)

The coefficients c j are computed with the formulae
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for j = 1,2, ....N. (48)

The nodes ηk are evaluated as

ηk = cos
(

π
2k +1
2N +2

)
for k = 0,1, ...N. (49)
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In this investigation, we used N =30. Once the coefficients c j of the Chebyshev
approximation polynomial PN (η) of the function exp−(0.5λ (1+η))2 have been
determined, see Eq. (45), i.e.

exp−
(

λ

2
(1+η)

)2

= c0T0 (η)+ c1T1 (η)+ .....c30T30, (50)

the Chebyshev polynomials Tj (η) of Eq. (50), were written in terms of the variable
η , see Eqs. (32) and (33). Therefore the term on the right hand side of Eq. (22),
can also be written as

1
2

RaFv
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dη
=−1

2
RaFv

1
erf(λ )

λ

π1/2 exp−
(

λ

2
(1+η)
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+
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4−8η
2 +1
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(
16η

5−20η
3 +5η

)
+ ...

)
.

The method that we have selected to obtain the equations for the coefficients avn

and aT n is the Chebyshev Tau method, which has been extensively used to solve
ordinary differential equations, such as the linear hydrodynamic and thermal in-
stability equations. The main idea of the Chebyshev Tau method is to generate
(by substituting the expansions (28) into Eqs. (21) and (22)), one equation for each
n = 0,1,2....2N−6. The remaining seven equations, those for 2N−5≤ n≤ 2N +1
are generated by using the six boundary conditions Eqs. (24) and (25) and the con-
dition at the interface DFT (η = 1) = 0. The high frequency behaviour (i.e. high
n) of the solution is not governed by the dynamical and thermal Eqs. (21) and
(22), but by the boundary conditions [Orszag (1971)]. The Tau equations can be
written as a generalized eigenvalue problem (Ax)= Ra (Bx), where the vector x
includes the coefficients avn and aT n, Ra is the Rayleigh number, and A and B are
(2(N +1))×(2(N +1)) matrices whose first 2(N +1)−7 rows are defined by Eqs.
(21) and (22). The last seven rows of A are given by the boundary conditions,
and the last seven rows of B vanish [McFadden, Murray, and Boisvert (1990)]. A
schematic representation of the matrix equations for the case N = 8 is,
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A=

x 0 x 0 x 0 x 0 x x 0 0 0 0 0 0 0 0
0 x 0 x 0 x 0 x 0 0 x 0 0 0 0 0 0 0
0 0 x 0 x 0 x 0 x 0 0 x 0 0 0 0 0 0
0 0 0 x 0 x 0 x 0 0 0 0 x 0 0 0 0 0
0 0 0 0 x 0 x 0 x 0 0 0 0 x 0 0 0 0
0 0 0 0 0 x 0 x 0 0 0 0 0 0 x 0 0 0
0 0 0 0 0 0 x 0 x 0 0 0 0 0 0 x 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x 0
0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 x
0 0 0 0 0 0 0 0 0 x 0 x 0 x 0 x 0 x
0 0 0 0 0 0 0 0 0 0 x 0 x 0 x 0 x 0
x x x x x x x x x 0 0 0 0 0 0 0 0 0
x x x x x x x x x 0 0 0 0 0 0 0 0 0
0 x x x x x x x x 0 0 0 0 0 0 0 0 0
0 x x x x x x x x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x x x x x x x x x
0 0 0 0 0 0 0 0 0 x x x x x x x x x
0 0 0 0 0 0 0 0 0 x x x x x x x x x

and

B=

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x x x x x x x x x 0 0 0 0 0 0 0 0 0
x x x x x x x x x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The vector of unknown coefficients x is,
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xT =
[

av0 av1 av2 av3 av4 av5 av6 av7 av8 aT 0 aT 1 aT 2 aT 3 aT 4 aT 5 aT 6 aT 7 aT 8

]T

.

In the matrices A and B the non-zero entries are denoted by x. The system of equa-
tions has been solved numerically by using the routine F02GJF from the NAG li-
brary. The routine F02GJF calculates all the eigenvalues of the eigenproblem A x=
λ̂ B x, by using the Q Z algorithm (see http://www.nag.co.uk/numeric/Fl/manual/
xhtml/F02/f02gjf.xml).

5 Results

In this section we present examples of the critical Rayleigh numbers and wave num-
bers corresponding to the solutions to Eqs. (21) and (22), obtained with the numer-
ical method described in Section 4. We have found that the critical Rayleigh and
wave numbers strongly depend on the rate of melting λ . For water at atmospheric
pressure, the Stefan number is in the range 0.06 ≤ St ≤ 1, when the temperature
varies between 5oC and 80oC, whereas the rate of melting λ in the same range
of temperatures varies from λ ≈ 0.1 to λ ≈ 0.6. For metals λ ∼ 1, therefore we
will focus the analysis in this range of λ . Note also that if no phase change takes
place, then λ = 0 and the analysis should reduce to that of the classical Rayleigh-
Bénard problem. Fig. 2 shows the Rayleigh numbers Ra at which the instability
sets in as a function of the wave number a for λ = 0.1 and Pr = 10. The various
curves correspond to the four least stable eigenvalues (Ra numbers) evaluated by
the Chebyshev Tau spectral method. The most unstable eigenvalue, Rac, is found
to be 1702.3566 at ac equal to 3.112. The effect of increasing the parameter λ can
be observed in Fig. 3. As it can be appreciated, both the critical Rayleigh number
and the critical wave number are reduced, as λ increases. Fig. 4 shows the same
results as the previous graphs, but for λ= 1.411. It was found that for λ > 1.411,
the base solution is always unstable. Note from Figs. (2) to (4) that the other three
least stable eigenvalues are independent on the rate of melting λ . A remark should
be given at this point, the second least stable eigenvalue (second curve from bottom
to top in Figs. (2) to (4)) is very similar to the curve shown by [Chandrasekhar
(1961)], see page 39 -notice that in Chandrasekhar’s book the scale for the first
odd (curve labelled 2) mode is missing- however the values shown in page 38 of
that book, are in agreement with the values obtained by the Chebyshev Tau spectral
method. Whereas Chandrasekhar obtained for the first odd mode, Ra=17610.39
and a=5.365, we calculated for the second least stable eigenvalue, Ra=17537.465
and a=5.355. It seems that the least stable eigenvalues (except the most unstable,
Rac) in a melting process from below, are governed by thermo-physical phenomena
similar to those present in the classical Rayleigh-Bénard problem.
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Figure 2: Rayleigh number Ra as a function of wave number a for λ = 0.1 and
Pr = 10. The most unstable critical Rayleigh number is Rac = 1702.3566 and the
corresponding critical wave number is ac = 3.1120. Chebyshev Polynomial degree
N = 30.

Figure 5 shows the general trend of Rac and ac as functions of λ . In the limit
when λ → 0, Rac → 1708 and ac → 3.1, the classical Rayleigh-Bénard solution
is recovered. All examples presented above were obtained for Pr=10, and further
numerical calculations indicate that the results are essentially the same for Prandtl
numbers up to 10,000, with slightly higher Rac for the larger values of the Prandtl
number. For instance for Pr=10,000, we obtain the following set of values: (i)
λ=0.1, Rac=1702.44, and ac=3.112; (ii) λ = 1, Rac=1211.842 and ac=2.748; (iii)
λ = 1.411, Rac=552.72 and ac=0.956.

Numerical calculations were also carried out to obtain the critical values for low
Prandtl number fluid layers, Pr=0.0l. The obtained results indicate that Rac and ac

are nonmonotonic functions of the parameter λ . A similar behaviour, but for the
quasi-static case, was reported by [Sparrow, Lee, and Shamsundar (1976)]. They
concluded that the variation of the motionless base state temperature profile as the
Stefan number (the parameter λ ) is modified, leads to a nonmonotonic behaviour of
the critical Rayleigh number. Further research will be performed by the authors of
the present investigation in order to identify the physical and thermal characteristics
of the system that conduct to the presence of an extremum value of the critical
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Figure 3: Rayleigh number Ra as a function of wave number a for Pr = 10. λ =
1.0 in the left panel and λ = 1.4 in the right panel. The critical Rayleigh and
wave numbers are Rac = 1204.7583, ac = 2.74 and Rac = 599.7701, ac = 1.348
respectively. Chebyshev Polynomial degree N = 30.

parameters. We obtain the following set of values for the case with Pr=0.01: (i)
λ=0.1, Rac=1610.401, and ac=3.076; (ii) λ = 0.5, Rac=273.977, and ac=1.7632;
(iii) λ = 1, Rac=135.671, and ac=1.751; (iv) λ = 1.2, Rac=409.32, and ac=3.017;
(v) λ = 1.411, Rac=1151.7091, and ac=4.33199. Note that as the parameter λ → 0,
the Rayleigh-Bénard solution is recovered. On the other hand, it is observed that
both critical parameters at first decrease, reach a minimum and then increase.

6 Conclusions

We developed a robust numerical method to solve the set of differential equations
that describe the stability of a two dimensional fluid layer confined between a hor-
izontal rigid wall and a melting upper surface. We found that the critical Rayleigh
and wave numbers are monotonically decreasing functions of the receding velocity
of the front. The parameters Rac and ac are independent functions of the Pr number
in the range 1≤ Pr≤ 10,000. The second, third and fourth least stable eigenvalues
are also independent functions of the Pr number and the parameter λ . We have
found that the second least stable eigenvalue resembles the first odd mode of the
classical Rayleigh-Bénard problem. We have shown that the critical parameters
present a nonmonotonic variation with the melting rate λ for low Prandtl number
fluid layers (Pr=0.01). Extensions to the analysis presented here that can be solved
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Figure 4: Rayleigh number Ra as a function of wave number a for λ = 1.411
and Pr = 10. Critical Rayleigh number Rac = 544.9554 and critical wave number
ac = 0.956. Chebyshev Polynomial degree N = 30.

Figure 5: Critical Rayleigh number Rac and wave number ac as a functions of λ .
The dots are actual calculations, and the lines are interpolations with piecewise
cubic Hermite polynomials. In all cases, Chebyshev Polynomial degree N = 30.

with simple modifications to our numerical method include the study of the stability
of a three dimensional slab of liquid with infinite horizontal extensions. Also, the
consideration of a temperature different from the melting temperature at a finite dis-
tance from the melting front can be analyzed using the numerical method presented
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here. Few experimental realizations of the system analyzed here are available in the
literature, see for instance [Yen (1968)], but a direct comparison might be difficult,
mainly due to the possibility that the instability triggered by the bounding vertical
walls of the experimental device, manifests itself before the convective instability
which has been described in this investigation.
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