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Vibration Analysis of Arbitrarily Shaped Membranes

S.Yu. Reutskiy1

Abstract: In this paper a new numerical technique for problems of free vibra-
tions of arbitrary shaped non-homogeneous membranes: ∇2w+ k2q(x)w = 0, x ∈
Ω⊂R2, B [w] = 0, x ∈ ∂Ω is presented. Homogeneous membranes of a complex
form are considered as a particular case. The method is based on mathematically
modeling of physical response of a system to excitation over a range of frequen-
cies. The response amplitudes are then used to determine the resonant frequencies.
Applying the method, one gets a sequence of boundary value problems (BVPs) de-
pending on the spectral parameter k. The eigenvalues are sought as positions of
the maxima of some norm of the solution. In the particular case of a homogeneous
membrane the method of fundamental solutions (MFS) is proposed as an effective
solver of such BVPs in domains of a complex geometry. For non-homogeneous
membranes the combination of the finite difference method and conformal map-
ping is used as a solver of the BVPs. The results of the numerical experiments
justifying the method are presented.

Keywords: Free vibration, eigenvalue problem, membrane, irregular domain,
non-homogeneous membrane, conformal mapping, nonlinear eigenvalue problem.

1 Introduction

In the paper we deal with the problem of free vibrations of arbitrary shaped mem-
branes. Homogeneous membranes and membranes with continuously varying prop-
erties are both under consideration. As a result, we deal with the following 2D
eigenvalue problem:

∇
2w+ k2q(x)w = 0, x ∈Ω⊂R2, B [w] = 0, x ∈ ∂Ω. (1)

Here, Ω is a simply or multiply connected domain with boundary ∂Ω and the den-
sity function q > 0 is smooth enough in Ω. The boundary operator B [...] specifies
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the boundary conditions. The problem of free vibration is to find such real k for
which there exist non-null functions w verifying (1). The corresponding resonant
frequencies of the membrane are ωi = ki

√
T/ρ , where T is the uniform tension per

unit length in the membrane and ρ is the mass per unit area. The similar eigenvalue
problems arise in many branches of engineering science, e.g. in the analysis of a
hollow conducting waveguide.

In the particular case of the homogeneous membrane q = const. of a simple geom-
etry such as a rectangle, a circle or ellipse, exact solutions for the transverse vibra-
tion are available Strutt and Rayleigh (1945); Kinsler, Frey, Coppens, and Sanders
(1982). However, for a membrane of a complex geometry, even in this case, only
numerical solutions may be possible. Therefore, in resent years a lot of numerical
techniques have been developed for free vibration analysis of membranes in many
engineering applications. A general review of the dynamic aspects of membranes
can be found in the review paper by Mazumdar (1975).

Nagaya (1978) proposed an analytical method to obtain higher order modes of
arbitrarily shaped membranes by using the Fourier expansion method. Analytical
solutions of the free vibration problems of arbitrarily shaped membranes have been
investigated by Kang and Lee Kang and Lee (2000, 2004) using nondimensional
dynamic influence functions. Radial basis function-based differential quadrature
method was used for free vibration analysis of arbitrary shaped membrane by Wu,
Shu, and Wang (2007).

An analysis of the free vibration of circular and annular membranes has been pre-
sented by Laura, Bambill, and Gutierrez (1997). The method of discrete singular
convolution (DSC) (Wei (1999)) has been used recently for the vibration analy-
sis of structures. DSC method has emerged as a new approach for numerical so-
lutions of differential equations. This new method has a potential approach for
computer realization as a wavelet collocation scheme (Wei (2000)). The use of the
discrete singular convolution method for vibration analysis of beams, plates and
shells (Wei (2001a,c,b); Wei, Zhao, and Xiang (2002)) has been proven to be quite
satisfactory. The DSC method together with transforming an irregular physical
domain into a rectangular domain is proposed by Civalek (2008). Free vibration
analysis of plates and shells has been investigated by the same author in (Civalek
(2007e,d,a,b,c, 2006)) and by Zhao, Wei, and Xiang (2002).

As it is mentioned above the problems like (1) with q = const. also arise in the anal-
ysis of arbitrarily-shaped hollow conducting electromagnetic waveguide. To handle
such problems the generalized differential quadrature method has been developed
and applied for waveguide analysis by Shu, Wu, and Wang (2005).

In the past ten years, the meshless methods have gained a lot of interest on the
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part of investigators in the field of the numerical analysis of PDEs. A number of
meshless methods has been proposed by this time. A more detailed information
on this subject can be found in Zhu, Zhang, and Atluri (1998, 1999); Atluri and
Zhu (2000); Atluri and Shen (2005, 2002); Atluri, Cho, and Kim (1999); Atluri,
Han, and Rajendran (2004); Atluri, Liu, and Han (2006a,b); Atluri and Zhu (1998),
Soric, Li, and Atluri (2004).

The method of fundamental solutions (MFS) also belongs to the group meshless
methods and is very convenient in application to the problem of free vibrations.
This technique is described by Karageorghis (2001a); Chen and I.L. Chen (2005)
in more details. In the second paper there is a complete bibliography on the subject
considered.

Passing on to the general case q(x), it should be noted that the literature on the
vibration of non-homogeneous membranes is not extensive. Masad (1996) solved
the problem mentioned above by the finite difference method and the perturbation
method. Laura, Rossi, and Gutierrez (1997) solved the same problem by the op-
timized Galerkin-Kantrovitch approach and the differential quadrature method. A
closed form of the exact solution of non-homogeneous membrane with the density
function which varies linearly with respect to an edge q = c+dx is found by Wang
(1998). An exact solution of non-homogeneous annular membrane with q = c/r2

is also reported here. The fundamental frequencies of the circular membrane with
the density which is a sinusoidal function of the radius are studied by Wang (1999).
Four numerical techniques 1) the differential quadrature method; 2) the finite ele-
ment technique; 3) the optimized and/or improved Rayleigh quotient method and
4) the Stodola Vianello iterative method are compared by Gutierrez, Laura, Bam-
bil, Jederlinic, and Hodges (1998) in application to the problem of free vibration
of non-homogeneous annular membrane. The three density functions are consid-
ered: q = 1 + αrγ , γ = 1/2, 1, 3/2. However, only the first two axisymmetric
vibration modes are calculated here. In Jabareen and Eisenberge (2001) exact so-
lutions for both the axisymmetric and antisymmetric modes of circular and annular
membranes with any polynomial variation of the density are given using a power
series solution. Ho and Chen (2000) introduced a hybrid method composed of
differential transforms and the Kantorovitch method to solve the above-referenced
problems. Filipich and Rosales Filipich and Rosales (2007) have studied the vibra-
tions of membranes with a discontinuous density profile. Recently Amore (2008,
2009) has put forward a new numerical technique to study the vibrations of in-
homogeneous membranes. This method utilizes a special kind of basis function -
the Little Sinc functions (LSF) to obtain a discretization of a finite region of the
two-dimensional plane. To deal with non-rectangular domains, Amoro suggests to
combine his method with the conformal mapping technique.
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The goal of the paper is to present a universal technique for both homogeneous and
inhomogeneous membrane of an arbitrary form.

2 Main algorithm. Regularizing procedures

The method uses the direct-searching scheme when the natural frequencies are de-
termined as the extremum of some function F (k) of the spectral parameter. Usually
the determinant det [A(k)] of the linear system which approximates the initial prob-
lem (1) is used as the function F (k) ( see, e.g., Karageorghis (2001b); Chen, Chen,
and Lee (2005)). The technique of the presented paper is based on the following
quite trivial statement. Let we (x) be a smooth enough function defined in the solu-
tion domain below named as the exciting field. If the response field wr is a solution
of the boundary value problem

∇
2wr + k2q(x)wr =−∇

2we− k2q(x)we, (2)

B [wr] =−B [we] , (3)

then, the sum w(x,k) = wr +we satisfies the initial problem (1). Let F (k) be some
norm of the solution w. This function of k has extremum at the eigenvalues and,
under some conditions described below, can be used for their determining.

Note that we can take any smooth enough function as the exciting field we. On the
other hand, wr depends on this choice because it should satisfy the BVP (2), (3).

So, generally, we do not impose any conditions on we. However, when q = const.
(homogeneous membrane), the exciting field can be chosen in such a way that the
right hand side of (2) is equal to zero: ∇2we +k2qwe = 0. It can be taken in a simple
analytic form, e.g., in the form of a traveling wave we = exp

[
ikq1/2 (cosθx+ sinθy)

]
.

Here 0≤ θ ≤ 2π is the angle of incidence. Note that in this case the response field
wr satisfies the homogeneous equation too.

∇
2wr + k2qwr = 0

This PDE has the known fundamental solutions Φ(x−ζ ,k) = H(1)
0 (kq1/2 |x−ζ |),

where H(1)
0 is the Hankel function. This admits of applying the method of funda-

mental solutions (MFS). Recently this technique has been applied for solving prob-
lems of free vibrations of beams, membranes and plates in Reutskiy (2005, 2006,
2007a,b) and for analyzing arbitrarily-shaped waveguide in Reutskiy (2008b). The
same method was applied to nonlinear, and generalized Sturm-Liouville problems
in Reutskiy (2008a). In Section 3, we present the algorithm in application to the
problems of free vibrations of homogeneous membranes. Here we also perform
comparison of results obtained by the present method and the data obtained by
Kang and Lee (2000, 2004),Wu, Shu, and Wang (2007) and Civalek (2008).
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Considering the general case of a non-homogeneous membrane we have no funda-
mental solutions and should use a volume method to solve the BVP (2), (3). When
the solution domain Ω has a simple form of a square, the BVP can be solved most
effectively. In Section 4, we show that the initial problem (1) in the irregular do-
main Ω can be transformed to problem with a new density function q1 in the square
domain. Here we demonstrate the applying of the conformal mapping (analytic and
numerical) for this goal.

With each fixed k we get the solution wr (x,k) and so, w(x,k) = wr (x,k)+we (x).
We introduce the norm

F(k) =

√
1
Nt

Nt

∑
i=1

[w(xi,k)]
2, (4)

where xi, i = 1, ...,Nt are the test points placed inside the solution domain. How-
ever, as it shown in Reutskiy (2005, 2006, 2007a,b), the method described above
produces non smooth functions F (k). To get a smooth response curve F (k) the
following two regularizing procedures are presented.

Using the ε−procedure we solve the following BVP

∇
2wr + k2

εq(x)wr = −∇
2we− k2q(x)we, (5)

B [wr] = −B [we] ,

where k2
ε = k2 + iε and ε > 0 is a small parameter.

The k−procedure leads to the problem

∇
2wr + k2q(x)wr = −∇

2we− (k +∆k)2 q(x)we, (6)

B [wr] = −B [we] ,

with some regularizing parameter ∆k. This technique is explained with more details
in the papers listed above.

Having a smooth response curve, we apply the following simple algorithm. First,
we localize these maxima of F (k) on the intervals [ai,bi]. Next, we solve the
univariate optimization problem inside each one. In particular, we apply Brent’s
method based on a combination of parabolic interpolation and bisection of the func-
tion near the extremum(see Press, Teukolsky, Vetterling, and Flannery (2002)).
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3 Homogeneous membrane

Without the loss of generality we can take q = 1. So, instead of (2), (3) we get
BVP

∇
2wr + k2wr =−∇

2we− k2we, (7)

B [wr] =−B [we] . (8)

When the exciting field we is chosen in such a way that the right hand side of (7) is
equal to zero:

∇
2we + k2we = 0, (9)

then the response field wr also satisfies the homogeneous Helmholtz equation

∇
2wr + k2wr = 0, (10)

which can be solved by a boundary method. Note that we can take any solution
of (9) as the exciting field, e.g. we can take it in the form of a traveling field or as
a field of a point source. On the other hand, wr depends on this choice because it
should satisfy the boundary condition (8).

The 2D Helmholtz equation has the known fundamental solutions

Φ(x−ζ ,k) = H(1)
0 (k |x−ζ |), (11)

where H(1)
0 is the Hankel function. This admits of applying very effective meshless

numerical techniques

Let Ω be a simply connected membranes with a smooth and piecewise-smooth
boundary ∂Ω without singular points. We apply the MFS and look for the solution
of the Helmholtz equation (10) in the form of the linear combination

wr (x) =
N

∑
n=1

qnΦ(x−ζ n,k), (12)

Here qn are free parameters of the problem and the source points ζn are placed
outside the solution domain Ω. The free parameters are obtained from the boundary
condition (8) as a solution of the collocation problem

B [wr (xi)] =
N

∑
n=1

qnB [Φ(xi−ζ n,k)] = (13)

= −B [we (xi,k)] ,xi ∈ ∂Ω.
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The collocation points xi are uniformly distributed on the boundary. The number
of the collocation points is taken twice as large as the number of unknowns N and
the resulting linear system is solved by the procedure of the least squares. Then,
having the solution wr (x) and so, w(x) = wr (x)+we (x), we compute the function
F(k) like (4). Varying k, we get the response curve and calculate the eigenvalues as
positions of maxima. We take the exciting field in the form of the travelling wave

we (x,k) = exp [ik (xcosυ + ysinυ)] , (14)

which satisfies (9) for any angle of incidence υ .

Using the ε−procedure (5), we replace the matrix terms Φ(xi−ζ n,k) with Φ(xi−ζ n,kε),
kε =

√
k2 + ikε . When the k−procedure (6) is used for smoothing the response

curve F(k), the exciting field we (xi,k) in the right hand side of (13) is replaced by
we (xi,k +∆k).
Example 1. Trapezoidal membrane. Free vibration analysis of trapezoidal mem-
brane (Fig. 1) is considered. The bases are AB = 2, CD = 1, the height DE=1. The
MFS source points are placed on the equidistant contour Γ. In Table 1 the results
obtained by the present method are compared with the finite element solution Kang
and Lee (2004) and with DSC solution Civalek (2008).

Table 1: Comparison of frequency values of the trapezoidal membrane (a/b =
2.0;β = 70◦; α = 60◦) obtained by the present method, Kang and Lee (2004) (I)
and Civalek (2008) (II).

i N = 61 N = 127 N = 257 I II
1 3.8107 3.81082 3.81081 3.81 3.82
2 5.2825 5.28243 5.28241 5.28 5.27
3 6.5722 6.57206 6.57209 6.57 6.56
4 7.0613 7.06114 7.06116 7.06 7.05
5 7.6055 7.60570 7.60575 7.60 7.60
6 8.7273 8.72743 8.72741 8.73 8.73
7 9.0311 9.03132 9.03135 9.03 -
8 9.7382 9.73783 9.73777 9.73 -
9 10.1111 10.11135 10.11140 - -

10 10.4987 10.49895 10.49892 - -

Example 2. Half-circle+triangle membrane. Let us consider the freely vibrations
half-circle+triangle membrane to demonstrate the capability of the method pre-
sented in solving problems with arbitrarily shaped domains. The Dirichlet bound-
ary condition is considered. The geometry of this membrane and the placement of
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Figure 1: Trapezoidal membrane. Geometry and the placement of the MFS sources.
AB = 2, CD = 1, height DE=1.

the MFS sources are shown in Fig. 2. Table 2 shows the results for the first ten wave
numbers that are computed by using three distributions of the MFS sources in the
domain, i.e. N = 63,126 and 254 sources. The k−procedure is used for smoothing
with ∆k = 10−6. For this case there are no exact solutions. Only the numerical
solutions obtained by Kang and Lee (2000) using the non-dimensional dynamic
influence function and 24 boundary points, and the RBF results using 1697 nodal
points (Wu et al. Wu, Shu, and Wang (2007)) are available for comparison. We can
see that our results are in a very good agreement with Wu’s and Kang’s numerical
results.

Example 3. Circular membrane with circular ridges. The next example is taken
from Amore (2008). In Fig. 3 two regions of the plane are displayed: the left plot
corresponds to a square S = [−π/2,π/2]× [−π/2,π/2] in the complex z = x + iy
plane; the right plot corresponds to a circular membrane with circular ridges in the
ζ = u+ iv plane. The function

ζ = tan
1
2

z,u(x,y) =
sinx

cosx+ coshy
, (15)

v(x,y) =
sinhy

cosx+ coshy
(16)

maps the first region into the second one. The placement of the MFS sources ζn is
shown in Fig. 4. The k−procedure is used for smoothing with ∆k = 10−6. Some
results of the computations are shown in Table 3. This problem also has no exact
solutions and we compare our results with the computations presented in Amore
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Table 2: Comparison of wave numbers of the half-circle+triangle membrane ob-
tained by the present method, Wu, Shu, and Wang (2007) (I), and Kang and Lee
(2000) (II).

i N = 126 N = 254 I II
1 2.71056 2.710598 2.7106 2.7097
2 4.23179 4.231901 4.2310 4.2279
3 4.35788 4.357874 4.3579 4.3579
4 5.57261 5.572708 5.5728 5.5649
5 5.93389 5.933924 5.9339 5.9336
6 6.11804 6.117920 6.1180 6.1159
7 7.01321 7.013076 7.0134 6.9974
8 7.18785 7.187887 7.1880 7.1868
9 7.76253 7.762378 − −

10 7.836460 7.836545 − −

y

x
1

1

1

1

Figure 2: Half-circle+triangle membrane. Geometry and the placement of the MFS
sources.
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(2008).

Table 3: Comparison of wave numbers of the circular membrane with circular
ridges obtained by the present method and Amore (2008).

i N = 100 N=200 Amore (2008)
1 7.5695769016 7.5695769016 7.569576902
2 15.2192802007 15.2192802007 −
3 22.1957603579 22.1957603579 −
4 29.1154334302 29.1154334233 29.11543343
5 29.1637723113 29.1637723043 -
6 44.8401269124 44.8401269228 44.84012692
7 46.1186093020 46.1186092926 −
8 46.3626601529 46.3626601361 −
9 51.2202116127 51.2202116265 −

10 66.4098459349 66.4098458917 -

Z Ζ

Figure 3: Circular membrane with circular ridges.

Note that in the case when the cross section Ω of the membrane has singularities
like a small hole, a reentrant corner, or an abrupt change in the boundary conditions
the MFS faces great difficulties when applied to such problems because it utilizes
smooth basis functions. To extend the technique described above on to the case of
the singular point instead of the linear combination (12) the response field wr can
be sought in the form

wr =
N

∑
n=1

qnΦ(x−ζ n,k)+
S

∑
s=1

M

∑
m=1

ps,mΨs,m(x,k), (17)
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Figure 4: Circular membrane with circular ridges. The placement of the MFS
sources.

where the functions Ψs,m(x,k) correspond to the kind of the singularity and describe
the local behavior of the eigenfunction near the singular points. This technique is
described by Reutskiy (2006, 2009) with more details.

Example 4. "Cracked beam" problem. The eigenvalue problem for the rectangular
membrane with the boundary conditions

∂w
∂n

= 0, on AB∪CD∪DO and w = 0 on OA∪BC

is shown in Fig 5. So, we have a problem with an abrupt change in the boundary
conditions, which is studied by Li, Lu, Hu, Tsai, and Cheng (2006). We look for
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Table 4: The eigenvalues of the "cracked beam" problem, I - results obtained by Li,
Lu, Hu, Tsai, and Cheng (2006).

i N/M=75/10 N/M=80/10 I
1 2.011697117 2.011697117 2.011697117212
2 3.293152635 3.293152635 3.293152635104
3 4.079864129 4.079864128 -
4 4.886314665 4.886314665 -
5 5.289378620 5.289378620 -
6 6.132689008 6.132689010 -
7 6.471915149 6.471915149 -
8 6.824620261 6.824620261 -
9 7.393971287 7.393971287 -

10 7.978125002 7.978125001 -

Ρ

Θ

�1,1���1,1�

��1,0� �1,0��0,0�

A D

CB

O

Figure 5: The cracked beam problem. The solid line corresponds to the Dirichlet
boundary condition and the dashed line denotes Neumann’s condition. Here (ρ,θ)
is the local polar coordinate system with the origin at the singular point.

the MFS solution in the form:

wr (x) =
N

∑
n=1

qnΦ(x−ζ n,k)+

+
M

∑
j=1

p jJ j−1/2 (kρ)cos(( j−1/2)θ)
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with the Fourier–Bessel functions corresponding to the boundary conditions

∂ϕ j/∂n(ρ,0) = ϕ j (ρ,π) = 0.

Here (ρ,θ) is the local polar coordinate system with the origin at the singular
point. Some results of the calculations are presented in Table 4. Using the package
Mathematica, the first two eigenvalues were calculated by Li, Lu, Hu, Tsai, and
Cheng (2006) with 13 significant digits. They are shown in the last column of the
table. One can see that the method presented gives the eigenvalues of the problem
with 10 true digits.

4 Non-homogeneous membrane

Now we consider the general case of an inhomogeneous membrane. Taking into
account (2), (3), we get the BVPs

∇
2wr + k2

εq(x)wr = −∇
2we− k2q(x)we, (18)

B [wr] = −B [we]

in the case of the ε−procedure and

∇
2wr + k2q(x)wr = −∇

2we− (k +∆k)2 q(x)we, (19)

B [wr] = −B [we] ,

when the k−procedure is applied for smoothing.

To solve these BVPs one should apply a volume method. In this section we apply
the following FD scheme

20wi, j = 4(wi+1, j +wi, j+1 +wi, j−1 +wi−1, j)+

+wi+1, j+1 +wi+1, j−1 +wi−1, j+1 +wi−1, j−1−6h2gi, j−
−0.5h2 (gi+1, j +gi, j+1 +gi, j−1 +gi−1, j−4gi, j)

which approximates the equation ∇2w = g(x,y) with the fourth order Thom and
Apelt (1961). Here we write (18) in the form: ∇2wr = −k2q(x)we −∇2we −
k2

εq(x)wr and denote the right hand side as g(x,y). h = 1/N is the mesh step;
wi, j = w(xi,y j) ; xi = h(i−1), y j = h( j−1), i, j = 1, ...,N +1.

As a result, we write the system in the block tridiagonal form:

Â jW j+1 + B̂ jW j + Ĉ jW j−1 = F j,
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where W j =(w1, j,w2, j, ...,wN+1, j)
T are the vectors of the unknowns; F j =( f1, j, f2, j, ..., fN+1, j)

T

are the vectors of the right hand side;

Â j, B̂ j, Ĉ j

are (N +1)× (N +1) matrices. The system is solved by the sweep method.

The rest part of the algorithm is the same as the one described above. Having the
nodal values wr,i, j (k) and we,i, j (k), we compute the norm

F (k) =

√√√√ 1
N2

N

∑
i, j=1

[wr,i, j (k)+we,i, j (k)]
2

and get the eigenvalues as positions of maxima with the help of Brent’s procedure.

Example 5. In Table 5 we test a convergence of the eigenvalues of the membrane
with the density function q = 1 + 0.1sin(πx). The number of mesh nodes varies
from N = 20 to N = 50. The results are compared with the data placed in Amore
(2009). This problem was considered in Reutskiy (2007b), but the 8 th eigenvalue
is lost from the data presented there as it is indicated in Amore (2009).

Table 5: First 15 eigenvalues of the membrane with the density function q = 1 +
0.1sin(πx) using the FD method with different meshes. The fourth column are the
results of Amore (2009) (I).

i 20×20 40×40 80×80 I
1 4.265406 4.265404 4.265404 4.265402726
2 6.743833 6.743886 6.743889 6.743887484
3 6.797264 6.797324 6.797328 6.797319723
4 8.597764 8.597665 8.597659 8.597648785
5 9.535881 9.536548 9.536589 9.536589305
6 9.624124 9.624822 9.624865 9.624841722
7 10.959121 10.959152 10.959154 10.95914134
8 10.974103 10.974154 10.974156 10.97412691
9 12.429505 12.432728 12.432927 12.43293737
10 12.550903 12.554229 12.554434 12.55438511
11 12.914303 12.913522 12.913472 12.91343471
12 13.590046 13.591746 13.591850 −
13 13.615493 13.617263 13.617371 −
14 15.219785 15.219031 15.218981 −
15 15.225763 15.225050 15.225003 −
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4.1 The use of analytic conformal mapping

The method described above is more convenient for problems with rectangular ge-
ometry only. One way to extend it to arbitrary shaped domains is the use of the
conformal mapping. This approach was suggested by Amore (2008) without de-
tailed description of the algorithm.

Let the conformal mapping ζ = Ψ(z) transform the unit square S = [0,1]× [0,1]
onto an irregular domain Ω. Here z = x + iy and ζ = ξ + iη are complex values,
(x,y) ∈ S, (ξ ,η) ∈ Ω, Ψ : S → Ω and the functions ξ (x,y), η (x,y) satisfy the
conditions

∂ξ

∂x
+

∂η

∂y
= 0,

∂ξ

∂y
− ∂η

∂x
= 0 (20)

If the function u(ξ ,η) satisfies the Helmholtz equation in Ω

∂ 2u
∂ξ 2 +

∂ 2u
∂η2 + k2 p(ξ ,η)u = 0, (ξ ,η) ∈Ω, (21)

then the function w(x,y) = u(ξ (x,y) ,η (x,y)) satisfies the equation

∂ 2w
∂x2 +

∂ 2w
∂y2 + k2q(x,y)w = 0, (x,y) ∈ S, (22)

where

q(x,y) = p(ξ (x,y) ,η (x,y))Jx,y (ξ (x,y) ,η (x,y))

Jx,y (ξ (x,y) ,η (x,y)) =
∂ξ

∂x
∂η

∂y
− ∂ξ

∂y
∂η

∂x
= |dΨ(z)/dz|2

Indeed, it can be easily proven that

∂ 2u
∂ξ 2 +

∂ 2u
∂η2 =

(
∂x
∂ξ

∂y
∂η
− ∂x

∂η

∂y
∂ξ

)(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
=

= Jξ ,η (x,y)
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)
when (20) is fulfilled (see Schinzinger and Laura (1991)). Using a well-known
property of Jacobians,

Jξ ,η (x,y) = J−1
x,y (ξ ,η) ,

one gets (22). The difference between Jξ ,η (x,y) and Jx,y (ξ ,η) is that to compute
Jξ ,η we need the inverse mapping Ψ−1 : Ω→ S and to compute Jx,y we use the given
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Ψ : S→Ω. It can be also shown that: 1) if we have the Dirichlet condition u = 0 on
the part ∂Ω1 of the boundary ∂Ω, then we get the same Dirichlet condition w = 0
on the part ∂S1 of the boundary ∂S which corresponds to ∂Ω1 in the conformal
mapping ζ = Ψ(z); 2) the same is true for the Neumann condition.

Applying the method presented to (22), one gets the sequence of the BVPs like (18)
or (19) which can be solved by the FD scheme described above.

Example 6. Consider the same circular membrane with circular ridges of Example
4 and displayed in Fig. 4. The conformal mapping ζ = Ψ(z) = tan 1

2 z transforms
the square [−π/2,π/2]× [−π/2,π/2] onto Ω and has the Jacobian

Jx,y (ξ (x,y) ,η (x,y)) =
1

(cosx+ coshy)2

So, we have the non-homogeneous Helmholtz equation ∇2w+k2q(x,y)w = 0 with
the membrane density q(x,y) = Jx,y (ξ (x,y) ,η (x,y)) and −π/2≤ x,y≤ π/2. Us-
ing the transform

x1 = (x+π/2)/π,y1 = (y+π/2)/π,

one gets the equation

∇
2w+ k2q1 (x1,y1)w = 0

in the unit square S = [0,1]× [0,1]. Here q1 (x1,y1) = π2q(x(x1) ,y(y1)). The
boundary conditions are the same as the ones in the original problem

w = 0 on ∂S.

The data placed in Table 6 are obtained with the help of the k−procedure and
∆k = 10−3.

Table 6: Wave numbers of the circular membrane with circular ridges. The use of
conformal mapping.

i N = 10 N = 20 N = 40 N = 80
1 7.578 7.5700 7.56960 7.569578
2 15.279 15.2221 15.21944 15.219289
3 22.214 22.1966 22.19581 22.195763
4 29.307 29.1226 29.11580 29.115455
5 29.317 29.1704 29.16414 29.163794
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Example 7. Consider the homogeneous circular membrane as the next example.
The mapping

ξ + iη = ζ = Ψ(z) =
sn [a(z−0.5) ,m]− i
sn [a(z−0.5) ,m]+ i

, z = x+ iy (23)

transforms the unit square S = [0,1]× [0,1] onto the disk D = (ξ ,η) : ξ 2 +η2 ≤ 1.
So, instead the homogeneous equation ∇2u+ k2u = 0 in D one gets the inhomoge-
neous equation ∇2w+ k2q(x,y)w = 0 in the unit square. Here

q(x,y) =
∣∣∣∣dΨ(z)

dz

∣∣∣∣2 =

=

∣∣∣∣∣2ia cn [a(z−0.5) ,m] dn [a(z−0.5) ,m]
[sn [a(z−0.5) ,m]+ i]2

∣∣∣∣∣
2

, (24)

m = 17−12
√

2' 0.0294372515, a = K(1−m) see Appendix. The data placed in
Table 7 are obtained using the k−procedure with ∆k = 10−3.

Table 7: Homogeneous circular membrane. The use of conformal mapping.

i kex N = 20 N = 40 N = 80
1 2.4048254 2.4053760 2.4048570 2.4048274
2 3.8317060 3.8347858 3.8318678 3.8317154
3 5.1356225 5.1406596 5.1358615 5.1356368
4 5.5200782 5.5238757 5.5201981 5.5200840
5 6.3801618 6.3901421 6.3806282 6.3801878
6 7.0155869 7.0246098 7.0156355 7.0155684
7 7.5883427 7.6049516 7.5891050 7.5883837
8 8.4172440 8.4292240 8.4165991 8.4172270
9 8.6537275 8.6575946 8.6522827 8.6536285

10 8.7714834 8.7923123 8.7725234 8.7715387

Example 8. Consider the inhomogeneous circular membrane with the density func-
tion p(ξ ,η) = 1 + ρ2 = 1 + ξ 2 + η2 and with the Dirichlet boundary conditions.
Using the same conformal mapping (23), one gets the Helmholtz equation with the
density function

q(x,y) =
∣∣∣∣dΨ(z)

dz

∣∣∣∣2 [1+
(

ξ (x,y)2 +η (x,y)2
)]

,
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where |dΨ(z)/dz|2 is given in (24). The data placed in Table 8 are obtained using
the k−procedure with ∆k = 10−6. The exact solution is taken from Jabareen and
Eisenberge (2001).

Table 8: Inhomogeneous circular membrane with the density function p = 1+ρ2.
Conformal mapping. I - the results obtained by Jabareen and Eisenberge (2001).

i I N = 40 N = 80 N = 120
1 2.1735840 2.1737 2.173589 2.173585
2 3.3052516 3.3057 3.305277 3.305257
3 4.3064737 4.3071 4.306511 4.306481
4 4.8416247 4.8422 4.841654 4.841630
5 5.2469850 5.2482 5.247051 5.246996

4.2 The use of numerical conformal mapping

Only the conformal transforms given in the closed analytical form are used in the
previous subsection. However, an approximate numerical transform can be used for
this goal (see, e.g. Trefethen (1980, 1989); Driscoll and Trefethen (2002); Driscoll
(2005) and references presented there for more details). Here we use the SCPACK
package (see Trefethen (1980, 1989)) which contains routines for computing the
Schwarz-Christoffel transformation w = Φ(ζ ), a conformal map that maps the in-
terior of the unit disk in the complex plane ζ onto the interior of a polygon P in
the w−plane. Then the combined conformal mapping w = Φ(Ψ(z)) maps the unit
square S = [0,1]× [0,1] onto P. The transform Ψ(z) is given in analytic form by
(23). The complex derivative of the combined transform can be computed as the
product

dΦ(Ψ(z))
dz

=
dΦ(ζ )

dζ

dΨ(z)
dz

.

Here dΦ(ζ )/dζ is computet by SCPACK′s routines and dΨ(z)/dz is given in the
analytic form (see (24)).

In Fig. 6 we show the map of the unit square [0,1]× [0,1] onto the equilateral
triangle with the width equal to 1. The algorithm is the same as the one with analytic
conformal map described in the previous subsection. The first five eigenvalues
computed with different N are presented in Table 9.
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Figure 6: The conformal map obtained by the combination of the analytic map of
the unit square onto the circle and the numerical conformal map of the circle onto
the equilateral triangle.

Table 9: Equilateral triangle. The use of the numerical conformal map.

i exact N = 50 N = 100
1 7.2552 7.2558 7.2553
2 11.083 11.086 11.083
3 14.510 14.557 14.520
4 15.103 15.118 15.111
5 18.259 18.328 18.276

5 Concluding remarks

In this paper, a new numerical technique for the problem of free vibrations of inho-
mogeneous membranes with continuously varying properties is proposed. It can be
regarded as a mathematical model of physical measurements, when a mechanical
or acoustic system is excited by some source, and resonant frequencies can be de-
termined using the growth of the amplitude of oscillations near these frequencies. It
is convenient for determining some first eigenvalues of the system which are often
of the most interest from the point of view of engineering applications.

Application of the method leads to the solution of a sequence of boundary value
problems which depend on the spectral parameter k. Varying this parameter, one
gets the eigenvalues as positions of maxima of the norm function F(k). The growth
of the amplitude of response near the eigenvalue is a sequence of the degeneracy
of the matrix approximating the BVP under consideration. The key moment of
the algorithm is the use of the special regularizing procedures which provide a
smooth response curve and, as a sequence, provide a high precision in determining
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eigenvalues.

Note that the method described in the paper does not remove the need to discretize
the problem and can be combined with many classical discretizations. In fact, it can
be applied to the system of the algebraic equations which approximate the origi-
nal problem. To illustrate this, let us consider the following simplest eigenvalue
problem

λ

[
1 0
0 1

]
−
[

a 0
0 b

]
x =

[
λ −a 0

0 λ −b

]
x = 0. (25)

with the exact solution λ1 = a, λ2 = b.

In this situation the method presented in the paper is as follows. Let y = (y1,y2)
T 6=

0 be an arbitrary 2−vector. Consider the solution x =(x1,x2)
T of the system[

λ −a 0
0 λ −b

]
x =−

[
λ −a 0

0 λ −b

]
y. (26)

The sum z = x+y satisfies (25). However, there is an unique solution x =−y and
z = 0 for λ 6= a, b. So, we modernize (26) considering[

λ + iε−a 0
0 λ + iε−b

]
x =−

[
λ −a 0

0 λ −b

]
y, (27)

where ε is a small parameter. System (27) has a unique solution for all real λ

including λ = a and λ = b.

(x1,x2)
T =−

(
λ −a

λ + iε−a
y1,

λ −b
λ + iε−b

y2

)T

.

And the sum z = x+y is

z =
(

iε
λ + iε−a

y1,
iε

λ + iε−b
y2

)T

. (28)

The norm of z is a function of λ

F (λ ) = ε

√
y2

1

(λ −a)2 + ε2
+

y2
2

(λ −b)2 + ε2

The graphics shown in Fig. 7 correspond to a = −1, b = 1, y = (1,1)T and to the
three values of the parameter ε: ε = 10−1, ε = 10−2, ε = 10−3. The graph F (λ )
has maximums at the positions of the eigenvalues. The role of the parameter ε
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Figure 7: 2× 2 linear eigenvalue problem. The function F (λ ) with different pa-
rameters ε .

is shown in Table 10. Here we place the absolute error in the calculations of the
eigenvalue λ = −1 with different ε . The regularizing parameter ε coarsens the
system. For a large ε the accuracy is not very high. When ε decreases, the peaks
become sharper and more narrow and the accuracy in determining the eigenvalue
increases. However, the graph of F (λ ) becomes delta shaped and the precision
decreases when ε becomes very small. In many-dimensional case this leads to a
dramatic increase of the errors.

Table 10: The absolute error in the calculations of the eigenvalue λ = −1 of the
2×2 problem with different values of the parameter ε .

ε 10−1 10−2 10−3

ea 1.2×10−5 1.4×10−9 2.7×10−13

ε 10−4 10−5 10−10

ea 1.0×10−14 7.0×10−12 5.5×10−11

Let us pay attention to the behaviour of the solution (28) near the solution, say
λ = a. When |λ −a|→ 0, then z→ (y1,0), i.e. when the spectral parameter is close
to the eigenvalue, then the sum z = x+y is close to the corresponding eigenvector.
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Note that the same technique can be used for solving nonlinear eigenvalue problems
(NEPs) G(λ )x = 0, where G(λ ) is a N×N matrix-valued function of λ and λ

and x are the sought eigenvalue and eigenvector, respectively (see Mehrmann and
Voss (2004)). The problems considered in Section 3 belong to NEPs because the
collocation matrices depend on the spectral parameter k in the nonlinear manner
through the argument of the Bessel functions (see (11), (12), (13)). However, it is
a particular and quite narrow group of NEPs with pure real spectra. The general
NEPs with complex spectra can be solved in a similar way. This is the subject of
further investigations.

6 Appendix

The elliptic integral

z =

ζ∫
0

dw√
(1−w2)(1−mw2)

transforms the half of the complex plane Im(ζ )≥ 0 onto the rectangular [−a/2,a/2]×
[0,b] in the complex plane z. Here

a =
1∫

0

dw√
(1−w2)(1−mw2)

= 2K(m) , b = K(1−m) .

When m is a root of the equation

2K(m) = K(1−m) ,

the rectangular is the square [−a/2,a/2]× [0,a]. From Table 17.3 of Abramowitz
and Stegun (1964) it follows that m = 0.0294372515. Note that exact value m =
17−12

√
2 is given in Lavrentev and Shabat (1973).

So, the inverse mapping

ζ = sn(z,m)

transforms the square [−a/2,a/2]× [0,a] onto the upper half-plane Im(ζ )≥ 0 and
consequently

ζ = sn(a(z−1/2) ,m)

maps the unit square S = [0,1]× [0,1] onto the upper half-plane Im(ζ )≥ 0.
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Thus the mapping

ζ = Ψ(z) =
sn [a(z−0.5) ,m]− i
sn [a(z−0.5) ,m]+ i

transforms S onto the disk D = {(ξ ,η) : |ζ |= |ξ + iη |= 1}.
The derivative is

dΨ(z)
dz

=
2ia cn [a(z−0.5) ,m] dn [a(z−0.5) ,m]

[sn [a(z−0.5) ,m]+ i]2

see Abramowitz and Stegun (1964).
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