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An Implementation of the Longman’s Integration Method
on Graphics Hardware
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Abstract: There is a growing trend towards solving problems of computational
mechanics by parallelization strategies. The traditional approach is to implement
the parallelization procedures on CPUs based on the MPI or OpenMP paradigms.
Recent efforts have been made to implement computational tasks on general-purpose
programmable graphics hardware (GPGPU). The GPU is specially well-suited to
address problems that can be formulated in form of data-parallel computations with
high arithmetic intensity. This work addresses the implementation of the Long-
man’s integration method on graphics hardware. A serial implementation of Long-
man’s method was rewritten under the SIMD (Single Input Multiple Data) parallel
programming paradigm. The code was developed on an NVidia™ CUDA program-
ming environment and executed on a graphics card hosted by a regular dual-cored
CPU. The structure of a GPU as visible from the CUDA programming language
is briefly described in order to assess the possible strategies for parallel imple-
mentation on the graphics card. The accuracy and efficiency of the implemented
strategies are investigated by solving the improper integral of a simple, but repre-
sentative, oscillatory and decaying function possessing closed-form solution. The
paper reports the performances of the GPU and the CPU on solving different num-
bers of integrals for distinct parameters of the integrand and required degrees of
accuracy. For a large number of integrals the GPU has shown a speedup capacity
ranging from one to two order of magnitudes compared to the CPU.

Keywords: High Performance Computing, Graphics Hardware, Improper Nu-
merical Integration, Oscillatory-Decaying Functions, Numerical Inversion of Inte-
gral Transforms.

1 Introduction

In the last years, the edges of computing capability have been pushed by the emer-
gence of General Purpose Graphics Processing Units (GPGPU). These graphic
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cards have been applied to Finite Difference Methods, Particle Based Methods, Lat-
tice Boltzmann Method and also to the Finite Element Method [Oishi and Yoshimura
(2008)]. The articles of Goddeke and his collaborators explored GPUs as scientific
co-processors within the context of mixed precision iterative refinement techniques
applied to the solution of PEDs [Goddeke et ali. (2007a)], analyzing performance,
cost and power demands on heterogeneous clusters [Goddeke et ali. (2008)] as
well as weak scalability for FEM calculations [Goddeke et. ali. (2007b)]. In the
implementations reported in the articles cited above, the GPU was controlled by
the so-called graphics APIs (Application Programming Interfaces), like OpenGL
[Shreiner, Woo, Neider and Davies (2005)] or DirectX [Jones (2004)]. Around the
end of 2006, a new technology of graphic devices was launched. This new genera-
tion of devices is not only dedicated to graphics computation, but it is also capable
of performing general-purpose data processing. Along with this technology a new
API called CUDA (Compute Unified Device Architecture) has been launched by
the NVidia™ Corporation for this new generation of GPUs [CUDA (2008)]. CUDA
is a programming language that allows the programmer to code the GPGPU in a
higher level paradigm, compared to the former graphics-dedicated APIs such as
OpenGL and DirectX. [Owens, Luebke, Gobindaraju, Harris, Kriiger, Lefohn and
Purcel (2007); CUDA (2008)]. Recently the GPUs under the CUDA program-
ming environment has been applied to solve the Boundary Element Method (BEM)
[Takahashi and Hamada (2009)].

Graphics hardware was born as a parallel computation device. Its high-bandwidth
memories and its floating-point operations are significantly faster than ordinary
CPUs and have called attention of the scientific community. Large scale compu-
tational tasks, whose parallel formulations have been explored for CPU clusters
[Araujo and Gray (2008)], now find in general-purpose GPU a new and promising
alternative of implementation.

The need for calculation of numerical integrations over unbounded limits is a fre-
quent task in the solution of physical problems. One such integral is given in Eq.
1, where Jy(x) is the Bessel function of first kind and order zero [Korenev (2002),
Longman (1956)],

Tnessel = /0 Jo(x)dx=1 (1)

Likewise a large class of problems of mathematical physics may be solved with
the use of integral transforms [Selvadurai (2000)]. Usually, the first integral trans-
formation from the original physical to the transformed domain is performed an-
alytically. The inverse transformation, back to the physical domain, however, is
generally accomplished numerically. An example of a Hankel integral transform is
given in Eq. 2. In this equation J, is the Bessel function of the first kind and order
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v. The variables in the original and transformed domains are, respectively, x and
&. The function to be transformed to the original domain is f(x). This improper
integration must be evaluated repeatedly for all desired values of the variable &.

Franket (é) = /Omxf (x) Jy (gx) dx (2)

Double Fourier integral transforms also represent examples of improper integra-
tions that must be determined a large number of times. Equation 3 shows a double
Fourier inverse transformation that must be numerically determined over the func-
tion f(X, y)

FFourier2 (5777) = L / /f(x,y) eiéxdx einy dy =

5 [ e @

—oo

In Eq. 3 the inner integral over the variable x in must be evaluated for every value
of the variable y at the outer integral. The operations described so far are numer-
ically very intensive and tend to impose a limitation in the application of integrals
transforms that must be evaluated numerically.

The integrand of these numerical inversions may present an oscillating and decay-
ing behavior. This is the case of function f(x) shown in Eq. 1. For the improper
integration of decaying and oscillating functions, Longman (1956) proposed a very
efficient method. This work addresses the implementation of the Longman’s inte-
gration method on graphics hardware within the CUDA programming environment.
A relative simple, but representative, function with known closed form solution is
used to exemplify the potentiality of the proposed implementation.

The paper begins describing the method of integration proposed by Longman. The
classical serial implementation is overviewed. Next, the new technology of GPGPU
is described in some detail. The structure of a GPU, as visible from the CUDA pro-
gramming language, is briefly described in order to formulate the possible strategies
for parallel implementation on the graphics card. It is shown why the GPU imple-
mentation is more efficient than its CPU counterpart for the present application and
how the coding of non-graphical algorithms is treated. The fourth section shows
how the method of integration was approached in order to comply with the GPGPU
stream computing philosophy. Finally, the presented implementation is applied to
solve a large number of integrations. Its performance is compared with an ordinary
CPU serial code.
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2 Longman’s Integration Method

Longman (1956) proposed a method of numerical integration to treat improper in-
tegrals of the kind:

I:/wf(x)dx 4)

in which a is a constant and f(x) oscillates around zero in such a manner that the
absolute magnitude of the integral over each half-cycle is smaller than (and opposite
in sign to) that over the preceding half-cycle. An example of such a function is
shown in Eq. 5, the behavior of which is depicted by Fig. 1 for the parameters A =
0.5 and w = 10.

f(x) = e *cos (wx) 6))

1
f(x)
0.5

0

-0.5

Figure 1: Curve of f(x) = exp(—1/2x)cos(10x) and illustration of the slowly de-
creasing areas.

Longman’s method is based on Euler’s transformation of slowly convergent alter-
nating series [Bromwich (1942)]. Consider the following series,

Vo—-Vi+Vo—V34+V4—--- (6)
where
Vn > 07 Vn+l < ‘/na VneN (7)

The differences A™"! of order r+1 of area n are defined as follows:

A, = AV, — ATV, €))
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with
Ar:OVn = Aan = Vn+1 — Vi, Ar:ian =V
Using Eq. 8, the sum of the infinite series can be expressed as [Longman (1956)]:

Y (- — 3AVO+ A%V — )
0

The series on the right-hand side of Eq. 9 can be shown to be convergent whatever
the original series is [Kaplan (2002); Longman (1956)]. A remainder Ry of this
sum after N terms can be estimated [Bromwich (1942)]:

Ry| <27V ANV | (10)

The terms V,, shown in the preceding equations can be related to the areas of the
curve of f(x), as it was depicted in Fig. 1. In addition, the requirements stated
about the behavior of the function f(x) causes it to have infinite roots bigger than
a at the abscises x =x;, (i=1,2, 3, ...), with a < x| < X» < X3, etc. (Fig. 1). The
integration of Eq. 4 may be expressed in terms of these areas:

/mf(x)dx:?f(x)dx+]2f(x)dx+]3f(x)dx+-'- (11)
or further,
/ dx—/f )dx — /{f }dx+/ x)dx+--

—/ —(Vo—-Vi+Vo=V3+Vy—--1) (12)

Finally, according to the transformation expressed by Eq. 9,
oo X1
/ f(x)dx:/ f(x)dx+ (Vo — 1AV + §A%Vp — ) (13)
a a

Equation 13 summarizes Longman’s integration method, in which the improper in-
tegration is rewritten in terms of areas to be integrated individually. In the following
subsection, the method is applied to solve a simple case of improper integration.
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2.1 IHlustration of the method

Consider the function f(x) given in Eq. 5, with [=0.5 and w=10. Its improper
integral has a closed-form solution,

A
—Ax
/f dx—/ e " cos(wx)dx = PUNER

(14)
/ e 2 cos(le)dx =0,004987531172
0
The roots of f(x) in the integration domain are such that:
1
f) =0 cos(105) =0 = x = == [+ (k= 1) x| k ez (15)

To perform the numerical calculations, an example with N=7 areas is considered.
Eight roots x; (1 < k < 8) had to be determined. Table 1 shows the elements
required to apply Longman’s integration method. The second row shows the roots
of the oscillating function. The third row presents the value of the integrated areas
V,,. The following rows depict a sequence of the differences A"V, up to order
A=V, = A%V, of the V,, areas (1 < n < N).

According to Eq. 13, the integral of f is then given by:

Table 1: Calculation of the areas of integration.

k 1 2 3 4 5 6 7 8
Xk 0.157079 10.471238 [0.785398 [1.099557 |1.413717 |1.727876 |2.042035 |2.356194

X, +l
\'A :.[ fdx J0,171027 [0,146166 [0,124919 [0,106760 [0,091241 [0,077978 [0,066643

AV, -0.024861 |[-0.021247 |-0.018159 [-0.015519 |-0.013263 |-0.011335
AV, 0.003614 [0.003089 [0.002640 |0.002256 |0.001928

AV, -5.25¢-4  [-4.49¢e-4  [-3.84e-4  |-3.28e-4

AV, 7.636e-5 [6.526e-5 [5.578e-5

AV, -1.110e-5 [-9.487e-6
A%V, 1.614e-6

o X1
/ Flx)dx ~ / F@)dx—[Wo— 1AVy + 1A%V,
0 0
— =NV + AWy — LAV + 1AV

/ f(x)dx ~0,097204 — [10,171027
0

— 1(—0.024861) + £0.003614 — & (—5.25-107%)
+§7.636-10 P-4 (-1.110-107%) + 3 1.614- 10~°]
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/ f(x)dx ~ 0,004987532160155 (16)
0 —

accuracy

2.2 Serial implementation

An intuitive algorithm for Longman’s integration method involves treating the part
of Table 1 enclosed by a thicker dark line as an NxN square matrix, called G in
this paper. The first line of G contains the integral of the areas V,,. The (r+2)-th
line contains the differences A™T1V,,.

Each area V,, of the first line is calculated by classical methods of integration,
such as the Gaussian Quadrature [Davis and Rabinowitz (2007)]. Hence, the term
located at the k-th column of the first line is given by:

Ng

-|[ @@ @ L s )

g=1

G(1, k) =

/Xk+1 f(x)dx

X

In Eq. 17, x¢ and w, are, respectively, the nodes and weights for Gaussian integra-
tion of order N [Davis and Rabinowitz (2007)]. J (&) is the Jacobian responsible
for transforming the range of the integration domain from [Xy, X;y1] to [—1, 1].

The next N — 1 lines in matrix G are determined by a data reduction scheme starting
from the first one. Equation 8 is applied so that, at the end of the reduction, the first
column will contain the terms A”1Vj, (=1 < r < N—2), over which Longman’s
formula is applied (Eq. 13). Notice that the hatched cells inside the thick dark line
of Table 1 are not used. Therefore, in the same fashion, the corresponding cells of
matrix G are left blank.

This approach can easily be parallelized. Considering that the calculation of each
area of the first line does not depend on the calculation of the remaining areas, all of
them can be integrated simultaneously. Further, in the data reduction, all the terms
of a line can also be calculated in parallel. It is only required that the prior line has
been completely filled in.

In this section, Longman’s method for improper integration of oscillatory-decaying
functions was described. The method was illustrated by an example and an intuitive
implementation was overviewed. In the article of Espelid and Overholt (1994) a
more elaborated integration scheme, including adaptativity, local and global error
estimators is presented. The strategies described in the above cited article [Espelid
and Overholt (1994)] may also be implemented on graphics hardware. In the next
section the technology of computation on graphics hardware will be presented.
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3 Parallel Computing on Graphics Hardware

Ordinary Central Processing Units (CPUs) must be capable of dealing with a vari-
ety of tasks demanded by a computer. Among them, there are recursive, adaptive,
and interdependent problems, which demand a large amount of the computation re-
sources to be dedicated to communication of data and control [Wloka, Zeller, Fer-
nando and Harris (2009)]. On the other hand, graphics calculations such as pixel
shading, vertex transformation and rasterization are tasks that require little control
and communication, when compared to the volume of calculations [Wloka, Zeller,
Fernando and Harris (2009)]. Because of that, graphics hardware has been devel-
oped since its beginning as data-parallel computing devices. They are specially
well-suited to address problems that can be expressed as data-parallel computa-
tions with high arithmetic intensity (the ratio of arithmetic operations to memory
operations) [NVidia (2008)].

For example, a typical card launched in the end of 2006 contained 128 calculation
units, distributed among 8 vector multiprocessors. This architecture of cooperative
multi-cored computing units is similar to the one found in some clusters of CPUs
[Pacheco (1997)], but it is confined in a single hardware device. Figure 2 shows
the basic architecture of a graphics card. As can be seen, the majority of the chip
area is devoted to calculation, and only a small part of is dedicated to control and
memory tasks.

Because of its architecture, this family of General-purpose Programmable Graph-
ics Processing Units (GPGPUs) requires a single instruction—multiple data pro-
gramming paradigm (SIMD). These cards have been used for implementation of
solutions for many problems of engineering, physics, medicine, mathematics, etc.,
and an overall superior performance, compared to ordinary CPUs, has been ob-
served [Ryoo, Rodrigues, Baghsorkhi, Stone, Kirk and Hwu (2008); Rasmusson,
Mosegaard and Sgrensen (2008); Stantchev, Juba, Dorland and Varshney apud
Stantchev, Dorland and Gumerov (2008)]. A few APIs (Application Programming
Interfaces) were also launched along with this new graphics cards [Peercy, Segal
and Gerstmann (2006); CUDA (2009)].

CUDA (Computer Unified Device Architecture) is an API with which NVidia™
graphics cards can be programmed to perform non-graphics tasks. It is a low level
language, because it requires the programmer to explicitly allocate and free mem-
ory, to declare data copies, to chose parameters of parallelism, and so forth. It is
essentially an extension of the C programming language, with the addition of func-
tion type qualifiers, variable type qualifiers, kernel execution directives and some
additional built-in variables. CUDA is multiplatform, as it can be compiled for any
of the new NVidia’s GPGPUs architectures [NVidia (2008)].
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Figure 2: Example of architecture of a graphics card.

In CUDA programming, the concepts of thread, thread block and grid are funda-
mental. Thread is a virtualized CPU, the basic execution unit: it is the component
responsible for executing a given instruction (the kernel) over a single data. Mul-
tiple threads may work in parallel executing the same kernel over a set of different
data (SIMD paradigm). Thread blocks are used to spread the threads among the
various processors of the graphics card. The division of the data in terms of blocks
must take in consideration that each processor of the card will take care of one
block at a time. In the card of Fig. 2, for example, 128 blocks would be executed
simultaneously. If the data of the problem is divided in more than 128 blocks, the
remaining ones will be automatically queued to be executed as soon as a processor
is available.

There is another level of parallelization. Each thread block, in turn, admits the
execution of the limited number of 32 threads at a time. This number is called
warp. If the block has more than 32 threads, the remaining will automatically be
queued for the next round of execution.

In Fig. 3, blank cells represent the data of the blocks that were not processed yet.
Shaded cells represent the data being processed in the present round of execution,
and hatched cells represent the data already processed. In the first round of exe-
cution, the first two thread blocks are assigned to the two processors of the card.
The third block is queued. Inside each of the blocks (1) and (2), only 32 of their
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36 threads are processed simultaneously by each processor. The four remaining
threads are queued. In the second round, the processors deal with these final 8
threads. Only then, the next parcel of blocks is processed, which in this case means
the third block. Notice that, in this problem, one of the processors is left inac-
tive in the last two rounds of execution, which is an undesired waste of calculation

resource.
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Figure 3: Reduced example of the two levels of parallelization.

Finally, grids are used to spread the data of the problem among thread blocks. For
example, a single 16 x 16 thread block would not have enough room for the million
of floating point variables of a 1000 x 1000 matrix.

This matrix would then be divided into a number of blocks of a given size. A thread
block can be organized as a one-, two- or three-dimensional array of threads, and
CUDA offers variables with which the index of every thread inside its block can be
recovered. Analogously, the grids may be one-, two- or three-dimensional arrays
of blocks. The thread blocks within the grids may also be identified by means of
indices.

It is up to the programmer to decide in which way the data of the problem will be
divided in terms of grids and thread blocks. This is a key decision which impacts
directly on the efficiency of the program. A bad decision could cause the computa-
tional resources to be misused, as it happened in the example of Fig. 3. Recently,
an application has been developed, in which these parameters can be determined
automatically by metaprogramming [Klockner and Hesthaven (2008)].

The number of multiprocessors in a GPU, the number of thread blocks which can be
dealt simultaneously by each multiprocessor and the warp size depend on the card’s
model. For example, the NVidia™ model GTX 280 has 30 multiprocessors, each
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one of them capable of dealing with 8 blocks simultaneously, and a warp size of 32
threads. Altogether, this card can execute the same kernel simultaneously over 30
multiprocessors, each containing 8 blocks and each block running 32 threads. This
means that the defined kernel can be ran simultaneously on: 30 x 8 x 32 = 7680
distinct data.

Graphics hardware presents a complex memory architecture (see Fig. 4). The
most important of them is the global memory. The data placed in this memory
are available to all the threads of a grid. Each thread block has its own shared
memory, which presents a very limited, device-dependent size, but possessing an
access time faster than global memory’s [Manavski and Valle (2008)]. However,
only the threads of the given thread block are allowed to access their block’s shared
memory. Furthermore, each thread has its own registers, accessed only by the
thread itself. The graphics card also has the constant and texture read-only cache
memories, devoted to specific purposes in the graphics calculation [NVidia (2008)].
Its specific properties, however, have been also explored for non-graphics purposes
[Pharr and Fernando (2005); Nguyen (2007)]. Besides all this graphics hardware
memories, a CUDA program also has to deal with the ordinary CPU RAM memory,
as every classical low-medium level program does.

The execution of GPU programs requires a sophisticated manipulation of data be-
tween all these memories. All the vectors and matrices that might be accessed by
the threads have to be allocated in the RAM memory of the CPU that hosts the
graphics card, and also allocated in the GPU’s global memory. Only pointers to
these vectors are passed as arguments to the kernels.

At the end of the execution of a kernel, the data calculated by the threads are saved
in the space allocated in the global memory of the GPU. It is necessary to copy
back this data to the CPU’s memory so that they can be printed, read, saved, etc.
All memory manipulation expends some processor clock cycles. A precise and fair
benchmark of processing times between CPU and GPU will be achieved only if the
times the GPU and the CPU consume to perform these memories operations are
taken into account.

The following section will report how the programming concepts of GPGPU were
approached in the present implementation of Longman’s integration method.

4 Implementation on the GPU

In the present work, a parallel version of the algorithm described in Section 2.2 is
implemented.

The calculation of each area V,, shown in Fig. 1 can be performed independently
of its neighbor. This allows the first line of the matrix G to be calculated in par-
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Figure 5: Steps to be executed in series by the GPU.

allel, in a single execution step. This characteristic is exactly what makes Long-
man’s method so interesting to parallel implementation, and it is what motivated
this work. For a problem in which N areas are calculated, N—1 parallel data reduc-
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tion processes are needed to determine the remaining lines of G.

The model of parallel programming planed for the GPU in this work is illustrated
by Fig. 5 for a reduced example of N = 6 areas. The cells marked with a circle
within a line represent the terms that are being calculated simultaneously in the
present round. The shaded cells shown in Fig. 5 represent the terms that were
already calculated. Every element of one line can be calculated simultaneously.
After all the elements of one line are calculated, the next line can be calculated. To
perform the calculation of the example, a sequence of N = 6 rounds is needed.

Notice that matrix G is filled exactly in the way described in the example of Table
1. The shaded cells of Fig. 5 are analogous to the shaded cells of Table 1. The blank
cells of Fig. 5, representing the untouched terms of G, are analogous to the hatched
cells of Table 1. In the present approach, each individual area V,, is calculated by
Gaussian Quadrature. It is also admitted that a vector nx containing the roots of f
is given.

The matrix G, of size N x N, is fully stored in the thread block’s shared memory,
because its terms have to be read and written repeatedly along the course of the ex-
ecution of the kernel. This fact poses a limit to the number of areas N, as the thread
block’s shared memory must store the N? terms of G. This limit of N depends on
whether the implementation makes use of single or double precision floating point
variables.

For the execution of the algorithm, a one-dimensional N x 1 thread block is created.
Initially, the N threads calculate the terms of the first line of G, i.e., the areas V,,.
Each thread does it by a serial summation of the Gauss points, according to Eq.
17. A synchronization point is inserted in order to guarantee that all the areas are
calculated before the program goes on.

Next, the N—1 terms of the second line of matrix G(2, i) (1 < i < N—1), which
represents a first step of a classical data reduction scheme, are calculated simulta-
neously by a set of threads, leading to the A'V,, elements. At this point a synchro-
nization point is inserted to guarantee that all the first-order differences A'V,, are
determined before the program proceeds. This operation is repeated over every line
j (1 < j<N-1)until all the differences A" +1v, are calculated.

At the end of the data reduction, the first column of G contains, in its (r+2)-th line,
the terms A’T!'V,. Now the N active threads multiply the terms (A"+1Vy) in the
first column of matrix G(i, 1) by the factors 1/2/ (1 < i < N) that appear in Eq.
13. After this operation another synchronization point is inserted. Finally, a single
thread sums in a serial operation all the weighted differences of Eq. 9 and subtracts
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the result from the first part of the RHS of Eq. 13, leading to the desired result:
X1 N
lons = [ f@)dx— Y. G ) (18)
a j:l

The first term of Eq. 18 is also determined by Gaussian Quadrature in series by this
single thread, in the same fashion that each area V,, was determined.

The procedures above describe the solution of a single integration by Longman’s
method, which requires the dedication of a single thread block. Examples of these
integrals are given in Eqgs. 1 to 3. On the other hand, as already discussed in the
initial sections of this article, to perform numerical inversion of integral transforms
like the ones shown in Eq. 2 and 3, these integration procedures must be repeated
for many values of some transform variable. In the present work, multiple thread
blocks running in parallel are used to solve multiple integrals.

To accomplish the execution of multiple thread blocks, a one-dimensional grid con-
taining M thread blocks was designed. Each thread block is responsible for solving
one integral by Longman’s method as described above. It is necessary that the pa-
rameters of the function, in the present case the constants A and @ of Eq. 5, be
passed as arguments for the execution of the blocks. The roots of the function, be-
tween which the areas are defined, can be passed as arguments or calculated inside
the kernels, in some cases. The graphics card will execute concurrently as many
blocks (and therefore integrations) as its number of processors. The remaining of
the M blocks will be queued for the next round of execution, as it was explained in
the prior section.

5 Numerical Results

In the present work a program was written to integrate the function given in Eq. 5.
It is assumed that the lower limit of integration in Eq. 13 is zero, a=0. A number
M of blocks can be activated, which corresponds to the solution of M different
integrals of this function. The constants A; and @, k € [1, M], are passed as
arguments in the kernel call. The roots of the function are not passed as argument.
Once they are easy to be calculated in this case (see Eq. 15), each thread calculates
its respective roots in the moment it calculates the corresponding integral. In other
words, a given thread i solves the integral shown in Eq. 19.

Gi(1, i) = / e M cos (wpx) dx (19)
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Figure 6 depicts a block diagram of the program. It shows clearly that part of the
computations is performed within the CPU and part on the GPU, forming a CPU-
GPU complementary system. The operations within the GPU are named kernel
calculations.

Two distinct measures of execution time are taken. The first is the total time #t,
measured from the initialization of the CPU up to the printing of the results. The
second measure fc indicates the time specifically needed for the execution of the
kernel (see Fig. 6). Only tc, which stands for calculation time, is related to the
solution of the integral by Longman’s method. The difference between #f and zc,
called ta, is the time consumed by the code in memory operations. Within the fa
time, it is included the time to allocate space in the CPU and GPU’s RAM for the
variables Ay, @y and integ, which is the vector that will recover the results of the
M integrals from the kernel. The time spent to copy these vectors between these
memories is also included in za.

The program was executed in an NVidia™ GTX 280 graphics card, the architecture
of which was described in Section 3. The card was hosted by a 64 bits, dual-core
AMD Athlon™ X2 CPU (2.6GHz). This model of card is nowadays one of the
few GPUs whose hardware is natively capable of dealing with double precision
arithmetic.

Whenever it was possible, hardware-implemented transcendental functions were
used. These functions are known for improving performance on a penalty of a
somewhat lower accuracy [CUDA (2009)].

Figure 7 shows the required execution time to perform M integrations. In this nu-
merical experiment, N=16 areas were used to perform the integration. Single preci-
sion has been applied. As mentioned in Section 3, the architecture of the GTX 280
admits the simultaneous execution of up to 240 thread blocks (30 multiprocessors,
each one of them capable of dealing with 8 blocks simultaneously). The hardware
schedules automatically the remaining to be executed as soon as the present have
been executed. Hence, it is observed that the execution time is organized in levels
as the values of M go from 1 to 240 blocks, from 241 to 480, from 481 to 720, and
so forth. The results show that up to M=240 blocks the processes run very well in
parallel and execution time is almost insensitive to the number of blocks within this
range.

In the next analysis the normalized total time (##/M) spent by the GPU to solve
small numbers of improper integrals (1 < M < 5) is compared to the time spent by
the CPU.

In Fig. 8, the experiment is repeated for a larger number of integrals being solved
and, consequently, a larger number of blocks being executed. The limit of integrals
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Figure 6: Execution flow of the present program, showing where the execution
times are measured

that are possible to be solved corresponds to the maximum number of thread blocks
per grid. This number is device-dependent, and in the present case is M4, = 65,536
[CUDA (2008)]. The figure indicates that the integration time varies almost linearly
as the number of integrals surpasses by large the number of block threads that can
be handled simultaneously by the card.

In this experiment, it can be observed that as number of integrals being solved
increases, the parcel of computing capability devoted to memory manipulation (ta)
decreases relatively to the total time (#f). In the next analysis the normalized total
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Figure 7: Execution time of the GPU for M thread blocks.
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Figure 8: Execution times of the GPU for M up to 50 thousands thread blocks.

time (1#/M) spent by the GPU to solve small numbers of improper integrals (1 <
M < 5) is compared to the time spent by the CPU. Four distinct number of areas
per integration is considered (N = 8, 16, 24, 32). As the number of areas to be
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integrated is smaller than the warp number of the graphics card (32 threads), all
area calculations are performed by simultaneous threads within a thread block of
the GPU.

Consider the results shown in Fig. 9. First it can be noticed that the normalized time
(tt/M) required by the CPU to perform the integrations increases as the number of
used areas also increases (N = 8, 16, 24, 32). But as the number of improper
integrations to be solved increase (1 < M < 5), the normalized integration time
decreases by a small amount and it tends to stabilize at a constant value.

0.25

02— o= S — o
|
; —8—GPUN-=8
5 | ——GPUN=16
0t8e T T | ——GPUN=24®
: | -
CPU N=16 | —©—GPUN=32

o -

Normalized total time tt [ms]

M thread blocks = M integrals

Figure 9: Comparisons of CPU and GPU performances for few integrals (1 <M <
5) but for distinct numbers of integration areas (8 < N < 32).

On the other hand, the time required by the GPU to solve the integrations is almost
insensitive with respect to the number of areas being used in the integration (N = 8,
16, 24, 32). The fact that every area is calculated simultaneously by parallel threads
within a thread block is the explanation for this behavior. The small difference
between the GPU times is due to the allocation of variables of different sizes in
each case.

Figure 9 also shows that for the case of one single improper integral (M=1) the
CPU performs better than the GPU for low number of areas used in the integration
(N =8, 16). The reason to that is that, in order to execute the kernel that calculates
this integral on the GPU, a few allocations and copies of memory between the CPU
RAM and the GPU global memory are needed, which are not necessary in the CPU
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program. This allocation time is rather short and depends little on the number of
integrals M. So the increase of M causes this allocation time to be dissolved in the
total execution time of the kernel. For a number of areas greater than 24 the GPU
outperforms the CPU even for a single realization of the improper integral (M=1).

The same figure also shows that as the number of improper integrations (M) in-
crease, the normalized time (/M) decreases for the GPU. The arithmetic intensity
of the problem increases with the number of areas, and so does the performance of
the GPU compared to the CPU.

For larger numbers of integrals, an overall superior performance of the GPU is
observed in Fig. 10. This figure depicts the normalized integration time (#/M)
for the CPU and the GPU. This is essentially a continuation of Fig. 9 for larger
number of integrals (M). It can be seen that the normalized calculation time for
the CPU remains practically insensitive to the number of integrals, which means
that every integration consumes the same amount of time. The total time therefore
increases linearly with M. In the analysis shown in Fig. 10 the final number of
integrals solved was M=50,000, each containing N=16 areas. The calculations were
performed in single precision.

normalized total time log([ms])

M thread blocks = M integrals x10*

Figure 10: Comparison of normalized GPU and CPU times, with N = 16 and single
precision.

The time spent by the GPU to solve all M=50,000 integrals was 6.508 ms. The
normalized total time was then 0.1302 us. The CPU spent 5.780 seconds to solve
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the same number of integrals. For this large number of integrals, the performance
of the GPU was 888 times better than the CPU.

Next an experiment was made, concerning the precision of the integration. The
integral of Eq. 5 was performed with parameters A=0.5 and @w=10. The lower
integration bound was a= x|, so that the formula of estimation of the remainder
could be used (Eq. 10). Figure 11 shows the error of the present integration on the
GPU for three different implementations: single-precision variables and hardware-
implemented transcendental functions (SP+HTF), single-precision variables and
ordinary software transcendental functions (SP+STF), and double-precision vari-
ables (DP).

As the literature advises [CUDA (2009)], the accuracy is harmed when the hard-
ware functions are used. Nevertheless, the precision of this implementation is still
within the bounds of the estimated remainder furnished in Eq. 10. For the other
two implementations, Equation 10 has shown to be a good, conservative estimative
of the remainder (integration error).
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Figure 11: Comparison between the estimated remainder (error) and the real re-
mainders (errors) of single and double precision.

There is, of course, a price for achieving double precision results, which is a per-
formance decrease. Figure 12 compares the normalized total times (##/M) of CPU
and GPU for single and double precision implementations. In these experiments,
N=16 areas of integration and software implemented transcendental functions were
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used.
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Figure 12: Comparison of performances on single and double precision calcula-
tions on the CPU and the GPU.

It can be seen that the time on the GPU increases for the double precision case.
On the other hand the CPU results are faster for double precision. This kind of be-
havior, according to which C language implementations on double precision may
outperform single precision implementations has already been observed in the liter-
ature [McMamee, (2004)]. This behavior is CPU hardware architecture dependent
and is not an issue of the present article.

The results of Fig. 12 show that in single precision the GPU becomes more efficient
when more than 2 integrals are performed (M > 2). For the double precision case
the GPU is more efficient for M > 4.

Figure 13 shows, analogously to Fig. 10, the normalized total time (##/M) of CPU
and GPU for a larger number of integrals (M < 50,000). Figure 13 also shows the
GPU speed up for a large number of integrals determined with double precision.

In the final experiment, in which M = 50,000 integrals were solved with N = 16, the
time spent by the GPU to solve the integrals on double precision was 40.848 ms,
6.3 times higher than in the single precision version. The normalized total time is
1t/M= 0.827 us. The CPU spent 2.243 seconds to solve the same 50,000 integrals
in double precision. For this case the performance of the GPU was 55 times better
than the CPU, as can also be seen inf Fig.13.



164 Copyright © 2009 Tech Science Press  CMES, vol.51, no.2, pp.143-167, 2009

—8—GPUSP

——CPUDP
—*—GPUDP =
—e—CPUDP |- |

normalized total time log([ms])

M thread blocks = M integrals M 104

Figure 13: Comparison of normalized GPU and CPU times for single and double
precision considering large number of integrals M with N=16.

6 Concluding Remarks

This paper has described the implementation of the Longman’s integration method
for improper numerical integration of oscillatory-decaying functions on graphics
hardware (GPGPU). A classical serial implementation was rewritten under the
SIMD parallel programming paradigm.

The basic structure of a GPU as observed from the CUDA programming environ-
ment has been described.

The paper has reported the performances of the GPU and the CPU on solving dif-
ferent numbers of integrals with various degrees of numerical accuracy. There is
a number of integrals (M), starting from which the GPU is more efficient than its
CPU counterpart. This number depends on the required accuracy of the integration
(N) and on the kind of variables utilized, single or double precision. For N>16 the
GPU was faster than the CPU even for a single integration (M=1). In the worst case,
for single precision calculations, the GPU has outperformed the CPU for M>3. For
double precision and N=16 the GPU was faster than CPU whenever more than 4
integrals (M>4) were calculated.

The GPU has shown an overall superior performance, being almost 900 times faster
than the CPU when the number of integrals to be solved was very large and the
single precision case was considered. For the double precision case the GPU was
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55 times faster than its CPU counterpart.

The article indicates that numerical inversion of integral transforms, which present
oscillating and decaying functions, is an ideally suited task for parallel computa-
tions on GPGPUs.
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