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A Fictitious Time Integration Method for Backward
Advection-Dispersion Equation
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Abstract: The backward advection-dispersion equation (ADE) for identifying
the groundwater pollution source identification problems (GPSIPs) is numerically
solved by employing a fictitious time integration method (FTIM). The backward
ADE is renowned as ill-posed because the solution does not continuously count
on the data. We transform the original parabolic equation into another parabolic
type evolution equation by introducing a fictitious time coordinate, and adding a
viscous damping coefficient to enhance the stability of numerical integration of
the discretized equations by employing a group preserving scheme. When several
numerical examples are amenable, we find that the FTIM is applicable to retrieve
all past data very well and is good enough to deal with heterogeneous parameters.
Even under seriously noisy final data, the FTIM is also robust against disturbance.

Keywords: Groundwater contaminant distribution, Advection-dispersion equa-
tion, Inverse problem, Fictitious time integration method (FTIM), Group preserv-
ing scheme (GPS)

1 Introduction

Over the past decades, a number of studies have been done to cope with the back-
ward advection-dispersion equation (ADE) for identifying the groundwater pollu-
tion source identification problem (GPSIP). One often uses an optimization method
to attain the best fitted solution owing to the easy implement of numerical proce-
dures. Gorelick et al. (1983) first formulated the problem as a forward simulation
in conjunction with a linear optimization model by employing the multiple regres-
sion and linear programming. The optimization model offers an effective method
to identifying the location and time release history of groundwater pollution source

1 Grid Application Division, National Center for High-Performance Computing, Taichung 40763,
Taiwan

2 Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan. Correspond-
ing author, E-mail address: liucs@ntu.edu.tw



262 Copyright © 2009 Tech Science Press CMES, vol.51, no.3, pp.261-276, 2009

in homogeneous medium. Nevertheless, the classical optimization approach takes
much computational time, produces large numerical errors, and is confined to cases
where the data are available in the form of breakthrough curves. Since the GPSIP is
a nonlinear problem, Wagner (1992) has proposed a combination of the nonlinear
optimization model and the nonlinear maximum likelihood estimation to deal with
the parameter estimations and groundwater contaminant source characterizations
in the homogeneous medium simultaneously; and reported that the nonlinear opti-
mization method is more accurate than the linear optimization approach for solving
the location of a pollution source and the reconstruction of the release history be-
cause the model parameter uncertainty is considered. However, the nonlinear max-
imum likelihood estimation has so many constraints that its application is limited,
and its complicated procedures need to be tackled. In general, the above-mentioned
optimization methods encounter complicated procedures and large numerical errors
in coping with the problem in heterogeneous media.

To resolve the GPSIP in heterogeneous media, Atmadja (2001) and Atmadja and
Bagtzoglou (2001a, 2001b, 2003) have proposed the marching-jury backward beam
equation (MJBBE) method, which dealt with the recovery of the spatial distribution
of contaminant concentration and was not an optimization method. Calculating
from the recovery of the spatial distribution of contaminant concentration in ho-
mogeneous media, the MJBBE method yields smaller numerical errors than those
in heterogeneous media (see Fig. 5 and Figs. 8-11 of Atmadja and Bagtzoglou
(2001b)). However, the approach recovers the problem only in a short time pe-
riod between the initial and final time, and it transforms the second-order backward
ADE into the fourth-order PDE. This transform not only increases the complexity
of the computational procedures, where two artificial boundary conditions are re-
quired, and also spends much computational time. Besides, the numerical errors
of the MJBBE method are larger than those calculated by the forward numerical
approach. After that, Wang and Zabaras (2006) employed a hierarchical Bayesian
computational method to solve the one-dimensional backward ADE. However, the
computational procedures of their approach are complicated, and their method
needs many iterations. Subsequent to Wang and Zabaras (2006), Liu et al. (2010)
employed the backward group preserving scheme (BGPS) to solve the backward
ADE. This paper shows that the recovery time of the plume spatial distribution
of the BGPS is longer than that of the MJBBE method. Especially, the one-step
BGPS has some merits than other numerical methods due to its group structure and
no error propagation in the one-step computation.

In this paper, we propose the fictitious time integration method (FTIM) for solving
the GPSIP. The FTIM is first proposed by Liu and Atluri (2008a), in which the large
scale nonlinear algebraic equations are solved. Later, the FTIM is used to tackle the



A Fictitious Time Integration Method for Backward Advection-Dispersion Equation 263

mixed complementarity problems with applications to nonlinear optimization [Liu
and Atluri (2008b)], to resolve the discretized inverse Sturm-Liouville problems
[Liu and Atluri (2008c)], to solve the two-dimensional quasilinear elliptic bound-
ary value problems [Liu (2008a)], to deal with the non-linear obstacle problems
with the aid of an NCP-function [Liu (2008b)], to solve the Burgers equation [Liu
(2009a)], to cope with the m-point boundary value problem [Liu (2009b)], and to
treat the Fredholm integral equation of the first-kind and perform numerical dif-
ferentiation of noisy data [Liu and Atluri (2009)]. Lately, Ku, Yeih, Liu and Chi
(2009) have proposed a new modified time-like function of FTIM to accelerate the
numerical convergence. Among these endeavors, the FTIM has shown its powerful
noise resistance for coping with the ill-posed behaviors.

2 Groundwater pollution source identification problem

Let us consider the following one-dimensional backward ADE:

∂C
∂ t

=
∂

∂x

[
D

∂C
∂x

]
− v

∂C
∂x

(1)

C(0, t) = C(l, t) = 0, 0≤ t ≤ T, (2)

C(x, T ) = CT (x), 0≤ x≤ l, (3)

where C is the solute concentration, D is a constant dispersion coefficient, v is
the transport velocity in the x direction, and CT (x) is the observed plume’s spatial
distribution at a time T . The domain is assumed to be sufficiently large that the
plume has not reached the boundary.

3 Solving backward ADE by FTIM

3.1 Transformation into a different evolutional PDE and semi-discretization of
ADE

First, we propose the following transformation:

E(x, t,τ) = (1+ τ)C(x, t), (4)

and introduce a viscosity damping coefficient ν in Eq. (1):

0 =−ν
∂C
∂ t

+νD
∂ 2C
∂x2 − vν

∂C
∂x

. (5)

Multiplying the above equation by 1 + τ and employing Eq. (4), we have

0 =−ν
∂E
∂ t

+νD
∂ 2E
∂x2 − vν

∂E
∂x

. (6)
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Recalling that ∂E/∂τ = C(x, t) by Eq. (4), and adding it on both the sides of the
above equation we obtain

∂E
∂τ

=−ν
∂E
∂ t

+νD
∂ 2E
∂x2 − vν

∂E
∂x

+C. (7)

Finally by employing C = E/(1 + τ), we can change Eqs. (1)-(3) into another
parabolic type PDE:

∂E
∂τ

=−ν
∂E
∂ t

+νD
∂ 2E
∂x2 − vν

∂E
∂x

+
E

1+ τ
, (8)

E(0, t,τ) = E(l, t,τ) = 0, 0≤ t ≤ T, (9)

E(x,T,τ) = (1+ τ)CT (x), 0≤ x≤ l . (10)

There is maybe another selection of Eq. (4) by employing E = p(τ)C, where we
require that p(0) = 1. When p(τ) is more complicated than 1 + τ the resulting
PDE is more complex than Eq. (8). However, other choices are possible if they can
supply a better result than the present one.

Applying a semi-discrete procedure to Eq. (8) yields a coupled system of ordinary
differential equations (ODEs):

Ėi,l =
−ν

∆t
[Ei,l+1−Ei,l]+

νD
(∆x)2 [Ei+1,l−2Ei,l +Ei−1,l]−

vν

2∆x
[Ei+1,l−Ei−1,l]+

Ei,l

1+ τ
,

(11)

where ∆x is a uniform spatial length in the x direction, ∆t is a time stepsize,
Ei,l(τ) = E(xi, tl,τ), and Ė denotes the differential of E with respect to τ .

When one employs a suitable numerical integrator to integrate Eq. (11), a sequence
of Ei,l can be obtained. Given a stopping criterion, as shown below, to terminate the
fictitious time stepping solution, we can obtain the solution of E at a fictitious time
τ f , and calculating C by Eq. (4), we can attain the solution of C in a fully spacetime
region. Therefore, we call this novel approach a fictitious time integration method
(FTIM).

3.2 GPS for differential equations system

We can write Eq. (11) as a vector form:

Ė = f(E,τ), E ∈ Rn, τ ∈ R, (12)
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where E is an n-dimensional state vector, and f ∈ Rn is a vector-valued function of
E and τ .

The GPS can preserve the internal symmetry group of the considered ODE system.
For nonlinear differential equations systems, Liu (2001) has embedded them into
the augmented dynamical systems, which concern with not only the evolution of
state variables but also the evolution of the magnitude of state variables vector.

We can embed Eq. (12) into the following n+1-dimensional augmented dynamical
system:

d
dτ

[
E
‖E‖

]
=

[
0n×n

f(E,τ)
‖E‖

fT (E,τ)
‖E‖ 0

] [
E
‖E‖

]
. (13)

Here, we assume ‖E‖> 0 and hence, the above system is well-defined.

It is obvious that the first row in Eq. (13) is the same as the original Eq. (12), but
the inclusion of the second row in Eq. (13) gives us a Minkowskian structure of the
augmented state variables of X := (ET ,‖E‖)T , which satisfies the cone condition:

XT gX = 0, (14)

where

g =
[

In 0n×1
01×n −1

]
(15)

is a Minkowski metric. In is the identity matrix of order n, and the superscript T
denotes the transpose. In terms of (ET ,‖E‖), Eq. (14) holds, as

XT gX = E ·E−‖E‖2 = ‖E‖2−‖E‖2 = 0, (16)

where the dot between two n-dimensional vectors represents their Euclidean inner
product. The cone condition is thus the most natural constraint that we can impose
on the dynamical system (13).

Consequently, we have an n+1-dimensional augmented system:

Ẋ = AX (17)

with a constraint (14), where

A :=

[
0n×n

f(E,τ)
‖E‖

fT (E,τ)
‖E‖ 0

]
(18)
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is an element of the Lie algebra so(n,1) of the proper orthochronous Lorentz group
SOo(n,1), satisfying

AT g+gA = 0. (19)

This fact prompts us to employ the group preserving scheme (GPS), and its dis-
cretized mapping G exactly preserves the following properties:

GT gG = g, (20)

detG = 1, (21)

G0
0 > 0, (22)

where G0
0 is the 00th component of G. Such G is an element of SOo(n,1). The term

orthochronous should be understood as the preservation of the sign of ‖E‖> 0.

Although the dimension of the new system rises by one, it has been shown that the
new system has the advantage of admitting a GPS given as follows [Liu (2001)]:

Xl+1 = G(l)Xl, (23)

where Xl stands for the numerical evaluation of X at the discrete time τl , and G(l)∈
SOo(n,1) is the group evaluation at time τl .

To give a step by step numerical scheme, we suppose that A(l) in Eq. (17) is
a constant matrix, taking its value at the l-th step. An exponential mapping of
A(l) for the interval τl ≤ τ < τl +∆τ , when the time parameter τ in Eq. (18) is
approximately fixed as τ = τl , admits:

G(l) = exp[∆τA(l)] =

In + (al−1)
‖fl‖2 flfT

l
bl fl
‖fl‖

bl fT
l

‖fl‖ al

 , (24)

where

al := cosh
(

∆τ ‖fl‖
‖El‖

)
, bl := sinh

(
∆τ ‖fl‖
‖El‖

)
. (25)

For saving notation, we use fl = f(El, τl). Substituting Eq. (24) for G(l) into Eq.
(23) and taking its first row, we obtain

El+1 = El +
(al−1)fl ·El +bl ‖El‖ ‖fl‖

‖fl‖2 fl = El +ηlfl, (26)
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where ηl is an adaptive factor. From fl ·El ≥−‖fl‖ ‖El‖, we can prove that

ηl ≥
[

1− exp
(
−∆τ ‖fl‖
‖El‖

)]
‖El‖
‖fl‖

> 0, ∀∆τ > 0. (27)

This scheme is group properties preserved for all ∆τ > 0, and is called the group
preserving scheme.

3.3 The convergent criterion

We use the above GPS to integrate Eq. (11) from τ = 0 to a selected fictitious final
time τ f . In the numerical integration process, we can examine the convergence of
Ei,l at the q- and q+1-steps by√

m1

∑
l=1

m

∑
i=1

[Eq+1
i,l −Eq

i,l]2 ≤ ε, (28)

where ε is a selected criterion, m1 is the number of subintervals in time direction,
and m is the number of grid points in spatial direction, presuming the same. If at a
time τ0 ≤ τ f the above criterion is satisfied, then the solution of C is given by

Ci,l =
Ei,l(τ0)
1+ τ0

. (29)

Practically, if a suitable τ f is selected, we discover that the numerical solution also
approaches the true solution very well, even the above convergent criterion is not
satisfied. The coefficient ν introduced in Eq. (11) can increase the stability of
numerical integration.

Particularly, we would stress that the present approach is a new FTIM, which can
calculate the parabolic PDE very effectively and stably. In Section 4, we give
several numerical examples to show some merits of the proposed FTIM.

4 Numerical examples

We will apply the FTIM to the calculation of backward ADE through numerical
examples. We are interested in the stability of our approach when the input final
measured data are polluted by random noise. We can evaluate the stability by
increasing the levels of random noise in the final data:

ĈT = CT + sR(i), (30)

where CT is the exact data. We use the function RANDOM_NUMBER given in
Fortran to generate the noisy data R(i), which are random numbers in (0, 1), and
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s means the level of absolute noise. Then, the noisy data ĈT are employed in the
calculations. Usually, when the exact data is small, we use relative random noise
to represent noise

sr =
s

|Cmax
T | ×100%, (31)

where Cmax
T is the maximum data.
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Figure 1: Comparisons of semi-analytical solutions and numerical solutions for
homogeneous ADE problem with data at different times been retrieved: (a) t = 1.8,
(b) t = 1.1.

4.1 FTIM for the homogeneous ADE

Under the following parameters: m = 40, m1 = 40, ε = 10−3, ν = 10−4, t = 1.8,
D = 2.8, v = 1, l = 28, and a fictitious terminal time τ f = 39, and starting from an



A Fictitious Time Integration Method for Backward Advection-Dispersion Equation 269

0 4 8 12 16 20 24 28

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

C
(x
,t
)

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
(x
,t
)

0 4 8 12 16 20 24 28

Semi-analytical

Numerical
εM= 0.17%
εP= 0.26%

εM= 0.17%
εP= 0.39%

x

(a)

(b)

 

Figure 2: Comparisons of semi-analytical solutions and numerical solutions for
configuration 1 with data at different times been retrieved: (a) t = 1.8, (b) t = 1.1.

initial value of Ei,l = 0.95
100
∑

k=1
akevxi/2D sin kπxi

l , we solve this problem by the present

approach with a fictitious time stepsize ∆τ = 0.1. In Fig. 1, we show the numerical
results and the errors for a final time of T = 2. Two cases in Figs. 1(a) for t = 1.8 and
1(b) for t = 1.1 are obtained by FTIM. Upon compared with the numerical results
computed by Atmadja and Bagtzoglou (2001) with the MJBBE (see Fig. 5 of
the above cited paper) and Wang and Zabaras (2006) with a hierarchical Bayesian
computation method, we can say that the FTIM is more accurate than the MJBBE
for this example. The output data are also summarized in Table 1.

From Table 2, we reveal that the accuracy in the mass errors and the peak errors
are slightly different for ∆x = 28/28, 28/40, 28/75, 28/100, and 28/115, and the
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Figure 3: Comparisons of semi-analytical solutions and numerical solutions for
configuration 2 with data at different times been retrieved: (a) t = 1.8, (b) t = 1.1.

Table 1: Comparing the mass and concentration peak errors of FTIM and MJBBE
of homogeneous ADE problem.

εM(%) εP(%)
Time MJBBE FTIM MJBBE FTIM

T = 2 t = 1.8 -0.024 0.17 0.41 0.26
T = 3 t = 1.8 0.17 0.26
T = 4 t = 1.8 0.17 0.26
T = 5 t = 1.8 0.17 0.26
T = 2 t = 1.1 -0.11 0.17 2.61 0.32



A Fictitious Time Integration Method for Backward Advection-Dispersion Equation 271

0 4 8 12 16 20 24 28

-2E-4

0E+0

2E-4

4E-4

E
rr

or
 o

f 
C

(x
,t

)

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
(x

,t
)

0 4 8 12 16 20 24 28

Semi-analytical

Numerical with     =  0%

Numerical with     =  78.8%

x

s

s

(a)

(b)

εM= 0.16%
εP= 0.26%

r

r

 

Figure 4: Comparisons of semi-analytical solutions and numerical solutions for
configuration 3 with data at t = 1.8 retrieved and made in (a) with different noise
levels sr = 0, 78.8%, and (b) the corresponding numerical errors.

Table 2: Summary of mass and concentration peak errors of FTIM of homogeneous
ADE problem for different ∆x when ∆τ = 0.1.

εM(%) εP(%)
∆x T = 2 t = 1.8 T = 2 t = 1.1 T = 2 t = 1.8 T = 2 t = 1.1
28
28 0.17 0.17 0.26 0.34
28
50 0.17 0.17 0.28 0.34
28
75 0.17 0.17 0.28 0.35
28
100 0.17 0.17 0.28 0.34
28
115 0.17 0.17 0.27 0.34
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Figure 5: Comparisons of semi-analytical solutions and numerical solutions for
configuration 3 with data at t = 1.1 retrieved and made in (a) with different noise
levels sr = 0, 62%, and (b) the corresponding numerical errors.

Table 3: Summary of mass and concentration peak errors of FTIM of homogeneous
ADE problem for different ∆τ when ∆x = 28/40.

T = 2 t = 1.8 T = 2 t = 1.1
∆τ εM(%) εP(%) ∆τ εM(%) εP(%)

0.15 -2.46 -2.31 0.15 -2.46 -2.23
0.1 0.17 0.26 0.1 0.17 0.32

0.05 2.69 2.73 0.05 2.69 2.76

difference in the peak errors is almost negligible. However, reducing ∆τ increases
the accuracy of the peak errors. For example, from the numerical results at t = 1.1
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Table 4: Dispersion coefficient configurations for heterogeneous ADE.

Configuration DO Di Inner zone width
1 2.8 3.0 2
2 3.5 2.7 6
3 3.0 2.7 6

we observed that the peak error is decreased from -2.23% for ∆τ = 0.15 to 0.32%
for ∆τ = 0.1 in Table 3. Nevertheless, decreasing it further to ∆τ = 0.05 did not
increase the FTIM performance.

4.2 FTIM for the heterogeneous ADE

Three cases involving heterogeneity in the dispersion coefficient D are analyzed.
In all the heterogeneous parameter cases, the velocity is fixed to one. The het-
erogeneity configurations are shown in Table 4. Under the following parameters:
m = 40, m1 = 40, ε = 10−3, ν = 10−4, t = 1.8, DO = 2.8, Di = 3.0, v = 1, T
= 2 and a fictitious terminal time τ f = 39, and starting from an initial value of

Ei,l = 0.95
100
∑

k=1
akevxi/2D sin kπxi

l , we solve this problem by our approach with a fic-

titious time stepsize ∆τ = 0.1. Two different zones, each with a distinct value of
D, are used. For configuration 1 the two zones are (1) outer zones for 0 ≤ x < 13
and 15 < x≤ 28, and (2) inner zone for 13 < x≤ 15. In both configurations 2 and
3, we use (1) outer zones for 0 ≤ x < 11 and 17 < x ≤ 28, and (2) inner zone for
11 < x ≤ 17. The results in Figs. 2(a) and 2(b) are calculated by the FTIM, and
keep ∆x = 28/40. Besides, the results in Fig. 3 are calculated by the FTIM with
DO = 3.5 and Di = 2.7.

Table 5: Summary of mass and concentration peak errors of FTIM and MJBBE for
the heterogeneous ADE cases.

εM(%) εP(%)
Configuration Time MJBBE FTIM MJBBE FTIM

1
T = 2 t = 1.8 -0.24 0.17 -0.21 0.26
T = 2 t = 1.1 -1.10 0.17 -0.87 0.39

2
T = 2 t = 1.8 1.47 0.16 1.78 0.26
T = 2 t = 1.1 6.79 0.15 8.54 0.32

3
T = 2 t = 1.8 0.63 0.16 0.83 0.26
T = 2 t = 1.1 2.82 0.16 4.08 0.32
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In configuration 3, when the input final measured data are contaminated by random
noise, we are concerned about the stability of our method, which is investigated by
adding the relative random noise on the final data. The numerical results with T =
2 were compared with those without considering random noise in Figs. 4 and 5.
Note that when the relative random noises are sr = 78.8% and 62%, they disturb the
numerical solutions deviating from the semi-analytical solution very small. Upon
comparing with the numerical results computed by Atmadja and Bagtzoglou (2001)
with the MJBBE (see Figs. 8, 10 and 11 of the above cited paper), we can say that
the FTIM is much more accurate than the MJBBE for these examples. The mass
errors of Figs. 1 to 3 induced by the FTIM for heterogeneous and homogeneous
cases at t = 1.8 are small. A summary of the mass and peak errors for different
heterogeneity configurations can be found in Table 5. It can been seen that for
those examples our results are much better than those obtained by Atmadja and
Bagtzoglou (2001). The numerical results with T = 2 were compared with those
without considering random noise in Figs. 4 and 5. Note that the relative noise level
with sr = 78.8% and 62%, respectively, disturb the numerical solutions deviating
from the semi-analytical solutions small.

5 Conclusions

In this paper, we have transformed the original parabolic equation into another
parabolic type evolution equation by introducing a fictitious time coordinate, and
adding a viscous damping coefficient to enhance the stability of numerical integra-
tion of the discretized equations by using a GPS. Meanwhile, we merely required
spending a certain time for integrating the discretized equations. By employing the
FTIM we can retrieve the initial data very well with a high order accuracy. Several
numerical examples of the GPSIP were worked out, and showed that our proposed
approach is applicable to the GPSIP, even for the very severely ill-posed problems.
Under the noisy final data, the FTIM is also very robust to recover the initial data.
The coefficient ν may be positive or negative dependent on different problems;
suitable ν can increase the stability of numerical integration and speeds up the con-
vergence. Therefore, we may conclude that the present FTIM is stable, effective,
and accurate. Its numerical implementation is simple and the computation speed is
fast.
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