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An Approach to Uncertainty Analysis of Rockfall
Simulation
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Abstract: Despite the continuing advances in rockfall analysis, the mathemat-
ical modeling and simulation of rockfall phenomena continues to be significantly
influenced by a large amount of aleatory and epistemic uncertainty on significant
number of model parameters. This paper focuses on the representation and quan-
tification of epistemic uncertainties in rockfall modeling and simulation by fuzzy
numbers. The propagation of the epistemic uncertainties considered is then calcu-
lated by the transformation method as a practical implementation of fuzzy arith-
metic. Epistemic uncertainties on the material properties, on the boulder geometry
and dimensions, on the kinematics of the impact and on the contact response be-
tween boulder and slope are considered. The propagation and the influence of the
uncertainties are then investigated with respect to the determination of the coeffi-
cients of restitution.

Keywords: rockfall simulation, coefficient of restitution, uncertainty analysis,
fuzzy arithmetic

1 Introduction

The detachment of rock boulders from a steep slope and their subsequent down-
ward motion may represent potentially hazardous conditions for people living in
densely populated foothills of mountain areas. In order to assess the hazard zones
and to design efficient protection systems, mathematical modeling and simulation
procedures for rockfall problems have been developed. These procedures usually
involve two main aspects: the first is the investigation of instability and failure
probability of rock masses in the rockfall source area, and the second is the simula-
tion of the trajectory of the boulders once they detach from the source area. In this
paper, an approach to uncertainty analysis in modeling and simulation of rockfall
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trajectories is presented. As represented in Fig. 1, the movement of a boulder may
be described as a combination of four types of motion: free flight, rolling, sliding
and bouncing.

(a) Free flight (b) Rolling

(c) Sliding (d) Bouncing

Figure 1: Four types of motion comprising the movement of a boulder: free flight,
rolling, sliding and bouncing

Bouncing occurs when a falling boulder impacts with the slope surface. This phe-
nomenon is the least understood and the least predictable part of the trajectory of
the boulder, since it is generally characterized by fast nonlinear dynamics and by
a strong dependency on the geometry and the material properties of the boulder as
well as the slope [Labiouse (2004)]. The bouncing phenomenon is usually modeled
in a classical way by introducing so-called coefficients of restitution (COR). The
coefficients of restitution indicate the amount of kinetic energy dissipated during
the impact with the slope. According to Fig. 2, for the 2-dimensional case, the
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coefficients of restitution are defined as:
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for the total kinetic energy Ktot. In the formulae, v and ω are the translational and
rotational velocities, respectively, m is the mass of the boulder and I its moment of
inertia about the z-axis. The superscripts − and + indicate the velocity or energy
before and after the impact, respectively.

Figure 2: Velocity of a boulder before − and after + the impact with a slope surface

In general, the coefficients of restitution used to calculate the boulder trajectory are
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estimated based on a rough description of the slope material (e.g. rock, soil, sand)
sometimes supplemented by information regarding its roughness and the vegeta-
tion cover; this results in a poor calculation of the actual values of the coefficients
of restitution. In fact, as demonstrated by several authors [Giani (1992); Azzoni
and de Freitas (1995); Hunger and Evans (1998)], the bouncing phenomenon (and
consequently the coefficients of restitution) is strongly dependant on the kinemat-
ics of the impact, the geometry and mechanical properties of the boulder and the
topography of the slope. In conclusion, bouncing models based on coefficients of
restitution that depend only on some significant slope material properties are not
able to correctly reproduce the actual trajectory of the boulder. In this paper, the
impact between the boulder and the slope surface is numerically reproduced by
a finite element model in order to improve the simulation of the bouncing phe-
nomenon and, consequently, to achieve a better estimate of the actual trajectory of
the boulder after the impact.

2 Finite element model

The finite element model used in this paper is shown in Fig. 3(a) for the case of the
impact of a spherical boulder (radius r0) with a plane semi-infinite slope. In this
study, the simulation of the impacts is performed using the finite element software
Dytran. In Fig. 3(a), for the sake of clarity, only one half of the model is shown.
The plane semi-infinite slope is represented by a hemi-sphere, whose points on the
external spherical surface, labeled by a cross in the figure, are fully constrained.
The finite element model consists of 11096 eight-node solid elements with 12136
nodes. As mentioned by [Wu, Li, and Thornton (2005)], the appropriate model-
ing of the semi-infinite slope is of crucial importance for an accurate reproduction
of the bouncing phenomenon. The objective is to select an appropriate dimen-
sion for the part of the slope to be modeled, in order to eliminate the influence of
the boundary conditions without excessively increasing the computational cost. In
other words, the slope section should be just large enough so that the stress waves
propagating in the slope material as a consequence of the impact are not reflected
by the boundaries during the whole impact phenomenon. If the selected slope sec-
tion is too small, a reflection of stress waves by the boundaries will result in an
overestimation of the actual values of the kinetic energy and velocity of the boulder
after the impact. According to [Wu, Li, and Thornton (2005)], a half-sphere with
radius 10r0 is able to efficiently represent a semi-infinite slope, avoiding stress wave
reflection for impact velocities up to 150 m/s. This limit, however, should not be
regarded as a general rule; such a general limit must be based on the size of the
domain to one of the classical wave speeds.
As shown in Fig. 3(b), a fine mesh is used to model the impact area near the ini-
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(a) Finite element model

(b) Impact area

Figure 3: Finite element model for the case of the impact of a spherical boulder
with a plane semi-infinite slope
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tial contact point, in order to accurately capture the localized deformation around
the contact point [Wu, Li, and Thornton (2005); Zhang and Vu-Quoc (2002)]. The
radius a of the impact area is given by [Hertz (1881)] for an elastic impact as

a =
(

15r2mbv2 Xb +Xs
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) 1
5
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where r is the radius of the spherical boulder, mb the mass of the boulder, v the
impact velocity, Eb, s and νb, s the elastic modulus and the Poisson’s ratio of the
boulder and the slope materials, respectively. In the finite element model the di-
mension a of the impact area is parameterized as a function of the impact velocity
v according to Eq. 4. In this way, for each impact velocity the fine mesh is able to
capture the local deformation around the contact point with a relatively small num-
ber of elements, reducing the necessary computational costs. The finite element
model is validated comparing the results obtained (in terms of maximum contact
force, maximum compression and duration of contact) with the analytical solution
proposed by [Hertz (1881)] for the impact between an elastic sphere and an elas-
tic surface. The values of the coefficients of restitution obtained using the finite
element model are then compared with the analytical results obtained by [Hunter
(1957)] and [Reed (1985)], revealing a satisfactory agreement between the numer-
ical and analytical results.

3 Uncertainty in Rockfall Simulation

Despite the continuing advances in rockfall analysis, the mathematical modeling
and simulation of rockfall phenomena remains affected by a large amount of vari-
ability and lack-of-knowledge of significant model parameters. The variability
stems from the randomness of environmental conditions, such as daily or seasonal
temperature fluctuations or precipitation variations, and boundary conditions, such
as the seismic activity in the mountain area being considered. Uncertainty due to
random parameters is also referred to as aleatory uncertainty and may be efficiently
represented by traditional probability theory. On the other hand, lack-of-knowledge
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Figure 4: Aleatory (blue dashed boxes) and epistemic (orange boxes) uncertainty
in modeling and simulation of rockfall trajectories

can stem from the difficulty in directly measuring or estimating some fundamen-
tal parameters and characteristics of rockfall phenomena. In addition, due to the
dimensions of the phenomenon, a full-scale experimental program to calibrate or
update the model parameters is generally not practical. As a consequence, a major
lack-of-knowledge is encountered in the constitutive material laws, in the geometry
and dimensions of the rock blocks, in the topography of the slope surface, in the
contact and frictional response between blocks and slope and so on. In the liter-
ature, lack-of-knowledge is also referred to as epistemic uncertainty. In Fig. 4 a
description of the numerical modeling and simulation procedure used in this paper
to simulate the bouncing phenomenon is reported, together with some significant
sources of aleatory and epistemic uncertainty. Aleatory and epistemic uncertainty
analyses of different types of systems und structures have been addressed in liter-
ature [Moens, De Munck, and Vandepitte (2007); Gao, Song, and Tin-Loi (2009);
Panda and Manohar (2008); Manjuprasad and Manohar (2007); Jiang and Han
(2007); Parussini and Pediroda (2007); Parussini and Pediroda (2008); Loeven and
Bijl (2008); Stroud, Krishnamurthy, and Smith (2002)]. This paper focuses on the
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representation and quantification of epistemic uncertainty in rockfall modeling and
simulation by fuzzy numbers. The propagation of the considered epistemic uncer-
tainty is then calculated using fuzzy arithmetic. For a practical implementation of
fuzzy arithmetic the transformation method is used. The transformation method of-
fers a powerful simulation tool to trace the propagation of the uncertainty through
the system and also a sensitivity analysis tool to determine the influences of the
uncertain input parameters on the uncertain outputs. In particular, epistemic uncer-
tainties on the material properties and constitutive laws, on the boulder geometry
and dimensions, on the kinematics of the impact and on the contact response be-
tween the boulder and slope are considered in this paper. The propagation and
influence of such uncertain parameters are investigated with respect to the determi-
nation of the coefficients of restitution.

4 Fuzzy numbers and the Transformation Method

In this section some general information about fuzzy sets, fuzzy numbers and the
transformation method as a powerful and practical implementation of fuzzy arith-
metic are reported. The theory of fuzzy sets as introduced by Zadeh [Zadeh (1965)]
is an extension of classical set theory. In a classical set A, the membership of an
element x can be defined by the characteristic function µA, which is a mapping of
the form

µA : X 7→ {0,1}.

For elements that belong to A, x ∈ A, the characteristic function takes the value
µA(x) = 1 (full membership), otherwise it takes µA(x) = 0, which corresponds to
x /∈ A. Contrary to classical (crisp) sets, the membership µÃ of an element x of a
fuzzy set Ã can take any real value between zero and one. A fuzzy set Ã is defined
by

Ã = {(x,µÃ(x)) | x ∈ X ,µÃ(x) ∈ [0,1]}. (5)

A classical set is, in fact, a special case of a fuzzy set.
A fuzzy set is called a fuzzy number ã if it is normal and convex and if there is
only one element x̄ ∈ R with the degree of membership µã(x̄) = 1. In addition, the
membership function µã(x),x∈R, has to be at least piecewise continuous. A fuzzy
number ã is a special case of a fuzzy set Ã and it appears to be an ideal way of
describing uncertain parameters. It complies with the human perception of quan-
tifying imprecision and it is able to represent different types of uncertainty. Using
fuzzy numbers results in a possibilistic approach to the quantification of epistemic
uncertainties. Certain types of fuzzy numbers, either symmetric or asymmetric, are
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commonly used, such as the triangular (or linear) fuzzy numbers (Fig. 5(a)). They
are defined by their membership functions µã(x) and their left-hand and right-hand
worst-case deviations αl and αr. Triangular fuzzy number are usually given in the
form ã = tfn(x̄, αl, αr). The definition of fuzzy numbers leads to the development

(a) Triangular fuzzy number ã (b) Decomposition of ã

Figure 5: Triangular fuzzy number ã with mean value x and left-hand and right-
hand worst-case deviations αl and αr and its decomposition into intervals X ( j)

i =
[a( j)

i ,b( j)
i ]

of a mathematical concept for calculating with these numbers – fuzzy arithmetic.
The extension principle, the fundamental arithmetical principle of fuzzy arithmetic,
can be adapted to fuzzy numbers, thus enabling the evaluation of mathematical
operations like addition, multiplication etc. Different approaches for practical im-
plementation of fuzzy arithmetic have been developed [Dubois and Prade (1978);
Kaufmann and Gupta (1991); Moore (1966)]. For the evaluation of systems with
uncertain, fuzzy-valued model parameters, the transformation method (TM) can be
used, proving to be a powerful and practical implementation of fuzzy arithmetic.
The method is available in a general, a reduced, and an extended form [Hanss
(2005)]. The reason for using the TM is the incorporation of a fuzzy arithmetical
approach for the description of the uncertain parameters. For the computation itself,
crisp parameter values from the interval range of the decomposed fuzzy input pa-
rameters are chosen and combined in parameter combinations at which the problem
is evaluated. The results obtained are used to establish the fuzzy output. Assum-
ing the uncertain system to be characterized by n fuzzy-valued model parameters
p̃i, i = 1,2, . . . ,n, the five major steps of the method can briefly be described as
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follows, :

1. Decomposition: Each fuzzy number p̃i is decomposed into a number of inter-
vals X ( j)

i = [a( j)
i ,b( j)

i ], assigned to the membership levels µ j, j = 0,1, . . . ,m.
The membership levels µ j result from the subdivision of the axis of member-
ship, into equally spaced intervals of length ∆µ = 1/m (Fig. 5(b)).

2. Transformation: The input intervals X ( j)
i are transformed to arrays X̂ ( j)

i .
When using the reduced TM, the parameter values c( j)

l,i in these arrays are

obtained from the upper and lower interval bounds, a( j)
i and b( j)

i . If the gen-
eral and extended TM are used, the parameter values c( j)

l,i incorporate further
values in between the interval bounds. The arrays are created by applying a
well-defined combinatorial scheme.

3. Evaluation: If each array X̂ ( j)
i represents a column of a parameter matrix,

then all parameter combinations can be found in the rows of this matrix.
These parameter combinations feature only crisp parameter values, for each
of which the model has to be evaluated. In practice, only the well-known
concepts of crisp arithmetic are needed for these evaluations.

4. Retransformation: As a result of the evaluation of the model, an output ar-
ray Ẑ( j) is obtained. In the fourth step, the resulting values of the array are
retransformed to the output intervals Z( j) = [a( j),b( j)] for each membership
level µ j, where Z( j) represents the fuzzy output q̃ of the model in its decom-
posed form.

5. Recomposition: The intervals Z( j) are recomposed to the fuzzy-valued output
q̃ of the system.

In addition to the described simulation, the TM offers a sensitivity analysis and
an uncertainty analysis [Gauger, Turrin, Hanss, and Gaul (2008)]. Both analyses
give an insight into the effect of the uncertain input parameters p̃i on the uncertain
model output q̃.

Due to the specific properties of the TM, the method can be coupled to any software
code, such as finite element software, without expensive re-coding; examples for
various industrial problems can be found in [Hanss, Gauger, and Turrin (2006)].
The steps of decomposition and transformation as well as retransformation and
recomposition can be coupled to any existing (commercial) software by a separate
pre- and postprocessing tool without changes to the source code of the software.
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5 Effect of epistemic uncertainties on the coefficients of restitution

As an application of the suggested approach, the effect of epistemic uncertainties on
the determination of the coefficients of restitution was studied. The impact between
an elastic boulder and an elastic slope was considered. Epistemic uncertainties in
the material properties, the boulder geometry and dimensions, the kinematics of the
impact and the contact response between the boulder and slope were taken into ac-
count. The uncertainties are represented and quantified by fuzzy numbers and their
propagation and influence on the coefficients of restitution were calculated using
the transformation method. Two different impact configurations were considered:
a normal impact, with vertical impact velocity and horizontal slope, and an inclined
impact, with vertical impact velocity and inclined slope (three different inclinations
of 30◦, 45◦ and 60◦, respectively, were considered).

5.1 Normal impact

5.1.1 Influence of uncertain material properties and boulder dimension

The normal impact of an elastic spherical boulder on an elastic slope was simu-
lated using the finite element model reported in Section 2 in order to determine
the effect of epistemic uncertainties on the coefficients of restitution. The mate-
rial of both boulder and slope, was assumed to be linear elastic with the following
properties: density ρ0 = 2.6 · 10−6 kg/mm3, elastic modulus E0 = 68.2 GPa and
Poisson’s ratio ν0 = 0.25 (which correspond to the material properties of gran-
ite). The boulder was modeled as a sphere of radius r0 = 1000 mm. As discussed
above, rockfall modeling and simulation is characterized by epistemic uncertainties
stemming from the difficulty in directly measuring or estimating some fundamental
parameters and characteristics of rockfall phenomena. In order to take into account
such epistemic uncertainties, the model nominal parameters ρ0, E0, ν0 and r0 were
replaced by symmetric triangular fuzzy numbers, with left- and right-hand worst-
case deviations equal to 5% of the respective nominal value. The fuzzy inputs
used in this study are shown in Fig. 6. The epistemic uncertainty of the radius of
the spherical boulder, for example, is represented by the triangular fuzzy number
r̃ = tfn(r0, 0.05r0, 0.05r0).

For this first uncertainty analysis, a vertical impact velocity v equal to 10 m/s was
considered. The effects of the epistemic uncertainties on the maximum compres-
sion, the maximum contact force, the duration of contact and the coefficients of
restitution for the normal velocity and for the kinetic energy were calculated using
the transformation method. The results are shown in Fig. 7. As is evident from
Fig. 7, the effect of the epistemic uncertainties on the maximum compression, the
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Figure 6: Uncertain input parameters: boulder radius, boulder/slope density, boul-
der/slope elastic modulus and boulder/slope Poisson’s ratio

maximum contact force and the duration of contact is much stronger than that on
the two coefficients of restitution. For example, in the case of the maximum contact
force, the left- and right-hand worst case deviation are equal to 14.5% and 16.1%
of the nominal value (F0 = 8.96 ·104 kg mm/ms2), respectively. Otherwise, for the
coefficient of restitution of the normal velocity, the worst-case deviations are only
equal to 0.21% and 0.25% of the nominal value (Rn0 = 0.9856). It is therefore
possible to conclude that, for a normal impact, the coefficients of restitution are not
sensitive to the considered epistemic uncertainties that were considered.
As mentioned above, the transformation method offers a sensitivity analysis to give
an insight into the relative and absolute influence of each uncertain input parameter
on each uncertain model output. For the coefficients of restitution, the result of the
sensitivity analysis is shown in Fig. 8 in terms of relative measures of influence ωi,
where i is the i-th uncertain input parameter. In the case of a normal impact of a
sphere, the measures of influence for the two coefficients of restitution are obvi-
ously the same since the coefficient of restitution for the kinetic energy is simply
the square of the coefficient of restitution for the normal velocity (the tangential
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Figure 7: Uncertain model outputs: maximum compression, maximum normal
force, contact duration, coefficient of restitution for the normal velocity and co-
efficient of restitution for the kinetic energy
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velocity before and after the impact is 0). It is evident, from Fig. 8, that the uncer-

Figure 8: Relative measures of influence for the coefficient of restitution (normal
velocity and kinetic energy).

tainty of the slope elastic modulus is the most important input for the uncertainty of
the coefficients of restitution (approx. 31% of the overall uncertainty). On the other
hand, the influence of the uncertainties of the boulder and slope Poisson’s ratio on
the coefficients of restitution are relatively small (approx. 4% and 2% respectively)
in comparison to the influences of the other input parameters. For this reason, in
the following, the uncertainties of the Poisson’s ratio will not be taken into account.

The same uncertainty analysis, with the same input parameters (except for the boul-
der and slope Poisson’s ratio), was then performed for a vertical impact velocity
v = 1 m/s and v = 30 m/s in order to investigate the influence of the impact veloc-
ity on the uncertainty propagation. The corresponding results are shown in Fig. 9.
As predicted by [Hunter (1957)] and [Reed (1985)] the coefficients of restitution
decrease with increasing impact velocity. From Fig. 9 it is also possible to observe
that the uncertainties of the coefficients of restitution increase with increasing im-
pact velocity, even if the amount of uncertainty of the input parameters does not
vary. As shown in Fig. 10 the relative measures of influence vary, varying the im-
pact velocity. For low impact velocities (v = 1 m/s) the uncertainty of the boulder
radius has the predominant influence on the uncertainty of the coefficients of resti-
tution. With increasing impact velocity, the uncertainty of the boulder radius be-
comes less important and the predominant role is now played by the uncertainty of
the slope elastic modulus. This implies that the importance of the input parameters
on the determination of the uncertainty of the coefficients of restitution is depen-
dant on the impact velocity. Consequently a preliminary estimation of the impact
velocity within the boulder trajectory is fundamental for an efficient representation
of the uncertain input parameters that have a strong influence on the uncertainty of
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Figure 9: Coefficients of restitution for vertical impact velocities v = 1 m/s (green
dashed line), v = 10 m/s (orange solid line) and v = 30 m/s (blue dotted line)

Figure 10: Relative measures of influence for the coefficient of restitution (normal
velocity and kinetic energy) for vertical impact velocities v = 1,10 and 30 m/s

the boulder trajectory itself.

5.1.2 Influence of uncertain boulder geometry

Fuzzy numbers can also be used to represent lack-of-knowledge or imprecision on
the actual geometry of boulder and slope. In this section, an approach that takes into
account epistemic uncertainty of the boulder geometry is presented. The boulder is
modeled as a spheroid with horizontal axis c and vertical axis d, as shown in Fig. 11.
For c = d = 1000 mm the spheroid is simply a sphere of radius r0 = 1000 mm
corresponding to the nominal geometry of the previous analyses. Representing the
two axes c and d by fuzzy numbers is a practical method to introduce uncertainties
stemming from an approximate knowledge of the actual boulder geometry in the
numerical model.

The influence of the uncertain boulder geometry on the coefficients of restitution
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Figure 11: Spheroidal boulder

can now be studied. The horizontal axis c was represented by the symmetric trian-
gular fuzzy number c̃ = tfn(1000,100,100). The values of the vertical axis d are
given by the equation for the volume of a spheroid:

V =
4
3

π ĉ2d (6)

where V = 4
3 πr0

3 is the volume of the nominal boulder (i.e. a sphere) and ĉ is
the actual value of the horizontal axis within the fuzzy number c̃. In this way the
volume and, consequently, the mass of the boulder is kept constant and the result-
ing uncertainty of the coefficients of restitutions results only from uncertainty of the
boulder geometry. In Fig. 12, the fuzzy number c̃ is shown with the boulder geome-
tries corresponding to its left- and right-hand worst-case points and to the nominal
point. The effect of the uncertainty of the boulder geometry on the coefficient of
restitution for the normal velocity is shown in Fig. 13 (blue solid line). As evident
from the Fig. 13, the effect of the uncertain geometry on the coefficient of resti-
tution is much bigger than the effect of uncertain material properties and boulder
dimension. That means that, for a normal impact, a good knowledge of the actual
boulder geometry or a convenient representation of its uncertainty are indispens-
able for a correct calibration of the coefficients of restitution and, consequently, the
boulder trajectory.

5.2 Inclined impact

The effect of epistemic uncertainties on the coefficients of restitution for an in-
clined impact was studied. The impact velocity of the boulder is vertical and equal
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Figure 12: Fuzzy horizontal axis and boulder geometry corresponding to its left-
and right-hand worst-case point and to its nominal point

Figure 13: Influence of uncertain boulder geometry (blue solid line) and influence
of uncertain material properties and boulder dimension (orange dashed line) on the
coefficient of restitution of the normal velocity

to 10 m/s. Three different slope inclinations with respect to the horizontal plane
were considered: 30◦, 45◦ and 60◦. As uncertain parameters, the same input fuzzy
numbers as in Subsection 5.1.1 were considered, except for the Poisson’s ratio of
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Figure 14: Uncertainty friction coefficient

the boulder and slope material. In addition to these parameters, epistemic uncer-
tainty on the contact response between boulder and slope was taken into account.
For this reason, the friction coefficient between the boulder and slope (both static
and kinetic) is represented by the fuzzy number f̃ = (0.6,0.6,0.4), as shown in
Fig. 14. The nominal value of f̃ is the dry friction coefficient of granite. The
left- and right-hand worst-case deviations (0.6 and 0.4, respectively) were chosen
in such a way as to cover a large spectrum of possible friction coefficients and,
consequently, of possible boulder-slope interface roughnesses.

The effect of the considered uncertainties on the coefficients of restitution is shown
in Fig. 15 for the three different slope inclinations.

Even for an inclined impact, the effect of the uncertainties on the coefficients of
restitution for the normal velocities is negligible (Fig. 15(b)). The introduction of
some uncertainties in the friction coefficients does not have a noticeable influence
on the uncertainty of the normal velocity after the impact. For the tangential ve-
locity, on the contrary, the uncertainty of the friction coefficient is responsible for
the large variations that characterize the coefficients of restitution for the tangential
velocity (Fig. 15(c)). A sensitivity analysis (not reported in this paper) revealed that
98% of the uncertainty of the coefficients of restitution for the tangential velocity
was due to uncertainty of the friction coefficient. This means that a good estimation
of the actual contact response between the boulder and slope is absolutely necessary
for a realistic simulation of the boulder trajectory. In addition, it was also observed
that the uncertainty on the coefficient of restitution of the tangential velocity does
not vary for the three different slope inclinations. In contrast, for the kinetic en-
ergy the uncertainty increases with increasing slope inclination (Fig. 15(d)). This
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(a) Three different slope inclinations

(b) Coefficients of restitution for the normal velocity

(c) Coefficients of restitution for the tangential velocity

(d) Coefficients of restitution for the kinetic energy

Figure 15: Uncertainty analysis for inclined impact
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means that a steeper slope increases the uncertainty of the rotational velocity of the
boulder after the impact (not explicitly reported in this paper).

6 Conclusions

Modeling and simulation of rockfall phenomena are affected by a large amount of
aleatory and epistemic uncertainty on significant model parameters. In this paper,
an approach to epistemic uncertainty analysis of rockfall simulation is suggested.
Uncertain input parameters were represented by fuzzy numbers and their influence
on the coefficients of restitution was calculated using fuzzy arithmetic. In the case
of an elastic normal impact, lack-of knowledge or imprecision in the actual geom-
etry of the boulder results in a poor estimation of the coefficients of restitution.
For an elastic inclined impact, the predominant role in calibrating the coefficients
of restitution is played by the contact response between the boulder and slope. A
natural continuation of this work would be the uncertainty analysis for normal and
inclined elasto-plastic impact. In this case, epistemic uncertainty stemming from
an imperfect knowledge of the material constitutive properties should also be con-
sidered. Finally, the inclusion of epistemic uncertainties in the calculation of the
whole trajectory of the boulder may lead to a better understanding of rockfall phe-
nomena and to a more reliable risk analysis and safety assessment.
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