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A Dual Hybrid Boundary Node Method for 2D
Elastodynamics Problems
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Abstract: As a truly meshless method, the Hybrid Boundary Node method (Hy-
brid BNM) does not require a ‘boundary element mesh’, either for the purpose
of interpolation of the solution variables or for the integration of ‘energy’. This
paper presents a further development of the Hybrid BNM to the 2D elastodynam-
ics. Based on the radial basis function (RBF) and the Hybrid BNM, it presents an
inherently meshless, boundary-only technique, which named dual hybrid bound-
ary node method (DHBNM), for solving 2D elastodynamics. In this study, the
RBFs are employed to approximate the inhomogeneous terms via dual reciprocity
method (DRM), while the general solution is solved by means of Hybrid BNM,
in which only requires discrete nodes constructed on the boundary of a domain,
several nodes in the domain are needed just for the RBF interpolation. The rigid
body movement method is employed to solve the hypersingular integrations. The
‘boundary layer effect’, which is the main drawback of the original Hybrid BNM,
has been circumvented by an adaptive integration scheme. The computation results
obtained by the present method are shown that high convergence and high accuracy
with a small node number are achievable.

Keywords: Hybrid boundary node method; Dual reciprocity method; Radial ba-
sis function; 2D elastodynamics

1 Introduction

Structural dynamic analysis is one of the main required tasks for an engineer to
accomplish in the analysis of buildings. Many numerical methods are available in
this field such as the finite element method (FEM) (Zienkiewicz, 1977), which has
some disadvantages such as: the need for discretizing the entire problem domain,
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and the inaccuracies in cases of stress concentration. The boundary element method
(BEM) (Brebbia and Dominguez, 1992), has been used to overcome these problems
since it only requires the discretization of the boundary and produces excellent
results for stress concentration cases. BEM can also offer easy solution for complex
structures in less time and higher accuracy. However, BEM still uses elements to
implement both interpolation and integration. In case of large deformation, moving
boundary problems, the elements may be heavily distorted, thus the shape functions
based on elements could be of poor properties.

In the recent years, meshless methods have attracted much attention due to their
flexibility, and absolutely no elements or cells are needed in the present formula-
tion, either for interpolation purposes or for integration purposes. According to
the way of the discretization, the meshless methods can be roughly grouped into
two categories, namely domain type methods and boundary type methods. For
the former, there are the diffuse element method (DEM) (Nayroles et.al., 1992),
the element free Galerkin (EFG) method (Belytschko et.al., 1994), the reproducing
Kernel particle method (RKPM) (Liu et.al., 1996),the point interpolation method
(PIM) (Liu and Gu, 2001), the meshless local Petrov–Galerkin method(MLPG)
(Atluri and Zhu, 1996), the local point interpolation method(LPIM) (Gu and Liu,
2001) , the method of finite spheres(MFS) (De and Bathe, 2001), the finite cloud
method (FCM) (Aluru and Li, 2001) and so on. For the latter, there are the lo-
cal boundary integral equation method(LBIM) (Zhu, 1999), the boundary node
method(BNM) (Mukherjee and Mukherjee, 1999), the boundary only radial basis
function method (BRBFM) (Cheri and Tanaka, 2002), the boundary point interpo-
lation method (BPIM) (Liu, 2002), and the hybrid boundary node method(Hybrid
BNM) (Zhang, 2002; Miao, 2005).

The Hybrid BNM gets rid of the background elements and achieves a truly boundary–
type meshless method. It uses the moving least squares to approximate the bound-
ary solution variables, and the integration is limited to a fixed local region on the
boundary. No elements are needed either for interpolate or for integration, and at
the same time it has the advantage of dimensionality reduction. It has been ap-
plied to the potential problems (Zhang, 2003; Miao, 2009) and elasticity problems
(Miao, 2006; Miao, 2005).However, like the BEM, it is not convenient for solving
elastodynamic analysis in the frequency or time domain because applying the elas-
todynamic fundamental solution increases the computational effort and the domain
integration is inevitable. In BEM, to overcome these drawbacks, Nardini and Breb-
bia (1982) and Nardini and Brebbia (1985) developed a new formulation, which is
named the dual reciprocity method (DRM). In the DRM, the integral equation of the
body is presented in terms of its boundary variables and includes a domain integral
corresponding to the body inertia forces. This integral can be transformed to the



A Dual Hybrid Boundary Node Method for 2D Elastodynamics Problems 3

boundary using a new collocation scheme to approximate the field accelerations, or
consequently the field displacements.

In this paper, a truly meshless methodÂ£ÂDual Hybrid Boundary Node method
(DHBNM), has been developed and applied for elastodynamic problems. The
method is formed by combining Hybrid BNM with DRM. In this method, the so-
lutions are divided into two parts: complementary solution and particular solution.
For the former, as the same to Hybrid BNM, the variables inside the domain are in-
terpolated by the fundamental solution while the boundary unknown variables are
approximated by moving least square approximation (MLS) (Lancaster and Salka-
uskas, 1981). The modified variational formulation is applied to form the discrete
equations of hybrid boundary node method. For the latter, the DRM has been em-
ployed, and applies radial basis function (RBF) to interpolate the inhomogeneous
part of the equation. Because of the acceleration term of the governing equation,
the boundary integral equations obtained by DHBNM is not enough to solve all so-
lution variables, some additional equations are proposed to obtain the connection of
the variables in the domain and on the boundary. In this method, they are obtained
by interpolation of the fundamental solution and the basis form of the particular
solution. In order to overcome singular integration, rigid body moving method has
been applied. Numerical examples presented in this paper for the solution of elas-
todynamic problems are studied to demonstrate the validity and accuracy of the
proposed formulation.

The discussions of this method are arranged as following: the review of the Hybrid
BNM will be discussed in section 2. The DHBNM for elastodynamic problems
is developed in section 3. Additional equations and final system equation will be
formed in section 4. Numerical examples for elastodynamic problems are shown
in section 5. Finally, the paper will end with conclusion in section 6.

2 Review of the Hybrid BNM

This section gives a brief review of the Hybrid BNM. For convenience, the govern-
ing equation for the structure dynamics is

σi j, j +bi = cu̇i +ρ üi (1)

Where ρ is density of the material and c is the damping coefficient. üi = ∂ 2ui/∂ t2

and u̇i = ∂ui/∂ t. σi j is the stress tensor corresponding to the displacement field ui,
bi is the body force, and () , j denotes ∂ ()/∂x j.

The corresponding boundary and initial conditions are given as follows:

ui = ūi on the essential boundary Γu, (2)
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σi j ·n j = t̄i on the natural boundary Γt , (3)

u(x, t0) = u0 (x) , (4)

u̇(x, t0) = v0 (x) , (5)

Where ūi and t̄i are the prescribed displacements and tractions, respectively. u0 and
v0 are the initial displacements and velocities at the initial time t0 respectively. n j

is the unit outward normal to the boundary Γ(Γ = Γu +Γt).

For convenience, c and bi are set equal to zero, the governing equation for the
elastodynamics without damping is rewritten as

σi j, j = ρ üi (6)

From the equations above, one can obtain two second-order partial differential
equations for displacement components. The result can be written in the form

Gui′kk +
G

1−2ν
uk′ki = ρ üi (7)

where G = E
2(1+ν) is shear modulus, and ν is Poisson ratio.

As a consequence, the left-hand side of Eq.(7) can be dealt with by Hybrid BNM
for the Laplace equation, and the integrals corresponding to the right-hand side
are taken to the boundary using DRM. In dual hybrid boundary node method
(DHBNM), the solution variables u can be divided into complementary solutions
uc and particular solutions up, i.e.

u = uc +up (8)

The particular solution up just needs to satisfy the inhomogeneous equation as fol-
low:

Gup
i′kk +

G
1−2ν

up
k,ki = ρ üi (9)

The complementary solution uc must satisfy the Laplace equation and the modified
boundary condition, so they can be written in the form

Guc
i′kk +

G
1−2ν

uc
k,ki = 0 (10)

uc = ūc = ū−up (11)

tc = t̄c = t̄− t p (12)
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In the following, the complementary solution will be solved by the Hybrid BNM.
The Hybrid BNM is based on a modified variational principle. The functions in
the modified principle assumed to be independent are: displacement field within
the domain, u, boundary displacement field ũ and boundary traction t̃. Consider
a domain Ω enclosed by Γ = Γu + Γt with prescribed displacement ū and traction
t̄ at the boundary portions Γu and Γt , respectively. The corresponding variational
function ΠAB is defined as [19,20]

ΠAB =
∫

Ω

1
2

u,iu,idΩ−
∫

Γ

t̃ (u− ũ)dΓ−
∫

Γt

t̄ ũdΓ (13)

where, the boundary displacement ũ satisfies the essential boundary condition, i.e.
ū = ũ, on Γu.

With the vanishing of δΠAB over the domain and its boundary, the following equiv-
alent integral can be obtained∫

Γ

(t− t̃)δ ũdΓ−
∫

Ω

u,iiδ ũdΩ = 0 (14)

∫
Γ

(u− ũ)δ t̃dΓ = 0 (15)∫
Γt

(t̃− t̄)δ ũdΓ = 0 (16)

Eq. (16) will be satisfied if the traction boundary condition, t̃ = t̄, is imposed. So it
would be ignored in the following.

Eq. (14) and (15) hold for any portion of the domain Ω, for example, a sub-domain
Ωs, defined as an intersection of a domain and a small circle centered at node S[11]

I ,
and its boundary Γs and Ls. (see Fig.1).

We use the following weak form for the sub-domain and its boundary to replace
Eq. (14) and (15)∫

Γs+Ls

(t− t̃s)hdΓ−
∫

Ωs

u,iihdΩ = 0 (17)

∫
Γs+Ls

(u− ũs)hdΓ = 0 (18)

where h is a test function. We approximate ũs and t̃s at the boundary Γ by the
moving least square (MLS) approximation, as

ũ(s) =
N

∑
I=1

ΦI (s)ûI (19)
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Figure 1: Local domain and source point of fundamental solution corresponding to
SJ .

t̃ (s) =
N

∑
I=1

ΦI (s)t̂I (20)

where N stands for the number of nodes located on the surface; ûI and t̂I are nodal
values, and ΦI (s) is the shape function of the MLS approximation, corresponding
to node SI , which is given by

ΦI (s) =
m

∑
j=1

p j (s)
[
A−1 (s)B(s)

]
jI (21)

In the above equation, p j (s) provide a basis of order m. In this study, we take m to
3, namely, pT (s) =

[
1, s, s2

]
. Matrixes A(s) and B(s) are defined as

A(s) =
N

∑
I=1

wi (s)p(sI)pT (sI) (22)

B(s) = [w1(s)p(s1) ,w2(s)p(s2) , . . .wN(s)p(sN)] (23)

In Eq.(22) and (23), wI(s) are weight functions. Gaussian weight function corre-
sponding to node sI can be written as

wI (s) =


exp[−(dI/cI)

2]−exp
[
−(d̂I/cI)2

]
1−exp

[
−(d̂I/cI)2

] , 0≤ dJ ≤ d̂I

0 dJ ≥ d̂I

(24)
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where dI = |s− sI| is the distance between an evaluation point and node sI , cI is a
constant controlling the shape of the weight function wI and d̂I is the size of the
support for the weight function wI and determines the support of node sI .

In Eqs.(17) and (18), ũs and t̃s at Γs can be represented by ũ and t̃ expressed in
Eq.(19) and (20) since Γs is a portion of Γ, while ũs and t̃s at Ls has not been defined
yet. To solve this problem, we select h such that all integrals vanish overLs. This
can be easily accomplished by using the weight function in the MLS approximation
for h, with the half-length of the major axis dI of the support of the weight function
being replaced by the radius of the sub-domainΩs, i.e.

hJ (Q) =


exp[−(dJ/cJ)

2]−exp[−(rJ/cJ)
2]

1−exp[−(rJ/cJ)
2] , 0≤ dJ ≤ rJ

0, dJ ≥ rJ

(25)

where dJ is the distance between point Q in the domain and the nodal point sJ .
Therefore, hJ (Q) vanishes on Ls. Eq.(17) and (18) can be rewritten as∫

Γs

(t− t̃)hdΓ−
∫

Ωs

u,iihdΩ = 0 (26)

∫
Γs

(u− ũ)hdΓ = 0 (27)

Making use of fundamental solutions, we approximate u inside the domain by

u =
{

u1
u2

}
=

N

∑
I=1

[
uI

11 uI
12

uI
21 uI

22

]{
xI

1
xI

2

}
(28)

and hence at a boundary node, the normal flux is given by

t =
{

t1
t2

}
=

N

∑
I=1

[
tI
11 tI

12
tI
21 tI

22

]{
xI

1
xI

2

}
(29)

where us
I is the fundamental solution; xI are unknown parameters; N is the total

number of boundary nodes. The fundamental solution is written as[2]

uI
i j =

−1
8π(1−ν)G

[(3−4ν)δi j ln(r)− r,ir, j] (30)

tI
i j =

−1
4π(1−ν)r

{
[(1−2ν)δi j +2r,ir, j]

∂ r
∂n

+(1−2ν)(r,in j− r, jni)
}

(31)

Where δ is the Kronecker delta function, r is the distance between the source point
and the field point, n is the normal to the boundary.
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From the fundamental solution of the traction t, one can see it contains (1/r) type
singular integral. And it is obvious that the second term of Eq. (17) only attributes
to the principal diagonal of the matrix. Hence, it can be treated by the rigid body
movement method together with the singular integrals. So the final equations can
be obtained as

Nt

∑
I=1

∫
ΓS

[
tI
11 tI

12
tI
21 tI

22

]{
xI

1
xI

2

}
hJ(Q)dΓ =

Nt

∑
I=1

∫
ΓS

[
ΦI(s) 0

0 ΦI(s)

]{
t̂I
1

t̂I
2

}
hJ(Q)dΓ (32)

Nt

∑
I=1

∫
ΓS

[
uI

11 uI
12

uI
21 uI

22

]{
xI

1
xI

2

}
hJ(Q)dΓ =

Nt

∑
I=1

∫
ΓS

[
ΦI(s) 0

0 ΦI(s)

]{
ûI

1
ûI

2

}
hJ(Q)dΓ (33)

Using the above equations for all nodes, one can get the system equations

Tx = Ht̂c (34)

Ux = Hûc (35)

where

UIJ =
∫

Γs

[
uI

11 uI
12

uI
21 uI

22

]
hJ (Q)dΓ (36)

TIJ =
∫

Γs

[
tI
11 tI

12
tI
21 tI

22

]
hJ (Q)dΓ (37)

HIJ =
∫

Γs

[
ΦI (s) 0

0 ΦI (s)

]
hJ (Q)dΓ (38)

3 DHBNM for elastodynamics

As an extension of the Hybrid BNM, the main idea of the DHBNM consists of em-
ploying the fundamental solution corresponding to a simpler equation and consid-
ering the remaining terms of the original equation via a procedure which involves
a series expansion using RBF and the reciprocity principles. In the past sections,
the complementary solution has been solved successfully by Hybrid BNM, in this
section, the DRM will be developed to solve the particular solution.

3.1 Dual Reciprocity Method (DRM)

The DRM can be used in elastodynamic problems to transform the domain integral
arising from the application of inhomogeneous into equivalent boundary integrals.
Applying interpolation for inhomogeneous term, the following approximation can
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be proposed for the term: ρ üi (Kontoni and Beskos, 1993; Samaan and Rashed,
2007)

ρ üi ≈
N+L

∑
j=1

f ja j
i (39)

where the a j
i are a set of initially unknown coefficients, the f j are approximation

functions. N and L are the total number of boundary nodes and total number of
interior nodes respectively.

As the same of the Eq.(39), the particular solution can be approximated by the basis
form of the particular solutions. It can be written as following

up
i ≈

N+L

∑
j=1

α
j

l
¯̄u j
li (40)

If up satisfies Eq.(9), the following equations can be obtained

G ¯̄u j
mk,ll +

G
1−2ν

¯̄u j
lk,lm = δmk f j (41)

The approximation function, f j, can be chosen as f j = 1+ r. Obviously, the basis
form of particular solution ¯̄u satisfying Eq.(41) can be obtained as

ūkm =
1−2ν

(5−4ν)G
r,mr,kr2 +

1
30(1−ν)G

[(3− 10ν

3
)δmk− r,mr,k]r3 (42)

The corresponding expression for the traction ¯̄t is

t̄km =
2(1−2ν)
(5−4ν)

[
1+ν

1−2ν
r,mr,k +

1
2

r,kn,m +
1
2

δmk
∂ r
∂n

]
r+

1
15(1−ν)

[(4−5ν)r,knm− (1−5ν)r,mnk+ [(4−5ν)δmk− r,mr,k]
∂ r
∂n

]
r2 (43)

And the particular solution of the stress can be given as

σ̄lkm =
2(1−2ν)

5−4ν

[
1+ν

1−2ν
δklr,m +

1
2

(δmkr,l +δmlr,k)
]

r+

1
15(1−ν)

[(4−5ν)(δmkr,l +δmlr,k)− (1−5ν)δklr,m− r,mr,kr,l]r2 (44)
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Solving the Eqs. (40) , (42) and (43), particular solutions can be written as

up
i =

N+L

∑
I=1

[
ūI

11 ūI
12

ūI
21 ūI

22

]{
α I

1
α I

2

}
(45)

t p
i =

N+L

∑
I=1

[
t̄I
11 t̄I

12
t̄I
21 t̄I

22

]{
α I

1
α I

2

}
(46)

Substitute the Eq. (39) into the Eqs. (45) and (46), one can obtain the particular
solution writing in matrix form as

up = ρVF−1ü (47)

tp = ρQF−1ü (48)

where vector ü is the value of acceleration on each nodes, and V and Q are the
matrixes of basic form of particular solution.

3.2 DHBNM

For a well-posed problem, either ũ or t̃ is known at each node on the boundary.
However, transformation between ûI and ũI , t̂I and t̃I is necessary because the MLS
approximation lacks the delta function property. For the panels where ũI is pre-
scribed, ũI is related to ûI by zhang (2002).

ûI =
Nt

∑
J=1

RIJ ũJ =
Nt

∑
J=1

RIJ ūJ (49)

and for the panels where t̃I is prescribed, t̂I is related to t̃I by

t̂I =
Nt

∑
J=1

RIJ t̃J =
Nt

∑
J=1

RIJ t̄J (50)

where RIJ = [ΦJ (sI)]
−1 ,Nt is the total number on a piece of the edge, ūJ and t̄J are

the related nodal values.

Substituting Eqs.(47), (48), (49) and (50) into Eq. (8), then substitute the result into
Eqs. (34) and (35), we can obtain

Ux+ρHRVF−1ü = HRū (51)

Tx+ρHRQF−1ü = HRt̄ (52)
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Solving the coefficient vector x in Eq. (51), one can obtain

x = U−1HR
(
u−ρVF−1ü

)
(53)

Then Substitute Eq. (53) into Eq. (52), one can obtain

TU−1HR
(
u−ρVF−1ü

)
= HR

(
t−ρQF−1ü

)
(54)

Eq. (54) can be rewritten as

Ku−Nt+Mü = 0 (55)

Where

K = TU−1HR

N = HR

M = ρ
(
HRQF−1−TU−1HRVF−1)

Eq. (55) is the system equation of the dual reciprocity hybrid boundary node
method for dynamic analysis. The system (55) is initially partitioned according
to the type of applied boundary condition, and then statically condensed in such a
way that final system could be solved for unknown displacement only. Assuming
that N nodes are located on the boundary, we can get N unknown variables on the
boundary from Eq. (55). However, the Equation above include the displacement of
the L internal nodes, and so the additional equations are needed.

3.3 Additional Equations

The Eq. (55) can not be solved for the variables of the internal nodes, additional
equations for elastodynamics problem will be developed in this section.

The unknown variables of the internal nodes can be expressed as

u∗ = uc +up (56)

The complementary solution, uc, can be interpolated by the fundamental solution
and the particular solution, up, can be expressed by Eq.(47). So the Eq.(56) can be
rewritten as

u∗ = usx+ρVF−1ü (57)
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where u∗ is the displacement of the internal nodes; us is the matrix of the funda-
mental solution on each internal nodes; V is the matrix of values of basis type of
particular solution.

Substitute Eq. (53) into Eq. (57), it can be rewritten as

u∗ = usU−1HRu+ µ
2usU−1HR¯̄uF−1u−µ

2 ¯̄uF−1u (58)

Rewrite Eq. (58), one can obtain

Lu− Iu3 +MIü = 0 (59)

Where I is a unit matrix.

L = ûU−1HR (60)

MI = ρ
(
VF−1− ûU−1HRVF−1) (61)

The final system equations are established by combining Eqs. (55) and (59). In this
paper, the Newmark time integration scheme is used. Like other hybrid models (for
example, the hybrid boundary element method), the present method has a drawback
of ‘boundary layer effect’ (the accuracy of the results in the vicinity of the bound-
ary is very sensitive to the proximity of the interior points to the boundary). To
overcome this drawback, an adaptive integration scheme has been proposed by the
author. As demonstrated, the DHBNM is a boundary-only meshless approach. No
boundary elements are used for both interpolation and integration purpose. The
nodes in the domain are needed just for interpolation for the particular solution,
which can not influence the present method as a boundary-type method.

4 Numerical Examples

In order to illustrate the validity and efficiency of the proposed method, three dif-
ferent examples are studied. The parameters that influence the performance of
the method are also investigated. The results of the present method are compared
with the analytical solutions or the solutions of dual reciprocity boundary element
method (DR-BEM).

In all examples, the support size for the weight function dIis taken to be rJ = 3.5q,
with q being the average distance of adjacent nodes. And the parameter cIis taken
to be that dI/cI = 0.5. In this paper, rJ = 0.85q is chosen as the radius of the sub-
domain, and the parameter cJ is taken to be rJ/cJ = 1.1. In order to deal with the
traction discontinuities at the corners, the nodes are not arranged at these places
and the support domain for interpolation is truncated.
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4.1 Simply Supported Deep Beam

In this example, the simply supported deep beam with span length L = 24 and
height h = 6 (see Fig.2) is considered. The beam is subjected to a Heaviside uni-
form load with initial valuew = 0.01, and its material properties are: ν = 0.333,
E = 100, and ρ = 1.5. This problem was solved with DR-BEM using the conical
(1+ r) function by Kontoni and Beskos (1993) and the MQ function by Samaan
and Rashed (2007). Due to symmetry, a half of the beam is studied. The half beam
is discretized using 60 boundary nodes and 35 internal nodes. The results for the
vertical displacement history at point “A” using the DHBNM are shown in Fig.3.
The results obtained by Kontoni are also plotted in the same graph. The results are
almost identical which proves the validity of the present method.

 

w(t)

A

L＝24

h=6

Figure 2: The simply supported beam with Heaviside load

In order to test the sensitivity of the DHBNM to the number of boundary nodes
and the number of the internal nodes, different discretizations are applied. For the
purpose of error estimation and convergence studies, the relative error is defined as

e =

∣∣u(n)−u(BEM)
∣∣

u(BEM) (62)

where the superscripts (n) and (BEM) refer to the results of DHBNM and DR-
BEM. The relative errors for each nodal arrangement in DHBNM computations
are presented Fig.4.

It can be concluded that the more points are arranged in the interior, the more
accurate solutions can be obtained from the Fig.4. It can be observed from this
figure that the present method gives very good results for this problem when more
than 27 internal nodes are used.

4.2 Plate with a Hole

A rectangular plate with a hole, as shown in Fig.5, was applied a Heaviside tension
load with initial value P = 7500N/cm2. The material properties are: ν = 0.3,
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Figure 3: The dynamic vertical displacement of point A in the deep beam
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Figure 4: Relative error with different discretizations

E = 2.1× 107N/cm2, and ρ = 0.00785kg/m3, and the time step ∆t is taken to
be 4× 10−6s. One-quarter of the symmetric plate is considered. In the present
calculation, the boundary of the quadrant of the plate is divided into five piecewise
smooth segments (four straight lines and a quadrant arc). 40 nodes are uniformly
distributed on each segment of the boundary and 40 additional internal nodes are
used.

The results for the displacement history of point “A” obtained by the present method
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Figure 5: The gusset plate with Heaviside load

is plotted in Fig.6 and the results obtained by Agnantiaris et al. (1996) using DR-
BEM are also plotted in the same graph. From the Fig.6, it can be concluded that
the results of DHBNM are in excellent agreement with those of DR-BEM.
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Figure 6: The history of vertical displacement of point A in the gusset plate

In order to test the sensitivity of the DHBNM to the number of boundary nodes and
the number of the internal nodes, different discretizations are applied. The error
estimation is defined as Eq.(62). The results with different discretization are plotted
in Fig.7. From analysis, it can be concluded that the use of a number of internal
nodes is important in elastodynamic problems. Based on the numerical example,
with enough boundary nodes, the number of internal nodes L = N/2, where N is
the number of the boundary nodes, provides solutions which are satisfactory for all
elastodynamic problems.
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4.3 Plate with a Central Crack

A rectangular plate with a central crack, as shown in Fig.8, is located by a step
function, which is shown in Fig.9, at time t = 0. A state of plane stress is assumed.
The dimension of the plate are: 2D = 40mm, 2L = 20mm. The length of the crack is
4.8mm. First, the material is considered with elastic moduli E = 200Mpa, Poisson
ratio ν = 0.3 and density ρ = 5000kg/m3. The load applied is P(t) = 0.4Gpa.

Due to symmetry, a quarter of the plate is studied. In the present calculation, the
boundary of the quadrant of the plate is divided into five piecewise smooth seg-
ments. 60 boundary nodes and 60 internal nodes are located on the model uni-
formly. To simulate the singularity of the stress field on the tip of the crack, the
basis function was enriched as

pT (x) =
[
1, x, y,

√
r
]

(63)

The Newmark method is used with ∆t = 1× 10−2 and results are computed till
t = 12µs.The results of the normalized dynamic stress intensity factors for the plate
with a central crack was shown in Fig.10, in which the FEM solution is also in the
graph. It can be seen from the results that the DHBNM solution is close to the
FEM results. Fig.11 and Fig.12 show the variation of the stress σx and σy with the
distance to the tip at t = 7µs. From the results, it can be concluded that the results
obtained by the present method have a good agreement with those of FEM.
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5 Conclusions

A truly meshless method for solving the elastodynamic problems, which called
dual hybrid boundary node method (DHBNM), has been presented in this paper.
This method combines the DRM and Hybrid BNM. The Hybrid BNM is used to



18 Copyright © 2009 Tech Science Press CMES, vol.53, no.1, pp.1-22, 2009

 

0 2 4 6 8 10 12
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

K
I(

t)/
K

I

t/μs

 DHBNM Solution
 FEM Solution

Figure 10: Regular dynamic stress intensity factor
 

0.000 0.001 0.002 0.003 0.004 0.005

0

1

2

3

4

5

σ x

d/m

 FEM Solution
 DHBNM Solution

Figure 11: The variation of stress σx with the distance to the tip at t = 7µs

solve the homogeneous equations, while the DRM is employed to solve the in-
homogeneous terms. No cells are needed either for the interpolation purposes or
for integration process, only discrete nodes are constructed on the boundary of a
domain, several nodes in the domain are needed just for the RBF interpolation.
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Figure 12: The variation of stress σy with the distance to the tip at t = 7µs

The internal nodes used in the present method are usually defined at positions where
the solution is required. The use of a number of internal nodes is important in most
cases. Based on the numerical examples, the number of internal node L = N

2 , where
N is the number of boundary nodes, provides solutions which are satisfactory for
all problems.

The DHBNM has been verified and the size of the sub-domain radius is studied
through the numerical examples. It is observed that the optimal value of the radius
of the sub-domain is between 0.8h and 0.9h.The numerical examples have been
given and the numerical results have demonstrated the accuracy and convergence
of the present method.
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