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A Scalar Homotopy Method for Solving an
Over/Under-Determined System of Non-Linear Algebraic

Equations
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Abstract: Iterative algorithms for solving a system of nonlinear algebraic equa-
tions (NAEs): Fi(x j) = 0, i, j= 1,. . . ,n date back to the seminal work of Issac New-
ton. Nowadays a Newton-like algorithm is still the most popular one to solve the
NAEs, due to the ease of its numerical implementation. However, this type of al-
gorithm is sensitive to the initial guess of solution, and is expensive in terms of the
computations of the Jacobian matrix ∂Fi/∂x j and its inverse at each iterative step.
In addition, the Newton-like methods restrict one to construct an iteration proce-
dure for n-variables by using n-equations, which is not a necessary condition for the
existence of a solution for underdetermined or overdetermined system of equations.
In this paper, a natural system of first-order nonlinear Ordinary Differential Equa-
tions (ODEs) is derived from the given system of Nonlinear Algebraic Equations
(NAEs), by introducing a scalar homotopy function gauging the total residual error
of the system of equations. The iterative equations are obtained by numerically in-
tegrating the resultant ODEs, which does not need the inverse of ∂Fi/∂x j. The new
method keeps the merit of homotopy method, such as the global convergence, but
it does not involve the complicated computation of the inverse of the Jacobian ma-
trix. Numerical examples given confirm that this Scalar Homotopy Method (SHM)
is highly efficient to find the true solutions with residual errors being much smaller.
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1 Introduction

The numerical solution of (linear or nonlinear, well-conditioned or ill-conditioned,
and underdetermined or overdetermined or ill-posed systems of) algebraic equa-
tions is one of the main aspects of computational mathematics. In many practi-
cal nonlinear engineering problems, methods such as the finite element method,
boundary element method, finite volume method, the MLPG method (which leads
to many different meshless methods), etc., eventually lead to a system of nonlinear
algebraic equations (NAEs). Many numerical methods used in computational me-
chanics, as demonstrated by Zhu, Zhang and Atluri (1998, 1999), Atluri and Zhu
(1998), Atluri (2002), Atluri and Shen (2002), and Atluri, Liu and Han (2006) lead
to the solution of a system of linear algebraic equations for a linear problem, and of
a system of NAEs for a nonlinear problem. Boundary collocation methods, such as
those used by Liu (2007a, 2007b, 2007c, 2008), for the modified Trefftz method of
Laplace equation, also lead to a large system of well-conditioned linear algebraic
equations.

Over the past twenty years two important contributions have been made towards the
numerical solutions of NAEs. One of the methods has been called the “predictor-
corrector” or “pseudo-arclength continuation” method. This method has its histor-
ical roots in the embedding and incremental loading methods which have been
successfully used for several decades by engineers to improve the convergence
properties when an adequate starting value for an iterative method is not available.
Another is the so-called simplical or piecewise linear method. The monographs by
Allgower and Georg (1990) and Deuflhard (2004) are devoted to the continuation
methods for solving NAEs.

Here we consider the following system of nonlinear algebraic equations:

Fi (x1, · · · ,xn) = 0, i = 1, · · · ,n. (1)

The Newton method for solving these equations is given algorithmically by

xk+1 = xk−B−1(xk)F(xk), (2)

where we use x := (x1, · · · ,xn)
T and F := (F1, · · · ,Fn)

T to represent the vectors, B is
an n×n matrix with its ij-th component given by ∂Fi/∂x j, and xk+1 is the (k+1)-th
iteration for x.

Newton’s method has a great advantage, in that it is quadratically convergent. How-
ever, it still has some drawbacks: the difficulty in guessing the starting values for
x, the computational burden of finding [B(xk)]

−1, and F being required to be dif-
ferentiable. Some quasi-Newton methods are hence developed to overcome some
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of these defects of the Newton method; see the discussions by Broyden (1965),
Dennis (1971), Dennis and More (1974, 1977), and Spedicato and Huang (1997).

Davidenko (1953) was the first who developed a new idea of homotopy method to
solve Eq. (1) by numerically integrating

ẋ(t) =−H−1
x Ht (x, t) , (3)

x(0) = a, (4)

where H is a homotopic vector function, for example, H = (1− t)(x−a)+ tF(x),
and Hx and Ht are, respectively, the partial derivatives of H with respect to x and t.
This theory was later refined by Kellogg, Li and Yorke (1976), Chow, Mallet-Paret
and Yorke (1978), Li and Yorke (1980), and Li (1997). The homotopy method has
many merits, such as its global convergence (i.e., one can obtain the solution for
arbitrary initial guess), multiple roots searching (due to the fact that one homotopy
path cannot intersect with another homotopy path); but it also suffers from its very
slow convergence speed in comparison with other iteration methods.

Hirsch and Smale (1979) also derived a “continuous Newton method” governed by
the following differential equation:

ẋ(t) =−B−1 (x)F(x) , (5)

x(0) = a, (6)

where a∈Rn. It can be seen that the ODEs in Eqs. (3) and (5) are difficult to solve,
because they all involve inverting a matrix. Atluri, Liu and Kuo (2009) proposed
a modified Newton method for solving nonlinear algebraic equations avoiding the
inverse of the Jacobin matrix. In addition, the number of equations and the number
of unknowns should be equal. Numerically speaking, such a constraint makes the
inverse of a matrix possible. However, it is not a necessary condition for the ex-
istence of solutions for a system of underdetermined or overdetermined system of
equations.

To eliminate the need for inverting a matrix in the iteration procedure, the first-order
ODE system such as

ẋ =−F(x) , (7)

x(0) = a (8)

has been used [Ramm (2007)]. However, iteration procedure in Eq. (7) is very
sensitive to the initial guess and may have a very low convergence speed. Liu and
Atluri (2008) have proposed another first-order nonlinear ODE system, as:

ẋ =− ν

1+ t
F(x) , (9)
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or in general,

ẋ =− ν

q(t)
F(x) , (10)

where ν is nonzero, and q(t) may in general be a monotonically increasing func-
tion of t. In their approach, the term ν

1+t [or ν

q(t) ] plays the role of a controller to
help one obtain a solution even for bad initial guesses, and speeds up the conver-
gence. Liu and Chang (2009) combined the above formula with nonstandard group
preserving scheme for solving a system of ill-posed linear equations and accurate
results were obtained. Recently, Ku, Yeih, Liu and Chi (2009) employed a new
time-like function q(t) = (1 + t)m, 0 < m ≤ 1 in Eq. (10), and better performance
was observed.

The systems in Eqs. (7)-(10), while avoiding the calculation of an inverse of a
matrix, all have the property of a local convergence as in the Newton method of
Eqs. (5) and (6). From the above brief review, one can find that only the homotopy
method can guarantee the global convergence.

Below we will develop a new system of ODEs, which are equivalent to the original
equation (1). This new approach is similar to the vector homotopy method and we
name it the scalar homotopy method (SHM). This new method keeps the spirit of
the vector homotopy method, such that the global convergence can be guaranteed.
On the other hand, this new approach does not need to calculate the inverse of a
matrix as in the vector homotopy method. Thus, it saves a lot of computational ef-
forts. Furthermore, the SHM can be used even when the number of equations is not
equal to the number of unknowns, i.e., the system of equations can be over/under-
determined.

2 A scalar homotopy method

2.1 Transformation of a system of NAEs into a system of nonlinear ODEs

First, we note that the statement,

bi = 0, i = 1, · · · ,m, (11)

is mathematically equivalent to

m

∑
i=1

bibi = 0. (12)

That is, Eq. (11) implies Eq. (12), and conversely, Eq. (12) implies Eq. (11).
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As is commonly done in the vector homotopy theory, we consider an initial vector
equation:

x−a = 0, (13)

and a final vector equation:

F(x) = 0, (14)

which is our target to solve.

Now we introduce a scalar function:

h(x, t) =
1
2

[
t ‖F(x)‖2− (1− t)‖x−a‖2

]
. (15)

Corresponding to the above introduced vector homotopy function H = (1-t)(x-
a)+tF(x), the present h(x, t) is a scalar homotopy function. When t = 0 we have

h(x, t = 0) = 0→‖x−a‖2 = 0→ xi = ai, i = 1, . . . ,n. (16)

Similarly, when t= 1 we have

h(x, t = 1) = 0→‖F(x)‖2 = 0→ Fi = 0, i = 1, . . . ,m. (17)

The last implication comes from Eqs. (11) and (12). It can be seen that the number
of equations now is equal to m and the number of unknowns is equal to n and
they do not need to be equal to each other. The homotopy theory basically aims to
construct a path from the solution of a given auxiliary function to the solution of
the desired function continuously. It means that for any t ∈ [0,1] we have to solve
the following equation:

h(x, t) =
1
2

[
t ‖F(x)‖2− (1− t)‖x−a‖2

]
= 0. (18)

In order to guarantee that the path lies on the hyper-surface described by Eq. (18),
the following consistency equation then can be derived:

∂h
∂ t

+
∂h
∂x
· dx

dt
= 0. (19)

In an analogy to the theory of plasticity, Eq. (18) may be considered to be the
definition of a “yield-surface”, and Eq. (19) is the condition of “consistency”. For
the vector homotopy function, the consistency equation can uniquely determine the
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ODE for x as written in Eqs. (3) and (4). However, since the equation written in
Eq. (19) is a scalar equation and it cannot determine the ODE for x unless one
prescribes a certain form for dx

dt . In plasticity theory, the normality condition, or
equivalently the “stability” of the material “in the small” was originally derived by
Drucker and Ilyushin, based on the inequality of the plastic work (that it should be
≥0). A similar motivation for the use of the normality condition for dx

dt is based on
the stability of solutions. We note that the form of dx

dt needs to be parallel to the
gradient of the above scalar homotopy function, such that the trajectory of x can be
equivalent to seeking of h(x, t)=0. We propose here to use

dx
dt

=−q
∂h
∂x

, (20)

in which the gradient of h is assigned to be the driving force to adjust x. In an
analogy to the theory of plasticity, Eq. (20) may be considered to be the “flow-
rule”, and we will introduce the similarity between them, later. It can be seen that

q =
∂h
∂ t∥∥∥ ∂h

∂x

∥∥∥2 (21)

by substituting Eq. (20) into Eq. (19), where

∂h
∂ t

=
1
2

[
‖F(x)‖2 +‖x−a‖2

]
, (22)

∂h
∂x

= tBTF− (1− t)(x−a). (23)

B := ∂F
∂x is usually called the Jacobian matrix of the NAEs. Hence, we can write

the nonlinear ODEs for x as:

ẋ =−
∂h
∂ t∥∥∥ ∂h

∂x

∥∥∥2
∂h
∂x

. (24)

Now we will make an analogy to the plasticity theory. In the plasticity theory, we
have the associated flow rule given by [Liu and Chang (2004)]

ėP = λ̇
∂h
∂x

, (25)

where ėP denotes the plastic strain rate, h is the yield function and x relates to the
stress state. Then by assuming an unit elastic modulus, the evolution of stress x is



A Scalar Homotopy Method for Solving an Over/Under-Determined System 53

governed by

ẋ = ė− λ̇
∂h
∂x

, (26)

where ė denotes the total strain rate vector as an input into the elastic-plastic consti-
tutive relation for the stress-rate. Inserting Eq. (26) into the consistency Eq. (19),
we can solve for λ̇ as:

λ̇ =
∂h
∂ t + ∂h

∂x · ė∥∥∥ ∂h
∂x

∥∥∥2 . (27)

The above procedure means that one hopes to keep the trajectory of stress state on
the yield surface.

Thus we have the following nonlinear ODEs:

ẋ = ė−
∂h
∂ t + ∂h

∂x · ė∥∥∥ ∂h
∂x

∥∥∥2
∂h
∂x

. (28)

It can be seen that if one takes ė = 0, Eq. (28) is the same as Eq. (24). Actually
the ODEs in Eq. (24) and Eq. (28) both can be used as the governing equations
for the scalar homotopy theory. One can compare the governing equations for the
scalar homotopy theory, Eq. (24) or Eq. (28), and that for the vector homotopy
theory, Eq. (3), and easily find that the scalar homotopy theory is much simpler
than the vector homotopy theory. First, the scalar homotopy theory does not need
to calculate the inverse of the Jacobian matrix at each iteration step. Second, the
scalar homotopy theory does not require that the number of equations be equal to
the number of unknowns.

2.2 A Group Preserving Scheme to Integrate the System of Nonlinear ODEs

We can write Eq. (24) or Eq. (28) as

ẋ = f(x, t), x ∈ Rn, 0 < t ≤ 1. (29)

Liu (2001) has embedded the above system into an augmented differential system,
and obtained the following group preserving scheme (GPS) to integrate Eq. (29):

xk+1 = xk +ηkfk, (30)

‖xk+1‖= ak ‖xk‖+bk
fk ·xk

‖fk‖
, (31)
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where

ak := cosh
(

∆t ‖fk‖
‖xk‖

)
, (32)

bk := sinh
(

∆t ‖fk‖
‖xk‖

)
, (33)

ηk :=
bk ‖xk‖‖fk‖+(ak−1)fk ·xk

‖fk‖2 . (34)

Starting from an initial value of x0 which can be guessed in a rather free way, we
employ the above GPS to integrate Eq. (24) or Eq. (28) from t = 0 to a final time
t f = 1.

2.3 Restart

Although the homotopy theory guarantees that when t= 1 the solution for the de-
sired equations can be solved, the numerical integration to keep the consistency
Eq. (19) may not be easily carried out. Especially when the system of equations
is highly nonlinear, the time step required is very small, such that to reach t= 1
may lead to numerous evolution steps. It is well known that the convergence speed
for the homotopy method is awfully slow in comparison with other methods, such
as the Newton’s method. In the previous literature, the restart technique has been
proposed to speed up the convergence of the vector homotopy method [Nazareth
(2003)]. A similar idea can be used here for the scalar homotopy method. In the
following, the restart method will be briefly introduced.

Instead of using a small time increment, one can choose an adequate time step
which can make the goal of t= 1 being accomplished very fast. However, one can
expect that the “solution” at t= 1 may be not the true solution at all, since one did not
select a very small time increment to preserve the consistency equation. However,
one can use the final value, even though it is wrong, to replace the initial guess
and redo the integration again. The abovementioned procedure continues until the
convergence criterion is reached. The convergence criterion is written as

‖F(x)‖K ≤ ε, (35)

where the subscript K represents the K-th restart procedures, and ε is a convergence
criterion defined by the user.

The reason why we can use the restart method is briefly explained as follows. Ow-
ing to the global convergence property for the homotopy method, one can use any
initial guess, and not be concerned that the solution cannot be obtained. This global
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convergence property makes the restart method workable, no matter which initial
guess one uses, where the initial guess for the current procedure comes from the
final solution of the last evolution. Other numerical methods such as the Newton’s
method have the local convergence, such that the restart technique sometimes may
fail.

Using this technique, one can now set the integration steps from t= 0 to t= 1 to be a
small number, for example, 5 steps. Although one may restart many times to reach
the final solution, the total number of evolution time steps using the restart method
is much less than that using very small time increments. We will demonstrate this
claim in the next section.

3 Numerical examples

3.1 Example 1

The following equations are considered:

F1 (x,y) = x2− y−1 = 0, F2 (x,y) = y2− x−1 = 0. (36)

There are four roots: (-1, 0), (0, -1),
((

1+
√

5
)

/2,
(

1+
√

5
)

/2
)
≈ (1.618034,

1.618034) and
((

1−
√

5
)

/2,
(

1−
√

5
)

/2
)
≈(-0.618034, -0.618034). The strain

rate is ė = 10−16 1 for all examples, where 1 = (1, . . . ,1)T. For the first root, we
set the initial guess to be (-20,-2). The convergence criterion for this problem is
ε=10−10. If the restart method is not adopted, even when we set the time step
size to be ∆t = 10−7(it means totally 107 evolution steps are used), the residual
norm is about 10−1, which is far from our convergence criterion. However, if
one uses the time step size ∆t = 0.5 and uses the restart technique, the solution
of (-0.99999999991274, -0.00000000015972) is obtained and the residual of each
equation is (F1,F2) = ( - 0.14797385539111, - 0.87260865200278)× 10−10. The
total number of evolution steps is 444. In the following, we fixed our parameters
as: time step size ∆t = 0.5 and restart technique is adopted.

For the second root, we use the initial guess as (1,-5). After 338 iteration steps, the
solution of (0.00000000019164, -1.00000000005814) is obtained. The residual of
each equation is (F1,F2) = (0.58138382996731, - 0.75364603446815)×10−10.

For the third root, the initial guess is chosen as (5, 5). After 80 iteration steps, the
solution of (1.61803398877212, 1.61803398877212) is obtained. The residual of
each equation is (F1,F2) = (0.49692916448407, 0.49692916448407)×10−10.

For the fourth root, the initial guess is chosen as (-5,-2). After 566 iteration steps,
the solution of (-0.61803398892723, -0.61803398859329) is obtained. The resid-
ual of each equation is (F1,F2)= (0.62595484351391, - 0.16237899913563)×10−10.
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We solved this problem by the Fictitious Time Integration Method (FTIM) also, in
order to compare the results with the present approach. However, it is found that
the third and fourth roots cannot be obtained by the FTIM, unless the initial guess
is very close to the exact solutions. It appears that some roots of NAEs may not be
easily solved by FTIM if the initial guess cannot be chosen appropriately, i.e., the
initial guess is not within the attracting zone of the root.

3.2 Example 2

We study the following system of two algebraic equations [Spedicato and Hunag
(1997)]:

F1 (x,y) = x− y2 = 0,

F2 (x,y) = (y−1)2 (y−2)2 +
(
x− y2)2

= 0. (37)

The two real roots are (x, y) = (1, 1) and (x, y) = (4, 2). For this example, the
convergence criterion is chosen as ε=10−7.

For the first root, the initial guess is chosen as (0, 10). After 3424 steps, the solu-
tion of (1.00055782102710, 1.00027890021624) is obtained. The residual of each
equation is (F1,F2) = ( - 0.57190704394472, 0.77741951246269)×10−7.

For the second root, the initial guess is chosen as (3, 9). After 30904 steps, the
solution of (3.99989872456104, 1.99997466649739) is obtained. The residual of
each equation is (F1,F2) = (0.57929709473825, 0.00641757193548)×10−7.

The residual norm versus the evolution step number is illustrated in Fig. 1, and
the locus of evolution for each root is plotted in Fig. 2. The trajectories as shown
in Fig. 2 do not look like continuous curves because the restart method is used.
Every time when one restarts, the evolution forces refresh from t= 0 and are totally
different from the previous step. We also solved this example by the FTIM, but the
residual norm is still 9.1869×10−6 after 100000 evolution steps. It can be seen that
the present scalar homotopy method is much faster than the FTIM for this example.
In comparison, the scalar homotopy method reaches a more accurate result than the
FTIM for the same number of evolution steps.

3.3 Example 3

Now we consider a system of two algebraic equations in two-variables [Hirsch and
Smale (1979)]:

F1 (x,y) = x3−3xy2 +a1
(
2x2 + xy

)
+b1y2 + c1x+a2y = 0,
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Figure 1: The residual norm for each root of Example 2.

F2 (x,y) = 3x2y− y3−a1
(
4xy− y2)+b2x2 + c2 = 0. (38)

The parameters used and results obtained in this test are listed in Table 1. In Table
1, “IN” denotes the iteration number. The convergence criterion is ε = 10−10 for
problem 1 and problem 2, and ε = 10−8 for problem 3. For problem 1, we find
three solutions by using three different initial guesses. For problem 2, we find four
solutions using four different initial guesses. For problem 3, we find three solutions
using three different initial guesses. It should be emphasized that the third problem
is hard to solve because there appears a much larger coefficient a1 = 200 than
others. As reported by Hsu (1988), he could not calculate the third problem by
using the vector homotopic algorithm with a Gordon-Shampine integrator, the Li-
Yorke algorithm with the Euler predictor and Newton corrector, and the Li-Yorke
algorithm with the Euler predictor and quasi-Newton corrector.

Hirsch and Smale (1979) used the continuous Newton algorithm to calculate the
above three problems. However, as pointed out by Liu and Atluri (2008), the re-
sults obtained by Hirsch and Smale (1979) are not accurate. In the paper by Liu
and Atluri (2008), only one root for problems 2 and 3 is presented. The currently
proposed scalar homtopy method can find all roots for all three problems success-
fully, and multiple roots are reported. The convergence and accuracy are also better
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Table
1:T

he
param

eters
and

results
forE

xam
ple

3.
Problem

1
(a

1 ,
b

1 ,
c

1 ,
a

2 ,
b

2 ,
c

2 )
Initialguess

IN
Solution

(x,y)
R

esidual(F
1 ,F

2 )×
10
−

10

(25,1,2,3,4,5)
(10,2)

322
(1.63597179958629,13.84766532577993)

(0.19831247755064,-0.90331297997182)
(0.5,0.5)

586
(-50.39707550115868,-0.80424262327705)

(-0.40315306648608,-0.80035533756018)
(0.5,10)

906
(0.62774246874695,22.24441227822409)

(0.34589220376802,0.92033936027747)
Problem

2
(a

1 ,
b

1 ,
c

1 ,
a

2 ,
b

2 ,
c

2 )
Initialguess

IN
Solution

(x,y)
R

esidual(F
1 ,F

2 )×
10
−

10

(25,-1,-2,-3,-4,-5)
(0,2)

398
(0.13421210219977,0.81112749271137)

(0.15566214983664,-0.76411765803641)
(0,10)

174
(-0.16363472338453,0.23052874358429)

(-0.57356785987395,-0.35127456499140)
(-1,20)

132
(-0.52622363386433,26.97330868866634)
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(-40,0)

410
(-49.67626510484030,0.79708118398900)

(0.72745365287119,-0.54569682106376)
Problem

3
(a

1 ,
b

1 ,
c

1 ,
a

2 ,
b

2 ,
c

2 )
Initialguess

IN
Solution

(x,y)
R

esidual(F
1 ,F

2 )×
10
−

8

(200,1,2,3,1,2)
(0,4)

468
(0.511596009556,197.936304863638)

(0.02987690095324,-0.76710824359338)
(-300,4)

494
(-400.095289676515,-0.200031563605)

(0.04347108228941,-0.65192580223083)
(10,100)

164
(12.98635827024471,89.10206184127932)

(0.18177956917498,0.76774142598879)
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 Figure 2: The locus of evolution for each root of Example 2.

than in Liu and Atluri (2008).

3.4 Example 4

In the following, we consider a system of three algebraic equations in three-variables:

F1 (x,y,z) = x+ y+ z−3 = 0,

F2 (x,y,z) = xy+2y2 +4z2−7 = 0,

F3 (x,y,z) = x8 + y4 + z9−3 = 0. (39)

Apparently, (x, y, z) = (1, 1, 1) is one of the roots. The system of equations in Eq.
(39) is nonlinear and multiple roots are possible. In this example, the convergence
criterion is chosen as ε =10−10. The initial guess is (x, y, z) = (0, 0.25, 0.5). Af-
ter 1342 steps, the solution of (x, y, z) = (0.93054228413587, 1.21836693167919,
0.85109078422645) is obtained, which is one solution different from another solu-
tion of (x, y, z) = (1, 1, 1). The residual of each equation is

(F1,F2,F3)= ( 0.41511682979944, - 0.80120798884309, - 0.16624923659947)×10−10.
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The locus of evolution is plotted in Fig. 3, and the residual norm versus the evolu-
tion steps is shown in Fig. 4.
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 Figure 3: The locus of evolution of Example 4.

3.5 Example 5

The following example is given in Roose, Kulla, Lomb and Meressoo (1990):

Fi = 3xi (xi+1−2xi + xi−1)+
1
4

(xi+1− xi−1)
2 ,

x0 = 0, xn+1 = 20. (40)

Table 2: The numerical solutions of Example 5 with n=10.

x1 x2 x3 x4 x5

3.0832 5.3831 7.3952 9.2397 10.969
x6 x7 x8 x9 x10

12.612 14.186 15.705 17.176 18.606
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Figure 4: The residual norm for each root of Example 4.

Initial values are fixed to be xi= 20, i= 1,. . . ,n. The convergence criterion is chosen
as ε = 10−10. After 8768 steps, the solution is obtained. The parameter n is 10 and
the result is shown in Table 2. As compared with those reported by Spedicato and
Huang (1997) for the Newton-like methods, the present scalar homotopy method is
more accurate and time saving, where the computational time is less than 0.1 sec
by using a PC586.

3.6 Example 6

Then, we consider an example similar to the one given by Krzyworzcka (1996):

F1 = (3−5x1)x1 +1−2x2,

Fi = (3−5xi)xi− xi−1−2xi+1, i = 2, · · · ,9,

F10 = (3−5x10)x10 +1− x9. (41)

The initial guess is fixed to be xi =−0.1, i = 1, ..,10. The convergence criterion is
ε =10−10. After 392 steps, the result obtained is reported in Table 3.

As reported by Mo, Liu and Wang (2009) the Newton method cannot be applied for
this example, and their solutions obtained by the conjugate direction particle swarm
optimization method are different from the present solutions. For this example it
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may have multiple solutions, but Krzyworzcka (1996) did not give solution for this
example. Obviously, our method converges faster than that by Mo, Liu and Wang
(2009).

3.7 Example 7

In this example we apply the scalar homotopy method to solve the following bound-
ary value problem, which is solved by Liu (2006) using the Lie group shooting
method:

u′′ =
3
2

u2,

u(0) = 4, u(1) = 1. (42)

The exact solution is

u(x) =
4

(1+ x)2 . (43)

By introducing a finite difference discretization of u at the grid points we can obtain

Fi =
1

(∆x)2 (ui+1−2ui +ui−1)−
3
2

u2
i ,

u0 = 4, un+1 = 1, (44)

where ∆x = 1
n+1 is the grid length. We select n= 25 and ε = 10−10. The initial

guess is generated randomly as shown in Fig. 5(a). After 32262 steps, the solution
is obtained. It can be seen from Fig. 5(a) that the numerical solution perfectly
coincides with the exact solution, and the maximum absolute error is about 7×10−4

as shown in Fig. 5(b).

3.8 Example 8

In this example, we consider the following equations:

F1 (x,y,z) = x2 + y2 + z2−1 = 0,

F2 (x,y,z) =
x2

4
+

y2

4
+ z2−1 = 0. (45)

It can be easily seen that this system has two equations in three variables and the
solutions are (x, y, z) = (0, 0, 1) and (0, 0, -1). Although this system is very simple,
the conventional Newton method and a vector homotopy method fail, since they all
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 Figure 5: (a) The comparison of numerical and exact solutions and the initial
guesses, and (b) the numerical error of Example 7.

require the number of equations should be equal to the number of unknowns. Using
the scalar homotopy method proposed in this paper, this restriction is not necessary
any more.

In this example, we use the convergence criterion as ε = 10−6. For the first
root, the initial guess is chosen as (5, 5, 5). After 17878 steps, the solution of
(0.00097065383789, 0.00097065383789, 0.99999940340636) is obtained and the
residual of each equation is (F1,F2) = (6.9115081435811, - 7.2210249524307)×
10−7. For the second root, the initial guess is chosen as (-3, -4, -5). After 9490
steps, the solution of (-0.00066967890114, -0.00089290520789, -0.99999978109166)
is obtained. The residual of each equation is

(F1,F2) = (8.0793290924142, - 1.2637924640124)×10−7.

The trajectories are plotted in Fig. 6.
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Figure 6: The locus of evolution for each root of Example 8.

3.9 Example 9

In this example, we demonstrate the performance of the scalar homotopy method
while dealing with ill-posed problems. The nonlinear Fredhlom integral equation
of the first-kind is considered. There is a limited literature dealing this problem,
because the problem itself is highly ill-posed. In addition, the nonlinear behav-
ior makes the amplification of errors more severe than in the linear system. The
nonlinear integral equation we considered is written as

1∫
0

x(s)x(t)dt = Acos(β s) , A > 0

where A and β are constants. We let A=1 and β = 3 in the following example. In this
example, we give data for Acos(β s) in the region s ∈ [0,1] by equally dividing the
region into 100 segments, that means a total of 101 data points are used. To solve
the problem, we assume that the solution can be approximated by a polynomial
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 Figure 7: (a) The comparison of numerical and exact solutions, and (b) the numer-
ical error of Example 9 for the first solution.

expansion as:

x(s) = c0 +
p

∑
k=1

ck (s)k

where p is the maximum power of polynomial expansion and ck is the unknown co-

efficients. Two exact solutions exist: x(s) = ±
√

Aβ

sinβ
cos(β s) = ±

√
3

sin3 cos(3s).
(Polyanin and Manzhirov, 2007). We set p=10, it means that a total of 11 unknown
coefficients need to be solved. It then can be seen here that the system is an over-
determinated system. For a conventional numerical method such as the Newton’s
method, the vector homotopy method, and the fictitious time integration method
(Liu and Atluri, 2008) all require that the number of equations should be equal to
the number of unknowns. However, the scalar homotopy method does not have
such an unnecessary constraint, and it can easily deal with the current situation.
When we set the initial guess as: c0 =−1, ck = 0 when k 6= 0, the numerical results
for 100,000 steps are illustrated in Fig. 7. It can be seen that the solution con-
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 Figure 8: (a) The comparison of numerical and exact solutions, and (b) the numer-
ical error of Example 9 for the second solution.

verges to x(s) =−
√

3
sin3 cos(3s) and the scalar homotopy method can still have a

reasonable result even when a random noise with the maximum absolute error of
0.01 is added in the data. When we set the initial guess as: c0 = 1, ck = 0 when
k 6= 0, the numerical results for 100,000 steps are illustrated in Fig. 8. It can be

seen that the solution now converges to x(s) =
√

3
sin3 cos(3s). It is interesting that

the current approach can deal with the highly ill-posed problem without using any
regularization technique such as the Tikhonov’s regularization method or the trun-
cated singular value decomposition method. The current approach as well as the
fictitious time integration method both do not need special treatments in dealing
with ill-posed problems. However, the present scalar homotopy method does not
have the constraint that the number of equations be equal to the number of un-
knowns, as in the fictitious time integration method, such that it is a more robust
method in dealing with various kinds of systems of equations.



68 Copyright © 2009 Tech Science Press CMES, vol.53, no.1, pp.47-71, 2009

4 Conclusions

In this paper, a novel scalar homotopy method (SHM) is developed. In order to
construct a system of first-order ODEs for the evolution of unknowns, a flow rule,
in which the vector gradient of the scalar homotopy function is assigned as the
evolution force, is introduced. The resulting dynamical system for the evolution of
unknowns does not involve the inverse of matrix as that required by the Newton’s
method or vector homotopy method. Thus, the SHM can save a lot of compu-
tational time. The scalar homotopy method keeps the merits of the conventional
vector homotopy method, such as the global convergence, but also suffers from its
slow convergence speed like the vector homotopy method. In order to speed up the
convergence, a “restart method” is introduced, which can work perfectly owing to
the global convergence property of the homotopy method. Due to the mathematical
structure of this scalar homotopy method, the constraint that requires the number of
equations to be equal to the number of unknowns is no longer necessary. Nine ex-
amples were used to demonstrate the validity of the present method. Among these
examples, several of them cannot be appropriately treated by using the conven-
tional numerical methods, such as the vector homotopy method, the fictitious time
integration method or the Newton method. The present method and the fictitious
time integration method both have good convergence and accuracy, and are robust
enough to solve the ill-posed problem under noisy data, but the fictitious time inte-
gration method cannot deal with the over/under-determined problem because of the
limitation of its vector form. In one of the illustrated examples, the present method
can find all solutions easily while the fictitious time integration method cannot find
all of them, because the attracting zone of a root is too small such that initial guess
is not easy to be chosen. In another example, the present method achieves better
accuracy than the fictitious time integration method for the same evolution steps.
Although we cannot draw a conclusion that the present method is better than the fic-
titious time integration method, it indeed shows some benefits, and further studies
are necessary.
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