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Different concepts for the coupling of porous-media flow
with lower-dimensional pipe flow

M. O. Dogan'?, H. Class” and R. Helmig’

Abstract: Many flow problems in environmental, technical and biological sys-
tems are characterized by a distinct interaction between a flow region in porous-
medium and a free-flow region in quasi-one-dimensional hollow structures. In this
study, different model concepts, based on a dual-continuum strategy, for the simu-
lation of coupled porous-media flow and (lower-dimensional) pipe flow are further
developed and tested. The dual-continuum concept is extended for coupling multi-
phase porous-media flow with lower-dimensional single-phase free flow. The com-
plexity of the considered flow regimes is increased gradually. Examples are given
for a coupled single-phase incompressible and compressible flow in both porous-
media and pipe flow domains. Furthermore, the coupling of single-phase pipe flow
with a multi-phase flow based on Richard’s equation for the unsaturated soil zone
is modeled, where the important role of capillary effects for the mass exchange
rate between the two continua could be illustrated. The last example introduces a
concept for a two-phase porous-media flow coupled with a single-phase (gas) pipe-
flow problem, which revealed that the mobility exchange term can be decisive for
the mass exchange rate.

Keywords: porous-media flow, pipe flow, lower-dimensional coupling

1 Introduction

Numerical models for simulating flow and transport in porous media are applica-
ble in many environmental, technical and biological problems. Distinct structures
embedded in the porous media often make conceptual modeling difficult. In par-
ticular, if the porous medium is intersected with distinct quasi-one-dimensional
hollow structures, porous-media flow and free flow in the hollow structures can in-
teract strongly. In porous media, the velocities are calculated by using Darcy’s Law
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[Darcy (1856)], where the Reynold’s number is typically less than unity. Generally,
in free-flow regions Darcy’s Law is not applicable.

Examples for such systems are:

* Mines: Methane released from unmined coal seams migrates through the
porous rocks, but also through tunnels and shafts in the mine.

* Landslides: A sudden water infiltration through macropores may trigger
landslides.

* Fuel cells: The supply of reactive gases through free-flow channels interacts
strongly with the advective-diffusive transport through the porous diffusion
layers to the reaction layers.

* Cancer therapy: Therapeutic agents are delivered via the blood vessels into
tissue, targeting the tumor cells.

The general approaches to coupling porous-media flow with free-flow models may
be divided into two main groups, (i) equi-dimensional coupling and (ii) lower-
dimensional coupling. In equi-dimensional coupling approaches, the term "equi-
dimensional" means that both continua have the same dimensions, such as two-
dimensional porous - two-dimensional free-flow systems or three-dimensional porous
- three-dimensional free-flow systems. Darcy’s Law, which commonly substitutes
the momentum equation in the porous-media region, is a first-order differential
equation, whereas the momentum equation in the free flow region is in general a
second-order differential equation. Thus, porous-media flow equations and free-
flow equations are mathematically incompatible at the interface between the do-
mains. In the literature, there are different approaches to overcome this problem.
Brinkman suggested to use the same momentum equation for both flow regions
[Brinkman (1947)]. Another approach, proposed by Beavers and Joseph, applies
an interface condition between the two flow regions which simply relates the gra-
dient of the free-flow velocity to the Darcy velocity in the porous medium [Beavers
and Joseph (1967)].

In a lower-dimensional coupling approach, one system - in the present study this
is always the free-flow system - has a lower dimension than the other one. If,
for example, the free-flow region has a pipe-shaped form, i.e. the length of the
pipe is much greater than its diameter, one may reasonably use one-dimensional
pipe-flow equations where the velocity along the pipe network is cross-sectionally
averaged. In this case, frictional forces can be calculated, for example, using the
Darcy-Weisbach friction factor [Darcy (1857), Weisbach (1851)]. In this study, in
the free-flow regions only laminar flow conditions are considered.
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Lower-dimensional modeling is not new but has been also widely used for the sim-
ulation of flow in fractured porous media. The fractures are then implemented as
one dimension lower than the dimensions of the porous medium. Reichenberger,
Jakobs, Bastian, and Helmig (2006), for example, developed a discrete fracture
model, where the flow in the fracture system is described by the parallel plate con-
cept. Bauer, Liedl, and Sauter (2003) used a lower-dimensional dual-continuum
coupling technique for single-phase flow to model the karstification of a conduit in
a fissured porous medium.

In this study, we extend the dual-continuum concept for coupling multi-phase porous-
media flow with lower-dimensional single-phase free flow where different physics
in the continua are described by different equations. The focus is to present differ-
ent new concepts for modelling three-dimensional flow in porous media coupled
with one-dimensional pipe flow and to illustrate the characteristic behavior of such
systems by numerical test examples. While the equations in each domain are im-
plicitly solved, the coupling of the two flow continua is done explicitly. The cou-
pling strategy is based on a dual-continuum model concept, i.e. two domains lie
one on top of each other and mass exchange is calculated by additional source/sink
terms.

The manuscript is organised as follows:

After this introduction, the basic concepts and methods used in this study are ex-
plained. These include the construction of the geometric features that allow the
dual-continuum description of the two domains of different dimensions as well as
the explanation of some fundamental equations and the coupling strategy. Further-
more, we give insight into numerical models for specific problem cases and then
present and discuss some numerical results showing the characteristic behaviour of
the system.

2 Basic Model Concept

2.1 Conservation equations

The aim of this study is the development of different model concepts for the inter-
action of multi-phase flow processes in porous media with single-phase free flow in
one-dimensional structures. In the following, the conservation equations are con-
sidered separately for each system.

2.1.1 Conservation equations for multi-phase flow in porous media:

The conservation equations for multi-phase flow in porous media are the mass bal-
ance of each component k in all @ phases (Eq. 1) and the momentum balance of
each phase o (which is in fact an extended version of Darcy’s Law for multi-phase
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flow (Eq. 2)). The mass balance equation for each component k comprises a stor-
age term, an advective transport term, a diffusive-dispersive transport term and a
source/sink term [Class, Helmig, and Bastian (2002)]. See Appendix A for the
nomenclature.
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2.1.2 Conservation equations for free flow:

The conservation equations for single-phase free flow include a mass balance equa-
tion (Eq. 3) and a momentum balance equation (Eq. 4). The momentum balance
equation includes a momentum storage term, a momentum advection term, internal
forces due to pressure and viscous forces, and external forces such as gravity.

o

W‘FV‘(P”)—Q 3)
a u = = - —

(pu)+v'(pﬁ®ﬁ+p1_f):pfext “)

2.1.3 Conservation equations for a quasi-one-dimensional pipe flow system

The basic assumption in this study for the description of a pipe-flow system is
one-dimensional flow behavior. If the free-flow equations (Eq. 3 and Eq. 4) are
written for cross-sectionally averaged velocities in 1D flow, one obtains Eq. 5 for
the conservation of mass and Eq. 6 for the conservation of momentum. The vector
5 stands for the unit positive direction of the pipe and 7, is the wall shear stress,
which can be approximated by the Darcy-Weisbach approach.
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,where 7,, = ;Lp uf, and p = % .

The arising system of equations has four unknowns but only two partial differential
equations. To close the system, it is assumed that the ideal gas law is valid, i.e.
density and pressure are related to each other, and the wall friction is described by
the Darcy-Weisbach friction factor (4), which is a function of f(Re, 5), where Re

is the Reynolds number, € is the roughness of the pipe and d is the pipe diameter.

2.2 Discretization techniques

For the sake of completeness, a brief overview is given of the discretization methods
applied. For further details, the reader is referred to previous publications, e.g.
Bastian and Helmig (1999).

For the spatial discretization, a subdomain-collocation finite-volume method (BOX
method) is used. The BOX method requires the construction of a secondary mesh.
This is achieved by connecting the centers of gravity of the elements with the mid-
points of the element edges. Each node is assigned a unique control volume, and
each element contains a number of sub-control volumes equal to the number of
nodes in that element. The BOX scheme can be derived using the principle of
weighted residuals applied on the primary finite element mesh with piece-wise con-
stant weighting functions for the control volumes (boxes) on the secondary mesh.
Mass lumping and full upwinding for the advective terms are applied.

The systems of partial differential equations arising from the mathematical descrip-
tion of multi-phase porous-media flow are in general highly non-linear. They are
linearized using a damped inexact Newton-Raphson method, as described in Den-
nis and Schnabel (1996). For the time discretization, a fully-implicit Euler scheme
is applied for each particular model.

The flow and transport processes in porous media and free flow are running in
different time scales. In general, the free-flow models require smaller time steps
and finer grids than the porous-media models, due to the fact that the flow velocities
in porous-media regions are much more slower than in pipe-flow regions. For the
coupled models, the free flow model (in this case the pipe-flow model) is decisive
in determination of the discretization size both in time and in space. We used dual
overlapping grids, where both grids are refined along the pipe network. The time-
step size is kept the same for both models and it is chosen as small as required by
the pipe-flow model.

2.2.1 1D pipe-network grid embedded in a 3D porous grid

The numerical modeling of coupled one-dimensional pipe flow with three-dimensional
porous-media flow requires a special grid concept that allows the representation of
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interactions between the pipe-network grid and the porous-media grid. Although
this is a rather technical issue, it is the basis for the implementation of the model
concept and a few explanations are appropriate. The basic idea is to isolate pipe
lines within the three-dimensional porous medium grid according to the following
concept:

First, a full three-dimensional grid is generated. Then, a "pps" (pipe position) file
is created where the positions of the starting and end points of each pipe section,
the property identities of sections, and boundary identities of each end point for
each pipe section are defined. Fig. 1 shows an exemplary "pps" file structure with
41 pipe sections. The first section starts at point (5, 5, 3.6), ends at point (5, 5, 5),
and has the property identifier (ID) 8. The starting point has the boundary ID 99
(denoting an internal boundary) and the end point has the boundary ID 2.

41 % PIPES X1, Y1, 21, X2, ¥2, %2, PIPEPARAMETER], BOUNDARYCOMDITION[0], BOUMDARYCONDITION([1].
5 5 3.6 5 5 5 8 99 2
3.65 3.6 5 5 3.68 99 99
3.65 2.4 3.65 3.68 99 99
2.45 2.4 365 2.48 99 99
4.8 5 2.4 3.65 2.48 99 99
4.85 0 4.8 5 2.48 1 99
2.45 1.2 2.45 2.48 99 99
1.25 1.2 2.45 1.28 99 99
3.6 5 1.2 2.45 1.28 99 99
1.25 0 1.2 5 1.2 8 1 99
3.65 0 3.6 5 1.2 8 1 99
6.45 3.6 5 5 3.68 99 99
6.45 2.4 6.45 3.8 99 99
5.25 2.4 .45 2.48 99 99
7.6 5 2.4 6.45 2.48 99 99
5.25 0 5.2 5 2.48 1 99
7.6 5 1.2 7.65 2.48 99 99
6.45 1.2 7.65 1.28 99 99
8.85 1.2 7.65 1.28 99 99
6.45 0 6.45 1.28 1 99
8.85 0 8.85 1.28 1 99
5 3.63.6 5 5 3.68 99 99
5 3.62.4 5 3.63.68 99 99
5 2.42.4 5 3.62.48 99 99
5 4.82.4 5 3.62.48 99 99
5 4.80 5 4.8 2.48 1 99
5 2.41.2 5 2.42.48 99 99
5 1.21.2 5 2.41.28 99 99
5 3.61.2 5 2.41.28 99 99
5 1.2 0 5 1.21.28 1 99
5 3.60 5 3.6 1.2 8 1 99
5 6.43.6 5 5 3.68 99 99
5 6.42.4 5 6.43.68 99 99
5 5.22.4 5 6.42.48 99 99
5 7.62.4 5 6.42.48 99 99
5 5.20 5 5.22.48 1 99
5 7.61.2 5 7.62.48 99 99
5 6.41.2 5 7.61.28 99 99
5 8.81.2 5 7.61.28 99 99
5 6.40 5 6.41.28 1 99
5 8.8 0 5 8.8 1.2 8 1 99

Figure 1: pps file format for defining 1D network sections
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The models are developed under DuMu* (multi-scale multi-physics toolbox for
the simulation of flow and transport processes in porous media) [Flemisch, Fritz,
Helmig, Niessner, and Wohlmuth (2007)], which is based on DUNE (Distributed
and Unified Numerics Environment) [Bastian, Blatt, Engwer, Dedner, Klofkorn,
Kuttanikkad, Ohlberger, and Sander (2006)]. DUNE can read grids, for example,
in dgf (dune grid format) format. Therefore, a convertor is programmed which
combines the 3D grid information with the 1D pipe network information in the dgf
file format.

6.4000000=400 4.8000000=+00 4.8000000=+00 0 O % 43081
6.4000000=4+00 4.,8000000e+00 5.0000000=+00 0 0 % 43082
6.4000000=400 5.0000000e+00 0.0000000=+00 {8 1 43082
6.4000000=400 5.0000000=+00 2.0000000=-01|8 O 43084
6.4000000e400 5.0000000e+00 4.0000000=-01(8 O 43085
6.4000000=+00 5.0000000e+00 &.0000000=-01(8 O 43086
6.4000000=400 5.0000000=+00 8.0000000=-01|8 O 43087
6.4000000e400 5.0000000e+00 1.0000000=+00(8 O 43088
6.4000000=4+00 5.0000000e+00 1.2000000=+00|8 99| % 43089
6.4000000=400 5.0000000=+00 1.4000000=+00|0 O 43090
6.4000000=400 5.0000000=+00 1.6000000=+00(0 O 43091
6.4000000=+00 5.0000000e+00 1.8000000=+00(0 O 43092
6.4000000=400 5.0000000=+00 2.0000000=+00|0 O 43093
6.4000000=400 5.0000000=+00 2.2000000=+00(0 O 43094
5.4000000e400 5.0000000e+00 2.4000000+00(8 99| % 43095
6.4000000=400 5.0000000=e+00 2.6000000=+00(8 O 43096
6.4000000=400 5.0000000=+00 2.8000000=+00(8 O 43097
5.4000000e400 5.0000000e+00 3.0000000=+00(8 O 43098
6.4000000=400 5.0000000=+00 3.2000000=+0018 O 43099
6.4000000=400 5.0000000=+00 3.4000000=+00|8 O 43100
6.4000000e400 5.0000000e+00 3.6000000=+00 48 99 % 43101
6.4000000=400 5.0000000=+00 3.8000000=+00 0 O % 43102

Figure 2: a section of a dgf file format including the 1D network grid information

The generated dgf file includes the 3D grid as well as the boundary identities and
the properties of each pipe section. This information is stored for each point be-
longing to the 1D network grid (see Fig. 2). Fig. 3 shows a resulting 1D network
grid embedded in a 3D domain.

The following section gives more details on the strategy for coupling porous-media
flow with lower-dimensional pipe flow.

2.3 Coupling flow systems of different dimension

The term lower-dimensional coupling in the following means that one flow system
has a lower dimension than the other system with which it is coupled. The partic-
ular focus of this study is on coupling three-dimensional porous media flow with
one-dimensional pipe flow. A major assumption when considering flow in a pipe as
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Figure 3: 1D network grid in 3D domain

one-dimensional is that the velocity can be averaged at each cross-section along the
pipe, i.e. it is then constant for each cross-section. This assumption severly limits
the applicability of coupling schemes available in the literature. For example, the
Beavers and Joseph interface condition, which was developed for equi-dimensional
coupling, relates the gradient of the free-flow velocity at the interface to the Darcy
flow velocity in the porous medium. However, one cannot speak of a velocity
gradient perpendicular to the pipe direction in a one-dimensional cross-sectionally
averaged pipe-flow model. The use of a dual-continuum coupling strategy is pro-
posed, accounting only for the mass transfer between porous media and pipe flow
continua. One could add another exchange term for the momentum transfer be-
tween both continua in a dual-continuum model. However, the determination of
the momentum exchange rate would require an averaging technique, where the slip
boundary condition at the interface should be averaged over the cross-section of
the pipe. Eventually, this would introduce another exchange coefficient for the
momentum exchange rate, which would not only make the dual-continuum model
more complicated but also more uncertain or overparameterized. That kind of ap-
proach is beyond the scope of the work we present in this manuscript.
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Dual-continuum coupling

The dual-continuum model concept for fractured aquifer systems was introduced by
Barenblatt, Zheltov, and Kochina (1960) and Warren and Root (1963). Due to the
high contrast in properties of fracture system and porous matrix, the total system is
realized as two overlapping interacting continua, which occupy the same computa-
tional domain. This kind of approach requires homogenization of descrete fracture
network parameters (porosity, permeability etc.) for the equivalent representative
elementary volumes in fracture continua. Each continuum is modeled by its own
conservation equations and the interactions between each continuum are described
by an exchange term. In the literature dual-continuum models can be classified as
dual-porosity, dual-permeability or multiple interacting continua (MINC). In dual-
porosity models, the fracture continua elements are connected to each other and to
the elements of matrix continua, whereas the elements of matrix continua are not
connected to each other (e.g. Bibby (1981)). This kind of model is suitable for
fractured rock systems, where the flow is mainly in the fracture continuum and the
rock matrix acts as an additional storage volume. In dual-permeability models the
matrix continua are also connected to each other (e.g. Gerke and van Genuchten
(1993)). Such models are suitable for fractured matrix sytems, where flow occurs
both in fracture and in matrix continua. The MINC method is developed by Pruess
and Narasimhan (1982). It is basically an extension of the dual-porosity model,
where instead of a single matrix continuum several nested matrix continua are in-
troduced to better represent transient flow behaviour.

We developed a dual-continuum model approach similar to the dual-permeability
model in the sense that the elements in the porous medium continua are connected
to each other. Since the pipe-flow domain is modeled as a descrete pipe-network
model with its real geometry, there is no need for homogenization of pipe parame-
ters for the whole domain. Two continua (here: porous medium and pipe network)
lie on top of each other and the mass exchange between the continua is calculated
by adding an exchange source/sink term (Eq. 7) to the mass conservation equations
of both systems with different signs.

/Qex dV = ogx - (Ppipe _ppor()us)7 (7

where agy = f(fluid properties, pipe geometry, porous media properties)

agyx is a lumped exchange coefficient which is a function of the hydraulic situation
in both domains, the fluid properties, the geometry of the pipe, and the porous
media properties. Each model in itself is discretized with an implicit first order
backward Euler method in time. The coupling strategy with respect to the exchange
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terms can be considered as being explicit. In a kind of pseudo-algorithmic manner,
the explicit coupling strategy may be described as follows:

* initialize the pressure in the porous medium and solve the porous medium
flow problem;

* set the porous-medium pressure p,,.us to calculate the mass exchange term
to be applied to the pipe-flow problem;

* solve the pipe-flow problem;

* set the pipe pressure p);,. for calculating the mass exchange term to be ap-
plied in the porous-medium flow problem;

* solve the porous-medium flow problem;

* iterate until it converges.

3 Dual-continuum models via lower-dimensional coupling: Example appli-
cations

This section provides a couple of applications of the different models in order to
illustrate the characteristic behaviors of the modeled systems. The chosen sequence
of example applications follows the order of increasing complexity of the applied
model concepts.

3.1 Coupling single-phase flow in porous media with Hagen-Poiseuille free
Sflow

As a first step, the numerical implementation is done for a very simplified system,

i.e. steady-state incompressible flow.

The multi-phase mass balance equation (Eq. 1) simplifies to Eq. 8 and Darcy’s Law
(Eq. 9) holds for single-phase porous-media flow:

V. (pid) =¢q —|—, where g, is the mass exchange term (8)
. K ,
U= fﬁ(Vp—pg) ©)

The mass balance equation of pipe flow (Eq. 10) has the same mass exchange term
as the porous media mass balance equation, but with a different sign. If the mo-
mentum storage and the momentum inertia terms are smaller than the viscous term
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and the flow conditions are laminar, then the free-flow momentum equation (Eq. 6)
can be simplified to the well-known Hagen-Poiseuille equation (Eq. 13):

0
2 (p u) =~ [de] (10)

d ap
e __9° 7.5 11
YA ds TP (4
A 64 64v
Tw= g P u?, for laminar flow A = Re * T ud (12)
8 us v R 32uyv J -
Ty = VP = 1nsertin Eq. 11 we get usvP :_l+p 8 (13)
d d? ds

For the calculation of the mass exchange term (Eq. 14), one has to take into account
the fluid properties (density(p) and dynamic viscosity ({t)), the porous-media prop-
erties (the exchange coefficient (y)), the pipe geometry (the outer surface of the
pipe element (Ajuerface) and the pipe diameter (d)), and the pressure difference
between the two systems:

Otex Aouterfac
/Qex dv = p f %ﬂwe (ppipe_pporous) (14)

The test problem for coupling porous media with single pipe:

A problem is set up where a pipe with a diameter of 2 cm passes through the porous
medium from left to right and flowing fluid is water. The porous domain is 2 m high,
2 m wide and 10 m long. In this example, gravity is set to zero in order to see the
effect of the exchange term clearly. At the left and right boundaries of the porous
domain, Dirichlet boundaries are set to pj.r; = 1.004 bar and p,;e;,, = 1.0 bar. The
permeability of the porous medium is 5.0- 107!9 m?. At the left boundary of the
pipe, a no-flow boundary is set and at the right boundary, the pressure is fixed at
1.0 bar. The exchange coefficient is chosen as 1.2-10~!! m? (see Fig. 4).

The left figure in Fig. 5 shows the steady state pressure distribution along the pipe
for both porous medium and pipe flow. The right side of the same figure shows the
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Figure 4: Coupled porous-media flow - pipe-flow problem

velocity distribution along the pipe. To examine the effect of coupled flow on the
porous medium pressure distribution, a cut plane at y = 1 m is shown in Fig. 6. If
there was no coupled flow, one would expect to see a linear pressure distribution
in the porous medium since the flow is incompressible. However, the figure clearly
shows that the pressure isolines are not linear, thus indicating the influence of the
pipe-flow coupling on the hydraulics in the porous medium.
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Figure 5: Pressure and velocity distribution along the pipe
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pressure in porous media [Pa]
100000. 100100. 100200. 100300. 100400.

T

Figure 6: Pressure distribution in a cut plane at y = 1 [m] in the porous medium

The test problem for coupling porous media with pipe network:

Another problem is simulated where a pipe network passes through a porous medium
and flowing fluid is water (Fig. 3). As in the first example, gravity is again ne-
glected. The porous medium has a rectangular prism shape withx =10m, y =10 m
and z =5 m. All pipes have a diameter of 2 cm. The boundary conditions for
this system are as follows: The sides of the porous domain are no-flow Neumann
boundaries, whereas the top boundary is set to a constant pressure of 1.004 bar and
at the bottom boundary, the pressure is set to 1.0 bar. The pipe-network system has
a no-flow boundary at the top and a fixed pressure of 1.0 bar at the bottom. The
permeability of the porous medium is 5.0- 107! m? and the exchange coefficient
is chosen as 1.2-10~!! m?. Fig. 7 shows the porous-medium pressure distribution.
The gradients of the pressure isolines show clearly that there is a considerable flow
from the porous medium into the pipe-network system, which could be described
by the model.

3.2 Coupling compressible single-phase flow in porous media with compress-
ible single-phase pipe flow

In the next step, the numerical models are extended for transient compressible flow
conditions.

The conservation equations for compressible one-phase flow in porous media can
be written as:

5 V- (pil) =+ [4er] (1s)

,where ¢, is the mass exchange term, and p = % .
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pressure in porous media [Pa]
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Figure 7: Pressure distribution in the porous medium for a coupled porous medium
- pipe-network system

(Vp—p8) (16)

dp 0
E‘i‘a(l) Us) = q—[qex an
dpus) Jd(pusus) dp rd
g a5 a5 Pva TPES (1%
Exchange term:
Uex Aou erface
/Qex dV = Pex TIT (ppipe _pporous) (19)

Because density depends on pressure changes for compressible flows, p,., in the
mass exchange term needs to be determined. The density exchange term is up-
winded, i.e. if Ppipe < Pporous = Pex = Pporouss else Pex = Ppipe-
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The test problem for coupling porous media with single pipe

A test problem is set up as described in the upper part of Fig. 8 and the flowing
fluid is air. In the same figure the lower left and lower right parts show the pressure
distributions in both domains. The difference between this test problem and the test
problem in Fig. 4 lies in the flowing fluid. The boundary conditions are the same
as before, but this time air is flowing instead of water. If we compare the left part
of Fig. 5 with the lower left part of Fig. 8, we can see that the pressure difference
is higher in the second case. This doesn’t necessarily mean that the mass exchange
rate is higher in the second case because it also depends on the kinematic viscosity
of the fluid (1/v = 1/(u/p)). Although the same boundary conditions are set
for both problem cases, they are not directly comparable to each other. Different
amounts of mass are stored in each problem depending on the fluid properties, and
the governing equations for both problems are not identical. However, we will
compare and discuss the problem given in Fig. 8 further in section 3.4 where the
coupling of two-phase porous-media flow with single-phase pipe flow is presented.

Porous media: Porous media:
Dirichlet Dirichlet
1.004e+5([Pa] 1.0e+5[Pa]
2[m]
Pipe: Pipe:
no flow (v=0) 2[m) 10[m] out flow
p=1.0e+5[Pa]
pressure in porous media
l00002. 100135. 100267. 100400.
[ ]
100400 100007
100006
100300 1 p in pipe
100005
©
A . .
— p in porous media 100004
2 100200 1
a2 100003
Lir]
o
100002
P 100100 -
100001
p in pipe
100000 i ‘ i ‘ 100000 T ‘ T
0 2 4 3 8 10 0.00 2.50 5.00 7.50 10.00
x [m] x [m]

Figure 8: Boundary conditions and pressure distribution for a coupled porous
medium - one-phase pipe flow
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3.3 Richard’s equation - Hagen Poiseuille coupling

The coupling of the Richard’s equation in the porous medium with the Hagen-
Poiseuille equation in the pipe is implemented as an intermediate step towards
considering multi-phase flow in the porous medium. This increase in complexity
compared with the previous example allows us to show the influence of capillary
effects in the porous domain during the dual-continuum coupling. Such a flow
system could become relevant, for example, in a macropore flow problem. Water
flows relatively fast in so-called macropore structures like root channels or worm-
holes, and there is an exchange of water between the macropores (the pipes) and
the unsaturated zone (the porous medium), where capillary effects are important.

The unsaturated soil zone can be modeled with a two-phase flow model where the
fluid phases are water and air. The presence of gas in the soil causes some additional
resistance for the water flow in porous media. However, the dynamic viscosity
of air is only about 2% of the viscosity of water, making the gas phase highly
mobile. Therefore, a simplified approach for the two-phase flow problem could be
areduction of the multiphase flow equation to Richard’s problem [Richards (1931)]
where the mobility of the gas phase is assumed to be infinite. Richard’s equation
not only considers the water phase but also capillary effects, where the pressure of
the gas phase is set to a reference pressure (P, r):

8Sw apc = krw —
-V (— w K A% w— Pw = ex |» 2
PO o (uw Pw K (VDw—puw 8)) = q+[qex]| (20)

,where p,, = pn,. #— Pe and py,. = 100000 Pa.

The macropores are modeled with the Hagen-Poiseuille formulation (from Eq. 10
to Eq. 13).

In contrast to the single-phase flow coupling, the exchange term here (Eq. 21) in-
cludes a mobility exchange term (A,) to account for the relative permeability of
water in the unsaturated zone (Eq. 21):

Aouter

/qex dv = p )Lex aex%face (ppipe _proroux) 2D
The mobility exchange term is upwinded, i.e. if ppipe < Pporous = Aex = ]‘L—” else
Aex = 1

u
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The test problem for coupling porous media with four pipes

A numerical experiment is set up where four unconnected macropores pass through
a porous medium and flowing fluid is water (see Fig. 9). Analogously to the previ-
ous examples, gravity is again set to zero. The porous medium has the shape of a
cube with sides x =y = z = 1.2 m. The macropores have a diameter of 1 cm. The
porous medium is initially unsaturated and the macropores are full of water. The
boundary conditions for the system are as follows: the sides of the porous domain
are unsaturated, whereas the top and the bottom boundaries are set to a no-flow con-
dition. The macropores have a fixed pressure of 1.0 bar at the top and at the bottom
boundaries (see Fig. 9). The permeability of the porous medium is 5.0- 101 m?
and the exchange coefficient is chosen to be the same as the permeability.

In Fig. 10, the top figure shows the saturation distribution after 11 seconds. The
bottom figure shows the pressure distribution along the pipes. After 11 seconds,
saturation around the macropores increases from O to 0.6 and water pressure in
the unsaturated zone increases accordingly, whereas macropore pressure decreases.
After 5 minutes, as the unsaturated zone fills with water, the capillary pressure in
porous media has decreased and the pressure difference between macropore and
porous medium has decreased also (see Fig. 11). This means that the discharge
from the macropore to the unsaturated zone decreases according to the smaller
pressure difference between the two continua.

3.4 Coupling of two-phase porous-media flow with single-phase pipe flow

The example application presented in the following is motivated by gas migration
in abandoned coal mines. The coal seams in the mines contain adsorbed methane
gas. However, the methane desorbs from the coal seams as a result of the sinking
pressure during and after mining activity. Methane accumulates in the gas phase of
the porous rock or soil and then migrates to the surface through the rocks, but also
through the shafts and tunnels of the old mine. Methane emissions to the surface
need to be controlled to ensure safe living conditions, since it is suffocative and
explosive. If the coal mine is not flooded with groundwater, the surroundings of
the tunnels and of the shafts are relatively dry. Given such a case, the methane-
migration problem could be modeled as a two-phase porous media flow coupled
with a single-phase pipe flow. The main assumption in this model concept is that
the mass transfer between the porous medium and the pipe flow only takes place
via the gas phase and that the water phase is assumed to stay in the porous medium
(see Fig. 12). The conservation equations for two-phase flow in porous media can
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Figure 9: Coupled Richards - macropore problem

be written for the gas phase (g) as:

I(PSePs) krg = =
— Pgu*gK'(Vpg—ng) = qg +|qex (22)

and for the water phase (w) as:

I(@SwPw) . (

krw o —
K-(Vp., — 2
ot Pw ( Pw ng)> qw (23)

w

The conservation equations for the pipe flow are:

)
W + a(P ”s) =g —|4ex (24)

Ipu) dpusu;) dp, md_ .
g s as ma PES =

The exchange term includes a mobility term (A.,) to account for the relative per-
meability of gas in the unsaturated zone (Eq. 26).
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Figure 10: Saturation distribution and pressure distributions after t=11 seconds

Exchange term:

outerface

A
/Qex dV = Pex Aex aexT (ppipe - pgporous) (26)
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Figure 11: Saturation distribution and pressure distributions after t=5 minutes

Density exchange (p,,) and mobility exchange (A,,) terms are upwinded, i.e.

krg porous

. 1
if Ppipe < Pporous = Pex " Aex = Pporous * ,else pey - Aex = Ppipe * E
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Porous media

Pipe
Two-phase flow: Pipe flow:
Conti + Darcy Conti + Momentum

Figure 12: Dual-continuum coupling strategy in two-phase porous-media flow -
one-phase pipe-flow systems

Two test problems for coupling porous media with single pipe:

Two numerical problems (setup A and setup B) are simulated to see the effects
of the mobility-dependent exchange term on the coupled two-phase porous media
flow (water and air) - single-phase pipe flow (air) problem (Fig. 13). The same
geometric setup as in the single-pipe examples is being used. The pipe has a no-
flow boundary condition at the left boundary and a fixed pressure of 1.0 bar at
the right boundary. The exchange coefficient is chosen as 1.2- 107! m2. In both
setups the porous media domain is initially unsaturated and at the right boundary,
the saturation of the water phase S,, is set to 0, while the pressure of the gas phase
is fixed at 1.0 bar. In setup A, the saturation of the water phase S, is set to O at the
left boundary of the porous medium, and the pressure of the gas phase is fixed at
1.004 bar. In setup B, the saturation of the water phase S,, is set to 0.9 at the left
boundary of the porous medium. This means that in setup B the porous medium is
flooded with water, while in setup A the model should behave like a single-phase
system.

Because the boundary conditions, the geometry, and the flowing fluid (air) in setup
A are the same as in the problem setup described in the upper part of Fig. 8, both
problems are comparable to each other. The pressure distributions in the lower
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Figure 13: two-phase porous media flow - single-phase pipe flow dual-continuum
coupling problem

left part of Fig. 8 are the same as the pressure distribution in the lower left part of
Fig. 13. The pipe pressure in setup A (upper curve in Fig. 14) and in the lower right
part of Fig. 8 matches well with each other. This comparison clearly shows that, as
expected of course, setup A behaves exactly like a single phase system.

In setup B, the porous medium is flooded with water due to the left boundary con-
dition (S), = 0.9). If the steady state pressure distributions along the pipe line for
both setups are compared to each other, it can be clearly reckognized that the pres-
sure gradient in setup B is lower than the one in setup A, which is a clear hint that
less gas is flowing into the pipe when the domain is flooded with water (Fig. 14).
The model is capable of representing this effect mainly due to the mobility ex-
change term (Aex = krgporous/ ). In setup A, the relative permeability of the gas
phase in the porous medium is 1.0. On the contrary, the relative permeability of
the gas phase in setup B is only around 0.1. Therefore, at steady state the mobility
exchange term in setup A is approximately 10 times larger than in setup B.
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Figure 14: Comparison of pressure distributions in the pipe for setups A and B

4 Summary and Final Remarks

The aim of this study is the development of different model concepts for the in-
teraction of multi-phase flow processes in porous media with single-phase free
flow in quasi-one-dimensional structures. This is achieved on the basis of a dual-
continuum coupling strategy where the interaction between the flow continua is
restricted to mass transfers only. The flow velocity along the pipe network is
cross-sectionally averaged, i.e. there is no finite velocity gradient perpendicular
to the pipe direction which would be required in order to implement coupling ap-
proaches as, for example, suggested by Beavers and Joseph (1967). Although the
dual-continuum coupling strategy is easy to implement, it reveals difficulties in the
determination of the exchange coefficient (0ty).

A series of numerical examples was presented. For the coupling of single-phase
porous-media flow with (also single-phase) Hagen-Poiseuille flow in the pipe, it
could be shown that the mutual influence of the coupled flow systems on the pres-
sure distribution in both systems can be clearly represented with the dual-continuum
coupling strategy. It could also be shown that a geometrically complex pipe-
network flow system could be successfully coupled with porous-media flow via
the dual-continuum approach. The coupling of Richard’s equation in the porous
medium with Hagen-Poiseuille flow indicated that capillary forces in the unsatu-
rated zone play the decisive role in the determination of the exchange rate. The
study of coupled two-phase porous-media flow with single-phase pipe flow re-
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vealed that the mobility exchange term (A,,) is a key term in the model since it
significantly affects the mass exchange rate beween the two continua.

The coupling concepts presented do not comprise all the physical problems that
were mentioned in the introduction. The presented examples were kept as simple
as possible to show the basic features and characteristics of the model concepts
that address processes of different complexity. For this reason, there is not much
reference of these examples to real world applications. Flow and transport systems
as in fuel cells or cancer therapy need to be modeled by a coupling of the two-
phase two-component porous media flow model with single-phase two-component
pipe flow model since the transport of the components, for example oxygen or the
therapeutic agent respectively, in both media are significant. While the concepts
described in this manuscript are presently restricted to pure flow problems, they
have to be extended by an additional consideration of transport equations. Yet
the present study contributes towards improving the dual-continuum coupling ap-
proach also for transport dominated systems, where from the coupling perspective
the only difference lies in the number of exchange terms.
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Appendix A: Nomenclature

The following table shows the symbols used in this paper.

Symbol Meaning

cross-sectional area of pipe
outerface Circumfrence area of a pipe element
diffusion coefficient tensor
pipe diameter
external force tensor per unit mass
gravitational acceleration
unit tensor
relative permeability
permeability tensor
pressure
non-wetting phase pressure
reference non-wetting phase pressure
wetting phase pressure
capillary pressure
source/sink term
mass exchange term
individual gas constant
Reynold‘s number
saturation
wetting phase saturation
non-wetting phase saturation
unit positive direction vector of the pipe
time
temperature
velocity vector
velocity along the positive pipe direction
volume
mass fraction of a component & in phase o
porosity
density
shear stress tensor
wall shear stress
Darcy-Weisbach friction factor
equivalent sand grain roughness
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Nomenclature

Dimension

[m?]

[m?]
[m2/s]

[m]

[m/s?]
[m/s?]

[-]

[-]

[m?]
[N/m?]
[N/m?]
[N/m?]
[N/m?]
[N/m?]
[kg/(m?-s)]
kg/(m?-s)]
J/(kg-K)]



Nomenclature

Qpx lumped exchange coefficient
Olex exchange coefficient

u dynamic viscosity

v kinematic viscosity
subscripts

ex exchange

EX lumped exchange

g gas phase

n non-wetting phase

ref reference

S along the pipe direction
w water phase

a phase

superscripts

k component
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[m-s]
[m?]
[kg/(m-s)]
[m2/s]






