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Inverse Solution of a Chromatography Model by means of
Evolutionary Computation
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Abstract: Modeling of Chromatography allows a better understanding and devel-
opment of new techniques to be applied at industrial level, although it’s relatively
complex. The models of this process are represented by systems of partial differ-
ential equations with non linear parameters difficult to estimate generally, which
constitutes an inverse problem. In general there aren’t analytical solutions and
therefore numerical methods should be used for their direct solutions. Frequently
typical boundary conditions are considered, but it’s convenient to study different
approaches for those.
Evolutionary Computation has been used successfully in many problems of diverse
areas for searching in complex spaces. Considering previous works from the au-
thors, in this article Genetic algorithm and Differential evolution are used for pa-
rameters estimation in models of protein chromatography with variants in boundary
conditions. In both algorithms each population individual is a supposed condition
to the direct solution for the system of partial differential equations, coded in real
values, while inverse solution is optimized updating the first one according to a
fitness function. A comparative analysis is showed as result.

Keywords: Inverse problems in chromatography, Parameter estimation, Genetic
algorithms, Differential Evolution

1 Introduction

Evolutionary Computation, a subfield of Computational Intelligence, is a set of
tools for searching in complex spaces which have been used successfully in many
problems of diverse areas. These are based on the mechanisms of the genetics
(Goldberg, 1989), (Davis, 1991), (Storn and Price, 1995) and constitute efficient
techniques of stochastic optimization in cases where the objective functions do
not have good mathematical properties (Michalewicz, 1992), (Bäck, 1997). These
algorithms carry out their search using a complete population of possible solutions
for the problem and implement the survival strategy of the best adapted, as a form
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of looking for better solutions. This strategy distinguishes them from the traditional
search methods which frequently provide a local optimum, and depend on the initial
guess.

In previous works computational methods for inverse problems solution have been
applied (Chang et al, 2007), (Liu et al, 2007), (Kanevce et al, 2008), (Marin, 2009),
(Amirov et al, 2009). Some of them have developed the parameters estimation in
protein chromatography processes starting from experimental data (Fig. 1) which
is a complex inverse problem (Tarantola, 2005) for this type of generally nonlinear
processes, but it is a very important step for a better understanding of the phenom-
ena involved in this area and can be formulated as a problem of optimization. In
those papers, local search methods (Horstmann, 1987), (Gu, 1995), (Altenhöner et
al, 1997), (Persson, 2001), (Vasconcellos et al, 2002, 2003) or models constituted
by a system of partial differential equations considering typical boundary condi-
tions are considered.
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Figure 1: Parameter estimation method scheme.

As it was stated in (Irízar et al, 2009) it’s convenient to study different approaches
for this last aspect. In that work a Genetic Algorithm was applied to the param-
eter estimation, but there are some intrinsic parameters of this algorithm imple-
mentation such as size population, number of generations, crossover and mutation
probability and others to be determined before the operation and definitive general
approaches do not exist, therefore a quantity of experiments was required to get the
best results. Differential Evolution is a method with a small number of parameters,
so in this paper both methods corresponding to the Evolutionary Computation are
used for parameter estimation in the same models of protein chromatography with
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the variants in boundary conditions already analyzed.

In section 2 the characteristics of adsorption chromatography models are presented.
In Section 3 the inverse problem and its solution method by means of Genetic Al-
gorithms and Differential Evolution is reformulated and the developed experiments
for parameter estimation in the different models are explained. In section 4 the
discussion of results is shown and future works are stated.

2 Models of protein chromatography

Chromatography is a science that studies the separation of molecules based on the
differences of its structure and adsorption phenomenon. A mobile phase transports
the compounds to be separated and a stationary phase adsorbs those compounds
through intermolecular forces.

Mathematical models of chromatography involves a group of parameters whose
appropriate estimation can contribute to optimize the production costs.

A model that describes the adsorption of proteins in macro porous solid particles
(Blanch, 1997) for chromatography in stirred tank (Fig. 2) includes the transfer of
mass mechanisms at the external film and pore diffusion, as well as an expression
for the rate of surface reaction.

 
Figure 2: Stirred tank chromatography.

In this model (Eq.1) the left term corresponds to the accumulation of protein inside
the pores of the particles and the terms to the right represent the transport by diffu-
sion over radial coordinates and the rate of molecules that have been adsorbed by
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the adsorbent phase respectively,

εp
∂Ci

∂ t
= εp

De f

r2
∂

∂ r

[
r2 ∂Ci

∂ r

]
−ρ

∂qi

∂ t
in 0 < r < R for t > 0 (1)

where Ci is the protein concentration in the liquid phase inside the pores of the par-
ticles, qi the protein concentration in the solid phase, De f the coefficient of effective
diffusivity, ρ the density of the adsorbent particles, ε p the particle porosity, and t
and r represent the time and space variables respectively.

The initial condition is

Ci(r, t) = 0 for t = 0 in 0≤ r ≤ R (2)

being R is the particles radius.

The boundary conditions are

∂Ci

∂ r
= 0 at r = 0 for t > 0 (3)

εpDe f
∂Ci

∂ r
= ks(Cb−Ci) at r = R for t > 0 (4)

where Cb is the protein concentration in the liquid phase and ks is the film mass
transfer coefficient.

The mass balance in the bulk liquid phase with regard to the protein concentration
can be written as

∂Cb

∂ t
=− 3

R
1− εb

εb
ks(Cb−Ci |r=R ) (5)

where εb is the bed porosity.

Equation 5 has the following initial condition

Cb = C0 for t = 0 (6)

This model assumes that qi follows the Langmuir model, which is determined from
equilibrium conditions, i.e.

qi =
qmCi

kd +Ci
(7)

being qm the maximal adsorption capacity of Langmuir isotherm model and kd the
dissociation constant of Langmuir isotherm model.
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Some modification can be made in the model just described. Equation (5) can be
substituted for

dCb

dt
=−ks(CB−C̄i) (8)

and considering the same initial condition (2), but changing boundary conditions
according to equations 9 y 10.

∂Ci

∂ r
= 0 para t > 0 y r = 0 (9)

Ci = Cb para t > 0 y r = R (10)

Assuming Langmuir behavior, equation (1) can be simplified to obtain the equa-
tions 11a y 11b.

∂Ci

∂ t
=

ψ

r2
∂

∂ r

[
r2 ∂Ci

∂ r

]
(11a)

ψ =
De f

1+ ρqmks
εp(kd+Ci)2

(11b)

Because these equations cannot be solved analytically, the finite difference method
(ONeil, 1983) have been implemented for the solution of the direct solid-liquid
adsorption problem, that simulate the physical process advancing in time and re-
calculating the function Cb in each successive instant of time.

3 Inverse Problem Formulation

3.1 Inverse solution for a system of partial differential equations

In most of the scientific disciplines and particularly in engineering there are prob-
lems characterized by differential equations with associated initial and boundary
conditions. When these problems are solved in a direct way, the result is generally
a functional relationship or a system of equations, which can be used to calculate
values of the dependent variable for given values of the independent variable.

The inverse solution of systems of partial differential equations constitutes a com-
plex problem, for which there are no universally accepted methods.

Given an applicable direct solution to a system of partial differential equations, it is
possible to propose an inverse problem as a problem of optimization. An algorithm
to achieve this is (Karr, 2000):



6 Copyright © 2009 Tech Science Press CMES, vol.54, no.1, pp.1-14, 2009

• Suppose a solution to the inverse problem. This can include the supposi-
tion of an initial or boundary condition, or a typical parameter for a given
problem.

• Feed the supposed condition to the direct solution of the partial differential
equation system, calculating in this way values of the dependent variable y.
Here the output of the direct solution is a vector of values corresponding to
the times in which the values of y are measured. This vector of solutions will
be denoted as calculated and it will be represented as ŷ.

• Compare the calculated values ŷ with the values of the dependent variable
ymeasured in consistent times with those for which ŷ was calculated.

The success of this approach is the mechanism for which the supposed condition
is improved in the subsequent invocations of the first step. Optimization is the
procedure to upgrade the suppositions of the conditions and in this case a genetic
algorithm and differential evolution, whose characteristics are explained in the next
section, will be used.

The most applied function in the measure of prediction error is the sum of the
square error (SSE).

SSE(ŷ, θ̂) =
NT

∑
ti=1

y(ti)− ŷ(ti, θ̂))2

where θ represents the parameters to be estimated and NT is the total number of
experimental data.

3.2 Evolutionary Computation for parameters estimation in adsorption models

Among the methods of Evolutionary Computation with practical applications are
the Genetic Algorithm (GA) and the Differential Evolution Algorithm (DE). Fig. 3
shows the general structure of an Evolutionary Algorithm.

GA is based in three basic operators: selection, crossover or recombination and
mutation. These algorithms should work in a wide interval of their parameters, but
with differences in the efficiency, what indicates the importance of the designer’s
approach.

Another of the aspects to consider in a GA is the fitness function, which offers
information about the quality from the possible solutions to a problem. Execution
parameters and fitness function define the GA completely. Selection, recombination
and mutation processes form a generation in the execution of a GA, and are exe-
cuted until a satisfactory solution or a specified number of generations is reached.
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In DE the crossover and mutation operators let variations from one generation to
the next. Mutation adds a scaled, randomly sampled, vector difference to a third
target vector (Price et al, 2005), while crossover combine each population vector
with a mutant vector, according to the crossover probability, to generate a trial
vector. Selection is used to choose if the parent or the offspring will survive to the
next generation. The parameters to be defined in DE are the population size, the
crossover probability and the scaling factor for the vector difference.
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Figure 3: General structure of an Evolutionary Algorithm.

There are different versions for DE that differs in the way by which new solutions
are generated. It’s possible specify how the target vectors are chosen, how many
vector differences and the type of crossover.

Considering the different models explained in section 2, the objective is to estimate
the parameters related with protein mass transfer as ks and De f , as well as pro-
tein adsorption thermodynamics such as qm and finally εp (particle porosity), in the
chromatography models. The variable to be simulated is the protein concentration
in the liquid phase (Cb). According to the previous algorithm of inverse solution of
a partial differential equations system, the developed method for parameters esti-
mation based on a GA (Irízar et al, 2008) is extended to DE (see Fig. 4).

Applying the finite differences method, the system to be analyzed is divided in dis-
crete points or nodes. This division allows replacing derivatives by approximated
expressions in differences.

As for GA, in DE each individual represents a solution to the outlined problem, that
is, a possible group of parameters for model’s structure selected previously. In the
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analyzed problem the real code is used (Fig. 5), which is the most common code in
DE and the most convenient for this type of problem.
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Figure 6: Fitting of noisy data in model with Eq. 3 and 4 for boundary conditions.

Each parameter is coded as a real value included in the intervals shown in Table
1. To put in practice the previous steps a group of functions was programmed with
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Figure 7: Fitting of noisy data in model with Eq. 9 and 10 for boundary conditions.

satisfactory results. In them were used as the fitness function the sum of the squared
error, explained previously.

In the implemented GA as selection scheme was used stochastic uniform. As
crossover operator was applied a uniform crossover, and a non uniform mutation
operator. For the determination of GA control parameters like crossover and muta-
tion probabilities, population size and stopping criterion, some amount of experi-
mentation was required, based on some practical criteria.

Table 1: Intervals for parameter codification.

Parameter Lower limit Upper limit
De f (m2s−1) 0 1x10−6

qm(mg mL−1) 50 100
εp 0.1 1

ks(ms−1) 0 0.5

In the DE algorithm the strategy best/1/bin was applied, that is, the target vector
was selected as the best individual from the population; one difference vector and
the binomial crossover were used.

To simulate real measurements, synthetic data sets were generated running the di-
rect solution of the model with a combination of parameters in the first stage and
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adding noise later. Parameters values were identified for ten runs of GA and DE
for each synthetic data set. For both algorithms the population size was 50 and 100
iterations were executed.

In Tables 2 and 3 the results of experiments to assess the performance of GA and
DE are shown. With noisy data both are able to estimate and the model fits the
data with accuracy. According to Table 2, mean values for estimate parameters
De f ,Ep and ks are more near to the initial real values applying DE, although there
is dispersion in them, with exception of parameter ks. The time of execution is
similar in both cases.

In Table 3 similar results can be seen: a better estimation of qm by the genetic
algorithm and almost the same time of execution.

In this nonlinear parameter estimation problem various solutions are obtained, al-
though fitting to the generated curves is adequate. The best approximations to the
original parameters are ks in all cases.

4 Conclusions

A procedure for inverse solution of a system of partial differential equations based
on the finite differences method and GA previously developed, that allowed param-
eter estimation of a chromatography process models represented by this system of
equations, has been extended to DE in the current work.

The estimation of chromatography process parameters were obtained using a GA
with uniform crossover in a crossover fraction of 0.5 and non uniform mutation
operator with mutation probability equal to 0.9 for the model with the different
boundary conditions explained, while in DE algorithm a scaling factor of 0.5 and a
crossover probability of 0.8 were chosen.

The common practice in system identification of simulating models using valida-
tion data, and the visual and graphical comparison of correspondence between the
real output and the predicted output (Ljung, 1999), (Soderstrom, 1994) was ap-
plied. Very small deviations indicate a good quality of the model. For example,
Figs. 6 and 7 show GA and DE capacity to equalize generated concentration values
for the studied models.

Another criteria in parameter estimation are statistical properties (Ljung, 1999)
such as SSE to measure the total deviation of the fitness, R-square to determine
how much successful is the adjustment in the explanation of the variation of data
and finally the calculus of mean and variance of the real output, the estimated out-
put and the modeling error. All of them demonstrated that a correspondence exists
among predictions given by the model and “observations” for the system.



Inverse Solution of a Chromatography Model 11

Table 2: Estimated parameters for GA and DE in model with Eq. 3 and 4 for
boundary conditions.

GA with noisy data (3 %)
Run Def 5.37x10−7 qm 70.5 Ep 0.62 ks 0.00892 Time (s)

1 0.19x10−6 70.56 0.22 0.0086 80.91
2 0.50 x10−6 66.34 0.98 0.0088 82.38
3 0.56x10−6 67.33 0.68 0.0087 81.71
4 0.16x10−6 70.75 0.12 0.0086 79.66
5 0.43 x10−6 70.06 0.28 0.0085 79.66
6 0.51x10−6 69.40 0.33 0.0086 79.40
7 0.20x10−6 71.02 0.10 0.0085 78.87
8 0.45x10−6 68.81 0.52 0.0086 79.27
9 2.74x10−15 72.83 0.10 0.0085 91.91
10 0.82x10−6 70.23 0.10 0.0086 79.60

Mean 3.87 x10−7 69.73 0.34 0.0086 81.33
Std. Dev. 2.43x10−7 1.87 0.29 8.46 x10−5 3.68

DE with noisy data (3%)
Run Def 5.37x10−7 qm 70.5 Ep 0.62 ks 0.00892 Time (s)

1 0.47x10−6 66.31 0.57 0.0089 84.80
2 0.33x10−6 66.30 0.81 0.0089 82.71
3 0.66x10−6 66.31 0.41 0.0089 80.99
4 0.31x10−6 66.29 0.86 0.0089 79.96
5 0.39 x10−6 66.30 0.68 0.0089 79.29
6 0.14 x10−6 66.32 0.19 0.0089 80.77
7 0.49x10−6 66.31 0.55 0.0089 82.19
8 0.31x10−6 66.29 0.87 0.0089 83.44
9 1.02 x10−6 66.32 0.26 0.0089 81.32
10 0.85x10−6 66.32 0.31 0.0089 82.49

Mean 6.26x10−7 66.31 0.55 0.0089 81.80
Std. Dev. 3.63 x10−7 0.01 0.25 1.94e-011 1.65

The experiment results demonstrated the feasibility of these techniques for the solu-
tion of this problem of parameters estimation. The combination GA, DE – numeric
method can be applied to estimate parameters of other models of complex process,
however, it would be convenient to carry out the structural identifiability analysis
previously, to determine if it is possible to obtain a unique set of parameters in the
analyzed models.
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Table 3: Estimated parameters for GA and DE in model with Eq. 9 and 10 for
boundary conditions.

GA with noisy data (3 %)
Run Def 5.37x10−7 qm 70.5 Ep 0.62 ks 0.00892 Time (s)

1 0.90x10−6 53.13 0.89 0.0089 94.87
2 0.21x10−6 64.21 0.16 0.0089 93.97
3 0.20 x10−6 95.80 0.17 0.0089 93.83
4 0.72x10−6 69.00 0.33 0.0089 95.87
5 0.26x10−6 78.04 0.18 0.0089 94.94
6 0.40x10−6 66.84 0.28 0.0089 95.65
7 0.85x10−6 64.74 0.54 0.0089 94.94
8 0.40x10−6 94.20 0.73 0.0089 94.61
9 0.23x10−6 68.87 0.24 0.0089 95.05
10 0.66x10−6 54.66 0.22 0.0089 94.43

Mean 3.28x10−7 70.95 0.37 0.0089 94.79
Std. Dev. 3.68x10−7 14.52 0.25 1.36x10−5 0.67

DE with noisy data (3%)
Run Def 5.37x10−7 qm 70.5 Ep 0.62 ks 0.00892 Time (s)

1 0.94x10−6 95.93 0.32 0.0089 90.32
2 0.40x10−6 113.96 0.13 0.0089 90.77
3 0.25x10−6 122.88 1.56 0.0089 90.80
4 0.10x10−6 57.10 0.90 0.0089 90.43
5 0.46x10−6 88.89 1.00 0.0089 90.21
6 0.82x10−6 48.95 0.24 0.0089 91.08
7 0.11x10−6 75.39 1.25 0.0089 91.29
8 0. 43x10−6 84.76 1.10 0.0089 90.93
9 0.46x10−6 63.92 0.03 0.0089 97.01
10 0.96x10−6 66.98 0.26 0.0089 90.69

Mean 6.44×10−7 81.88 0.68 0.0089 91.35
Std. Dev. 3.87×10−7 24.15 0.54 1.18×10−11 2.01

Acknowledgement: The authors acknowledge CAPES, Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior do Brazil, and MES, Ministério da Ed-
ucação Superior de Cuba. AJSN and LDTC acknowledge also CNPq, Conselho
Nacional de Desenvolvimento Científico e Tecnológico, and FAPERJ, Fundação
Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, both from
Brazil.



Inverse Solution of a Chromatography Model 13

References

Altenhöner, U.; Meurer, M.; Strube, J.; Schmidt-Traub, H. (1997): Parameter
estimation for the simulation of liquid chromatography. Journal of Chromatogra-
phy 769, 5969.

Amirov, A. ; Gölgeleyen, F. ; Rahmanova, A. (2009): An Inverse Problem for the
General Kinetic Equation and a NumericalMethod. ICCES, vol.12, no.4, pp.125-
135

Bäck, T. (1997): Handbook Of Evolutionary Computation, Oxford: Oxford Uni-
versity Press.

Blanch, H. W; Clark, D.S. (1997): Biochemical Engineering, Marcel Dekker Inc.

Chang, C.; Liu, C. ; Chang, J. (2007): The Lie-Group Shooting Method for
Quasi-Boundary Regularization of Backward Heat Conduction Problems ICCES,
vol.3, no.2, pp.69-80, 2007.

De Vasconcellos, J.F.V.; Silva Neto, A.J.; and Santana, C.C. (2003): An inverse
mass transfer problem in solid-liquid adsorption systems, Inverse Problems in En-
gineering 11(5), 391-408.

De Vasconcellos, J.F.V.; Silva Neto, A.J.; Santana, C.C.; Soeiro, F.J.C.P. (2002):
Parameter estimation in adsorption columns with stochastic global optimization
methods, in 4th International Conference on Inverse Problems in Engineering, Rio
de Janeiro, Brazil.

Goldberg, D.E. (1989): Genetic Algorithms In Search, Optimization, And Machine
Learning, Reading, MA: Addison-Wesley.

Gu, T. (1995): Mathematical Modelling and Scale-Up of Liquid Chromatography,
Springer Verlag New York.

Horstmann, B. J.; Chase, H. A. (1989): Modelling the affinity adsorption of im-
munoglobulin g to protein a immobilized to agarose matrices, Chem. Eng.Res. Des.
67.

Irízar, M.; Camara, L.D.; Silva Neto, A.J; Llanes, O.; Herrera, F.; Santana,
C. (2008): A Hybrid genetic Algorithm for the Inverse Solution of a Chromatogra-
phy Model with Different Boundary Conditions, Proceedings of the Iberian Latin
American Congress on Computational Methods in Engineering (CILAMCE 2008).

Kanevce, G., Kanevce, L. Mitrevski, V., Dulikravich, G. (2008): Inverse Estima-
tion of Moisture Diffusivity by Utilizing Temperature Response of a Drying Body.
ICCES, vol.8, no.1, pp.1-6.

Karr, C.L.; Yakushin, I.; Nicolosi, K. (2000): Solving inverse initial-value, boundary-
value problems via genetic algorithm. Engineering Applications of Artificial Intel-



14 Copyright © 2009 Tech Science Press CMES, vol.54, no.1, pp.1-14, 2009

ligence 13, 625-633.

Levenberg, K. (1944): A Method for the Solution of Certain Non-linear Problems
in Least Squares. Quarterly of Applied Mathematics, 2(2):164–168.

Liu, C; Liu, L ; Hong, H. (2007): Highly Accurate Computation of Spatial-
Dependent Heat Conductivity and Heat Capacity in Inverse Thermal Problem

CMES, vol.17, no.1, pp.1-18.

Ljung, L. (1999a): Model validation and model error modeling, Technical Report
LiTH-ISY-R-215, Lund University, Sweden.

Ljung, L. (1999b): System identification Theory for the user, 2nd edn, Prentice
Hall ,Upper Saddle River, N.J.

Marin, L. (2009): Boundary Reconstruction in Two-Dimensional Functionally
Graded Materials Using a Regularized MFS. CMES: Computer Modeling in En-
gineering & Sciences, vol.46, no.3, pp.221-252.

Marquardt, D. (1963): An Algorithm for the Least-Squares Estimation of Nonlin-
ear Parameters. SIAM Journal of Applied Mathematics, 11(2):431–441.

Michalewicz, Z. (1992): Genetic Algorithms + Data Structures = Evolution Pro-
grams, Berlin: Springer-Verlag.

ONeil, P.V. (1983): Advanced Engineering Mathematics, Belmont, CA:Wadsworth
Publishing Company.

Persson, P.; Nilsson, B. (2001): Parameter estimation of protein chromatographic
processes based on breakthrough curves, in D.Dochain and M.Perrier, eds, Pro-
ceedings of the 8th International Conference on Computer Applications in Biotech-
nology.

Price, K. V. ; Storn, R.; Lampinen, J. A. (2005): Differential Evolution - A Prac-
tical Approach to Global Optimization. Springer – Natural Computing Series.

Soderstrom, T. ; Stoica, P. (1994): System Identification, Prentice Hall Interna-
tional, Hemel Hempstead, Paperback Edition.17

Storn, R.; Price, K. (1995): Differential evolution—A simple and efficient adap-
tive scheme for global optimization over continuous spaces, Int. Comput. Sci. Inst.,
Berkeley, vol. 12, pp 1-16.

Tarantola, A. (2005): Inverse Problem Theory and Model Parameter Estimation,
SIAM.


