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Radiative Properties Estimation with the Luus-Jaakola
and the Particle Collision Algorithm

D. C. Knupp1, A. J. Silva Neto2 and W. F. Sacco3

Abstract: The inverse analysis of radiative transfer in participating media has
several practical applications. In most cases, the inverse problem is formulated
implicitly and the solution is given by the minimization of an objective function.
Gradient based methods have largely been used for that purpose, but it has been
observed in recent years an increasing interest in the use of stochastic methods. In
this work, it is proposed the use of the Luus-Jaakola method and the Particle Colli-
sion Algorithm. The former is a random search optimization method that has been
successfully employed mainly in chemical engineering, and the latter is a novel
stochastic method inspired by the physics of the interaction of nuclear particles in-
side nuclear reactors. The solutions obtained with these methods are analyzed and
compared for different test cases.

Keywords: Radiative Transfer, Inverse Problems, Luus-Jaakola, Particle Colli-
sion Algorithm

1 Introduction

Several methodologies have been developed during the last few decades for the for-
mulation and solution of inverse problems in heat transfer, and has been the subject
of intensive research with practical applications in several areas. Just to cite a few
recent published papers, Yeih and Liu (2009) used a two-stage Lie-group shoot-
ing method (TSLGSM) to tackle an inverse problem formulated as a three-point
boundary value problem in order to estimate a time-dependent heat source. Mossi,
Vielmo, França and Howell (2008) solved an inverse boundary design problem of
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combined radiative and turbulent convective heat transfer using the TSVD regular-
ization method. Weig, Liu and Xiang (2009) used the well-known Gauss-Newton
in least-squares estimation for the parameter identification and development of a
numerical method to estimate the maximal temperature gradients reached in ?re-
damaged concrete structures. Sladek, Sladek, Wen and Hon (2009) used the mesh-
less local Petrov-Galerkin method (MLPG) to solve an inverse heat conduction
problem of predicting the distribution of the heat transfer coefficient on boundaries.
Ranjbar, Ezzati and Famouri (2009) used the conjugate gradient method to estimate
the metal-mold interfacial heat transfer coefficient (IHTC) in the solidification of
Sn-10% Pb.

The formulation and solution of direct and inverse radiative transfer problems is
related with several relevant applications such as atmospheric simulation [Buehler,
Eriksson, Kuhn, Engeln and Verdes (2005)], analysis of thermal damage in bio-
logical tissues [Zhou, Chen and Zhang (2007)], crystal growth processes [Tsukada,
Kobayashi, Jing and Imaishi (2005)], optical tomography [Kim and Charette (2007)],
computerized tomography [Carita Montero, Roberty and Silva Neto (2004)], hy-
drological optics [Chalhoub and Campos Velho (2001)], earth remote sensing [Weng
(2009); Toomey, Roberts and Nelson (2009)], solar system bodies research [Hillier
(1997); Morishima, Salo and Ohtsuki (2009)] and radiative properties estimation
[Nenarokomov and Titov (2005); Hespel, Mainguy and Greffet (2003); An, Ruan
and Qi (2007)], among many others.

In the present work we focus on the estimation of the optical thickness, single scat-
tering albedo and diffuse reflectivities of one-dimensional homogeneous partici-
pating media. For the direct problem solution it is used the Chandrasekhar’s dis-
crete ordinates method [Chandrasekhar (1960)] combined with the finite-difference
method. The inverse problem is formulated implicitly [Silva Neto (2002); Silva
Neto, Roberty, Pinheiro and Alvarez Acevedo (2007)] and the main focus becomes
the minimization of an objective function given by the summation of the squared
residues between a calculated and a measured quantity.

For the optimization purpose and consequent solution of inverse radiative transfer
problems, in recent years we have used a number of deterministic, stochastic and
hybrid (combined) methods with particular emphasis on: (i) Levenberg-Marquardt
method (LM); (ii) Simulated Annealing (SA); (iii) Genetic Algorithms (GA); (iv)
Artificial Neural Networks (ANN); (v) Ant Colony System (ACS); (vi) Particle
Swarm Optimization (PSO); (vii) Generalized Extremal Optimization (GEO); (vii)
Interior Points Method (IPM); and (ix) combinations of the previous methods.

Gradient based methods, such as the Levenberg-Marquardt, are usually very fast in
their convergence when a suitable initial guess is given, but they may get trapped
in the closer local minimum.
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Even though stochastic methods are known to be computer-intensive, they have
been used to solve many practical problems which cannot be satisfactorily solved
using deterministic algorithms. With the progress of the computing machines it has
been observed a renewed interest in the use of these methods in recent years.

In this work, for the minimization of the objective function, and consequently the
solution of the inverse problem, it is proposed the use of the Luus-Jaakola method
(LJ) and the Particle Collision Algorithm (PCA).

The Luus-Jaakola method [Luus and Jaakola (1973)] has been successfully em-
ployed mainly in chemical engineering, and recent papers show a favorable com-
parison of this method against other well established stochastic methods [Liao and
Luus (2005); Sacco, Alves Filho and Platt (2008)].

The Particle Collision Algorithm is a novel stochastic optimization method pro-
posed by [Sacco, Oliveira and Pereira (2006)], which is inspired by the physics of
the interaction of nuclear particles inside nuclear reactors. The great advantage of
PCA with respect to other optimization algorithms such as the genetic algorithm,
simulated annealing or particle swarm optimization is that, other than the number
of iterations, it does not require any additional parameters.

The PCA can be applied to continuous or discrete optimization problems by just
changing the perturbation function, while in genetic algorithms, for example, it
is necessary to apply special operators for discrete optimization problems [Gold-
berg (1989)]. Results from the literature show that the PCA outperforms other
metaheuristics with less computational effort [Sacco, Lapa, Pereira e Alves Filho
(2008)]. It should be stressed that the PCA is extremely easy to implement.

2 Mathematical formulation and solution of the direct problem

Consider a one-dimensional participating medium, i.e. absorbing, scattering and
emitting, with thickness L, whose boundaries reflect diffusely the radiation that
comes from the interior of the medium. The boundary surfaces at x = 0 and x =
L are subjected to the incidence of radiation originated at external sources with
intensities F1 and F2, respectively, as shown in Fig. 1.

The mathematical model for the interaction of the radiation with the participating
medium considering no emission inside the medium, isotropic scattering, and azy-
muthal symmetry is given by the linear version of the Boltzmann equation [Özisik
(1973)]

µ
∂ I(x,µ)

∂x
+β I(x,µ) =

σs

2

1∫
−1

I(x,µ
′)dµ

′ in 0 < x < L, −1≤ µ ≤ 1 (1a)
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Figure 1: Schematic representation of the one-dimensional 
participating medium. 

 
The mathematical model for the interaction of the radiation 
with the participating medium considering no emission inside 
the medium, isotropic scattering, and azymuthal symmetry is 
given by the linear version of the Boltzmann equation [Özisik 
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where ( , )I x μ  represents the radiation intensity, x  is the 
spatial variable, μ  is the cosine of the polar angle θ , i.e. the 
angle formed by the radiation beam and the positive x  axis, 
sσ is the scattering coefficient, 1ρ  and 2ρ  are the diffuse 

reflectivities at boundaries 0x =  and x L= , respectively, 
1( )F μ  and 2 ( )F μ  represent the strength of the external 

sources, and β  is the total extinction coefficient defined as 
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Figure 1: Schematic representation of the one-dimensional participating medium.

I(0,µ) = F1(µ)+2ρ1

1∫
0

I(0,−µ
′)µ
′dµ

′, µ > 0 (1b)

I(L,µ) = F2(µ)+2ρ2

1∫
0

I(L,µ
′)µ
′dµ

′, µ < 0 (1c)

where I(x,µ) represents the radiation intensity, x is the spatial variable, µ is the
cosine of the polar angle θ , i.e. the angle formed by the radiation beam and the
positive x axis, σsis the scattering coefficient, ρ1 and ρ2 are the diffuse reflectivities
at boundaries x = 0 and x = L, respectively, F1(µ) and F2(µ) represent the strength
of the external sources, and β is the total extinction coefficient defined as

β = κa +σs (2)

where κa is the absorption coefficient. In Fig. 1, Y represents the radiation that
leaves the medium and may be measured using external detectors.

In radiative transfer it is usual to define the optical variable, τ , as

dτ = βdx⇒ τ =
x∫

0

βdx′ (3)

Thus, the optical thickness of the medium, τ0, can be obtained by integrating the
whole spatial domain, i.e. from x = 0 up to x = L in Eq. (3),

τ0 =
L∫

0

βdx′ (4a)



Radiative Properties Estimation 125

For a homogeneous medium one obtains

τ0 = βL (4b)

Therefore, Eqs. (1a-c) can be reformulated as [Özisik (1973)]

µ
∂ I(τ,µ)

∂τ
+ I(τ,µ) =

ω

2

1∫
−1

I(τ,µ
′)dµ

′ in 0 < τ < τ0, −1≤ µ ≤ 1 (5a)

I(0,µ) = F1(µ)+2ρ1

1∫
0

I(0,−µ
′)µ
′dµ

′, µ > 0 (5b)

I(τ0,µ) = F2(µ)+2ρ2

1∫
0

I(τ0,µ
′)µ
′dµ

′, µ < 0 (5c)

where ω is the single scattering albedo, which is the ratio between the scattering
coefficient and the total extinction coefficient,

ω =
σs

β
=

σs

κa +σs
(6)

When the geometry, the boundary conditions, and the radiative properties τ0, ω , ρ1
and ρ2 are known, problem (5) may be solved, and the radiation intensity, I(τ,µ),
can be calculated for the whole spatial and angular domains, i.e. 0 ≤ τ ≤ τ0 and
−1≤ µ ≤ 1. This is the so called direct problem.

In order to solve the direct problem we have used Chandrasekhar’s discrete or-
dinates method [Chandrasekhar (1960)] in which the polar angle domain is dis-
cretized, and the integral term on the right hand side of Eq. (5a) is replaced by a
gaussian quadrature. We then used a finite-difference approximation for the terms
on the left hand side of Eq. (5a), and by performing forward and backward sweeps,
from τ = 0 to τ = τ0 and from τ = τ0 to τ = 0, respectively, I(τ,µ) is determined
for all spatial and angular nodes of the discretized computational domain. More
details can be found in [Pinheiro, Silva Neto and Moura Neto (2002)].

3 Mathematical formulation and solution of the inverse problem

Suppose that the following vector of radiative properties is unknown

−→
Z = {τ0,ω,ρ1,ρ2}T . (7)
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Nonetheless experimental data on the radiation that leaves the medium, i.e. Yi,
i = 1,2, ...,Nd , where Nd is the number of experimental data, are available, acquired
with external detectors located at τ = 0 and τ = τ0. One may then try to estimate
the unknowns using the available experimental data. This is the so called inverse
radiative transfer problem.

As schematically represented in Fig. 1, half of the data is acquired at the boundary
τ = 0, and half at τ = τ0, using, as mentioned before, only external detectors.

As we consider the number of experimental data, Nd , to be larger than the number
of unknowns, Nu, i.e. Nd > Nu, we formulate the inverse problem implicitly, as an
optimization problem, in which we want to minimize the objective function given
by

Q(
−→
Z ) =

Nd

∑
i=1

[Icalci(
−→
Z )−Yi]2 (8)

where Icalci and Yi represent the calculated and measured values, respectively, of
the intensity of the radiation that leaves the medium at a polar angle θi, being
i = 1,2, ..., Nd

2 related to the boundary τ = τ0, with µi = cosθi > 0, and i = Nd
2 +

1, Nd
2 +2, ...,Nd related to the boundary τ = 0, with µi = cosθi < 0.

For the minimization of the objective function described in Eq. (8), and thus deter-
mining the solution of the inverse problem, it has been used both the Luus-Jaakola
method and the Particle Collision Algorithm. These optimization methods are de-
scribed next.

3.1 The Luus-Jaakola method

Random search methods for optimization are based on a random exploration of a
domain to find a point that minimizes an objective function. They were originally
introduced by Anderson (1953), and then developed by Karnopp (1963) and Matyas
(1965), among others.

Random search methods have been widely employed in chemical engineering for
continuous optimization as, for example, those proposed by Luus and Jaakola
(1973), Gaines and Gaddy (1976), and Salcedo, Gonçalves and Azevedo (1990).
The most popular of these techniques is the Luus-Jaakola algorithm (LJ), which
has been used not only in chemical engineering [Lee, Rangaiah and Luus (1999);
Luus and Hennessy (1999)], but also in control problems [Luus (2001)], in op-
tics [Al-Marzoug and Hodgson (2006)], in electrical engineering [Singh (2005)],
and in chromatography [Poplewska, Piatkowski and Antos (2006)], among other
applications.
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The idea behind the Luus-Jaakola algorithm is very simple: random solutions are
selected over a region that is decreased in size as iterations proceed.

Our implementation of LJ is described in Fig. 2. It differs from the original al-
gorithm proposed by Luus and Jaakola (1973) in one point: while, originally, x*
was replaced by a possible improved solution only after the internal loop was com-
pleted, we replace x* immediately if a better solution is found, as suggested by
Gaines and Gaddy (1976) in their optimization algorithm. This version of the Luus-
Jaakola algorithm outperformed the Genetic Algorithm (GA), Simulated Aneeal-
ing (SA), the Great Deluge Algorithm (GDA) and the Particle Collition Algorithm
(PCA) and performed well compared to the Particle Swarm Optimization (PSO) in
a nuclear reactor core design optimization problem [Sacco, Alves Filho and Platt
(2008)].

 

Choose an initial search size (0)r . 
Choose a number of external loops nout and a number of internal loops nin. 
Choose a contraction coefficient ε. 

Generate an initial solution *x .  
For i = 1 to nout 
  For j = 1 to nin 

    ( ) * ( ) ( 1)j j i−= +x x R r , where ( )jR is a diagonal matrix of random numbers between -0.5 and 0.5. 
    If Fitness ( ( )jx ) < Fitness ( *x ) 
      * ( )j=x x  
    End If 
  End For 

  ( ) ( 1)(1 )i iε −= −r r , where ε  is the search size contraction coefficient. 

End For 

Figure 2: The Luus-Jaakola (LJ) pseudo code.

3.2 The Particle Collision Algorithm

The Particle Collision Algorithm (PCA) [Sacco, Oliveira and Pereira (2006)] is
loosely inspired in the physics of the interactions of neutrons in a nuclear reac-
tor [Duderstadt and Hamilton (1976)], mainly scattering, being an incident particle
scattered by a target nucleus, and absorption, being the incident particle absorbed
by the target nucleus. Thus, a particle that hits a high-fitness “nucleus” would be
absorbed, and would explore its neighborhood. On the other hand, a particle that
hits a low-fitness region would be scattered to another region. This procedure per-
mits the exploration of the search space and the exploitation of the most promising
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areas of the fitness landscape through successive scattering and absorption collision
events.

The PCA resembles in its structure that of the Simulated Annealing (SA) [Kirk-
patrick, Gellat and Vecchi (1983)], i.e. first an initial configuration is chosen, and
then a new configuration is obtained by performing a modification in the previous
one. The quality of the two configurations is compared. A decision is then made
on whether the new configuration is “acceptable”.

If that is the case, it becomes the old configuration for the next step of the iterative
procedure. Otherwise, the algorithm proceeds with a new different change of the
previous old configuration.

The PCA may also be considered a Metropolis algorithm [Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller (1953)], i.e. a trial solution can be accepted with a
certain probability even if the new configuration is worse than the old configuration.
Such flexibility of the algorithm may avoid the convergence to local minima.

In Fig. 3 is shown the pseudo-code for the PCA in its version for minimization
problems. The “stochastic perturbation” mentioned at the beginning of the loop
shown in Fig. 3 consists in random variations taken from a uniform distribution in
the values of each variable within their ranges prescribed a priori, as shown in Fig.
4.

If the quality or fitness of the new configuration is better than the fitness of the old
configuration, then the “particle” is “absorbed”, and an exploration of the neigh-
borhood searching for an even better solution takes place. Function “Exploitation
( )” performs this local search, generating a small stochastic perturbation of the so-
lution inside a loop. The “small stochastic perturbation” is similar to the previous
stochastic perturbation, but each variable’s new value is kept within a small vicinity
of the original value, which is here defined in range of ±20%, as shown in Fig. 5.
Otherwise, if the quality of the new configuration is worse than the one for the old
configuration, the “particle” is “scattered”. The scattering probability (pscattering)
is inversely proportional to its quality. A low-fitness particle will have a greater
scattering probability. In a process similar to Monte Carlo’s “Russian Roulette”
[Duderstadt and Martin (1979)], the configuration is “scattered” (replaced by a ran-
dom configuration) or, following Metropolis, survives, with its neighborhood being
further explored (“else” branch of the function).

4 Results and discussion

As real experimental data on the intensity of the exit radiation were not available,
we have generated sets of synthetic experimental data. In order to simulate the mea-
sured exit intensities,Yi, containing measurement errors, random errors of normal
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Generate an initial solution Old_Config 

Best Fitness = Fitness (Old_Config) 

For n = 0 to # of iterations 

 Perturbation( ) 

 If Fitness(New_Config) > Fitness(Old_Config) 

  If Fitness(New_Config) > Best Fitness 

   Best Fitness := Fitness(New_Config) 

  End If 

  Old_Config := New_Config 

  Exploitation ( ) 

 Else 

  Scattering ( ) 

 End If 

End For 

 

Exploitation ( ) 

 For n = 0 to # of iterations 

  Small_Perturbation( ) 

  If Fitness(New_Config) > Fitness(Old_Config) 

   Old_Config := New_Config 

  End If 

 End For 

return 

 

Scattering ( ) 

 
( _ )1scattering

Fitness New Configp
Best Fitness

= −   

 If pscattering > random (0, 1) 

  Old_Config := random solution 

 Else 

  Exploitation ( ); 

 End if 

return 

Figure 3: The PCA pseudo code.
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Perturbation( ) 

     For i = 0 to (Dimension-1) 

 Upper := Superior Limit [i] 

 Lower := Inferior Limit [i] 

 Rand = Random(0,1) 

 New_Config[i] := Old_Config[i] +  

          +  ((Upper - Old_Config[i])*Rand) –  

          –  ((Old_Config[i] - Lower)*(1-Rand)) 

  If (New_Config[i] > Upper) 

   New_Config[i] := SupLim[i]; 

  Else 

   If (New_Config[i] < Lower) 

           New_Config[i] := InfLim[i]; 

   End If 

  End If 

     End For 

End 

Figure 4: Function “Perturbation” of PCA.

distribution and of standard deviation σe are added to the exact intensities computed
from the solution of the direct problem. Thus we have

Yi = Icalci(
−→
Z exact)+σe · r (9)

where r is a random number, from a Gaussian distribution, with zero mean and
unitary standard deviation.

In order to examine the performance of the methods PCA and LJ for the solution
of the inverse radiative transfer problem described in Section 3, several test cases
have been studied with and without noise in the synthetic experimental data. In the
present work, the three sets of radiative properties shown in Tab. 1 were considered
as test cases, and the intensities for the external radiation sources in Eqs. (5b-c)
were considered as F1 = 1.0 and F2 = 0.0.
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Small_Perturbation( ) 

 For i = 0 to (Dimension-1) 

  Upper = Random(1.0, 1.2) * Old_Config[i] 

  If (Upper > Superior Limit [i]) 

   Upper = Superior Limit [i] 

  End If 

  Lower = Random(0.8, 1.0) * Old_Config[i] 

  If (Lower < Inferior Limit [i]) 

   Lower = Inferior Limit [i] 

  End If 

  Rand = Random(0,1) 

  New_Config[i] = Old_Config[i] +  

       +   ((Upper – Old_Config[i])*Rand) – 

        –    ((Old_Config[i] – Lower)*(1–Rand)) 

 End For 

End 

Figure 5: Function “Small Perturbation” of PCA.

Table 1: Exact values of the radiative properties

Radiative property Case 1 Case 2 Case 3
Optical thickness, τ0 1.0 0.5 2.0
Scattering albedo, ω 0.5 0.1 0.9
Diffuse reflectivity, ρ1 0.1 0.1 0.5
Diffuse reflectivity, ρ2 0.9 0.9 0.5

These cases were intentionally chosen for yielding a relatively difficult test for the
evaluation of the optimization algorithms. The Cases 1, 2 and 3 were set with
σe = 0.0005, 0.0004 and 0.004 respectively. These values lead to errors in the
order of, or smaller than, 5.5%.

The PCA was set with nPCA = 200 and nexploitation = 500. The LJ was set with
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nLJ,out = 200, nLJ,in = 200 and the contraction coefficient was set as 5%, i.e. ε =
0.05. These parameters were chosen so that the PCA and the LJ present about the
same computational effort, evaluating around 40,000 times the objective function.
An investigation on the influence of these parameters in the solution of the problem
here presented was performed in [Knupp (2008)].

The ranges considered in the PCA and LJ for the search of the unknowns was
[0.0,3.0] for τ0, and [0.0,1.0] for ω , ρ1 and ρ2. These are the real physical bounds
for the unknowns, except for τ0 which may have a higher value than the upper
bound considered. Nonetheless, it must be stressed that τ0 = 3.0 is already a high
value if one wants to consider the information on the transmitted radiation for the
inverse problem solution. For each case (1-3 in Tab. 1), 10 runs were performed for
each method (PCA and LJ). All runs were performed on a PC with the processor
AMD Turion™ 63 X2 Mobile (1.60 GHz with 1.37 GB of RAM) and took around
2h40min with both methods PCA and LJ. In Tabs. 2-4 are presented the average,
µZ , the standard deviation, σZ , the best and the worst estimates, ~Zbest and ~Zworst

respectively, for each radiative property obtained with the PCA and the LJ. Here
the worst estimates obtained for each method correspond to the run, among the 10
runs performed for each method, for which the objective function is the highest at
the end of the run, and the best estimates correspond to the run for which the value
of the objective function is the lowest.

Table 2: Results obtained with the PCA and the LJ for Case 1. σe = 0.0005 (5.5%).

τ0 ω ρ1 ρ2 Q
(
~Z
)

, Eq. (8)
~Zexact 1.0 0.5 0.1 0.9 -
PCA ~Zworst 1.003 0.515 0.145 0.901 3.80E-05

~Zbest 1.004 0.507 0.116 0.902 6.44E-06
µZ 1.002 0.498 0.092 0.899
σZ 0.006 0.010 0.032 0.002

σZ
µZ
×100% 0.6% 1.9% 34.6% 0.3%

LJ ~Zworst 1.002 0.494 0.081 0.899 5.69E-06
~Zbest 1.001 0.502 0.104 0.900 1.90E-06
µZ 0.999 0.502 0.106 0.900
σZ 0.002 0.004 0.015 0.001

σZ
µZ
×100% 0.2% 0.8% 13.8% 0.1%

Even though good estimates have been obtained with both methods (PCA and LJ),
as it can be observed in Tabs. 2-4, the standard deviations of the estimates obtained
for ρ1 were relatively high in Cases 1 and 2, what indicates that even though the
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Table 3: Results with the PCA and the LJ for Case 2. σe = 0.0004 (5.5%).

τ0 ω ρ1 ρ2 Q
(
~Z
)

, Eq. (8)
~Zexact 0.5 0.1 0.1 0.9 -
PCA ~Zworst 0.470 0.124 0.140 0.906 2.22E-04

~Zbest 0.499 0.115 0.124 0.899 4.18E-05
µZ 0.485 0.110 0.113 0.904
σZ 0.029 0.010 0.077 0.006

σZ
µZ
×100% 6.0% 9.4% 47.7% 0.7%

LJ ~Zworst 0.504 0.102 0.08 0.9 1.57E-05
~Zbest 0.502 0.102 0.098 0.9 5.97E-06
µZ 0.502 0.101 0.105 0.901
σZ 0.002 0.002 0.021 0.002

σZ
µZ
×100% 0.5% 1.7% 20.3% 0.2%

Table 4: Results obtained with the PCA and the LJ for Case 3. σe = 0.004 (5%).

τ0 ω ρ1 ρ2 Q
(
~Z
)

, Eq. (8)
~Zexact 2.0 0.9 0.5 0.5 -
PCA ~Zworst 2.18 0.92 0.549 0.44 1.79E-03

~Zbest 1.952 0.897 0.495 0.511 2.97E-04
µZ 2.114 0.907 0.517 0.488
σZ 0.159 0.012 0.032 0.029

σZ
µZ
×100% 7.5% 1.4% 6.2% 6.0%

LJ ~Zworst 1.731 0.883 0.46 0.527 2.13E-04
~Zbest 2.127 0.905 0.51 0.477 7.58E-05
µZ 1.889 0.893 0.483 0.509
σZ 0.142 0.008 0.017 0.022

σZ
µZ
×100% 7.5% 0.9% 3.5% 4.2%

average may be near the exact value, the estimates are not accurate. This is in
fact the main difficulty associated with Cases 1 and 2, i.e., the low values of ρ1
combined with the external illumination given by F1 = 1.0 and F2 = 0.0, in Eq. (1a-
c). The effect of ρ1 will be sensed by the external detectors only after the radiation
goes into the medium at τ = 0, is reflected at τ = τ0 and is then both transmitted
and reflected at τ = 0. The low sensitivity of the exit radiation intensities to this
particular unknown is confirmed by a sensitivity analysis [Knupp, Silva Neto and



134 Copyright © 2009 Tech Science Press CMES, vol.54, no.2, pp.121-145, 2009

Sacco (2009)].

In Case 3, the standard deviations of all unknowns are higher than in Cases 1 and
2. The main difficulty in this case is the high value of the optical thickness, τ0.
As mentioned before, high values for this property bring difficulty when one wants
to consider the information on the transmitted radiation for the inverse problem
solution.

It is also important to observe that the LJ was able to obtain estimates with lower
values of the objective function and lower standard deviations for all cases.

Table 5: Results obtained with the PCA-LJ for Case 1. σe = 0.0005 (5.5%).

τ0 ω ρ1 ρ2 Q
(
~Z
)

, Eq. (8)
~Zexact 1.0 0.5 0.1 0.9 -

PCA-LJ ~Zworst,PCA 0.934 0.650 0.505 0.937 2.86E-04
~Zworst 1.004 0.510 0.130 0.901 1.79E-05

~Zbest,PCA 0.992 0.566 0.294 0.914 7.54E-05
~Zbest 1.004 0.500 0.099 0.898 6.02E-06
µZ 1.002 0.505 0.115 0.901
σZ 0.005 0.004 0.014 0.001

σZ
µZ
×100% 0.5% 0.8% 12.6% 0.2%

Table 6: Results obtained with the PCA-LJ for Case 2. σe = 0.0004 (5.5%).

τ0 ω ρ1 ρ2 Q
(
~Z
)

, Eq. (8)
~Zexact 0.5 0.1 0.1 0.9 -

PCA-LJ ~Zworst,PCA∗ 1.642 0.982 0.958 0.991 5.83E-02
~Zworst∗ 1.581 0.998 0.972 0.993 5.51E-02
~Zbest,PCA 0.486 0.202 0.304 0.916 2.63E-03

~Zbest 0.501 0.100 0.096 0.900 8.32E-07
µZ 0.501 0.097 0.094 0.899
σZ 0.003 0.002 0.019 0.002

σZ
µZ
×100% 0.6% 1.7% 20.9% 0.2%

∗

This run was the only one that did not converge and it was not included in the
calculation of the average.

In Figs. 6-8 are presented the estimates obtained with both PCA and LJ methods
for each case (1-3 in Tab. 1). It is also shown the exact values of the properties, the
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Table 7: Results obtained with the PCA-LJ for Case 3. σe = 0.004 (5.5%).

τ0 ω ρ1 ρ2 Q
(
~Z
)

, Eq. (8)
~Zexact 2.0 0.9 0.5 0.5 -

PCA-LJ ~Zworst,PCA 1.484 0.864 0.417 0.556 3.90E-04
~Zworst 1.716 0.884 0.464 0.538 2.75E-04

~Zbest,PCA 1.875 0.877 0.410 0.438 2.01E-03
~Zbest 1.951 0.896 0.486 0.504 8.79E-05
µZ 1.954 0.896 0.489 0.503
σZ 0.201 0.015 0.002 0.018

σZ
µZ
×100% 10.3% 1.7% 4.1% 3.6%

Table 8: Relative standard deviations of the estimates obtained with PCA, LJ and
PCA-LJ.

Test Case Method
στ0
µτ0
×100% σω

µω
×100% σρ1

µρ1
×100% σρ2

µρ2
×100%

1
PCA 0.6% 1.9% 34.6% 0.3%
LJ 0.2% 0.8% 13.8% 0.1%

PCA-LJ 0.5% 0.8% 12.6% 0.2%

2
PCA 6.0% 9.4% 47.7% 0.7%
LJ 0.5% 1.7% 20.3% 0.2%

PCA-LJ 0.6% 1.7% 20.9% 0.2%

3
PCA 7.5% 1.4% 6.2% 6.0%
LJ 7.5% 0.9% 3.5% 4.2%

PCA-LJ 10.3% 1.7% 4.1% 3.6%

average of the estimates and the confidence bounds for the average. As the sample
size is relatively small (10 runs), the confidence bounds have been calculated based
on the Student’s T distribution as(

µZ− t(n−1),(1−C)×
σZ√

n
, µZ + t(n−1),(1−C)×

σZ√
n

)
(10)

where t(n−1),(1−C) is the critical value for the Student’s T distribution with n data
points, i.e., n−1 degrees of freedom, and C% confidence. For all cases presented in
this work, we have 10 runs, i.e. n = 10. Considering 99% confidence, t(n−1),(1−C) =
t(9),(0.01) = 3.250.

As expected, it can be observed in Figs. 6-8 that the confidence bounds for ρ1 are
relatively wide in Cases 1 and 2, and the confidence bounds for all unknowns are
wider in Case 3.
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Figure 6: Results obtained with both PCA (a) and LJ (b) methods. Case 1. σe =
0.0005 (5.5%). — exact values; - - - average; confidence bounds; • estimates.
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Figure 7: Results obtained with both PCA (a) and LJ (b) methods. Case 2. σe =
0.0005 (5.5%). — exact values; - - - average; confidence bounds; • estimates.
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Figure 8: Results obtained with both PCA (a) and LJ (b) methods. Case 3. σe =
0.0005 (5.5%). — exact values; - - - average; confidence bounds; • estimates.
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Figure 9: Evolution of the objective function. Case 1.
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Figure 10: Evolution of the objective function. Case 2.

It is also important to observe that the confidence bounds are narrower with the LJ
than with the PCA, for all unknowns, in all cases presented here. This is related
with the fact that the LJ was able to obtain estimates with lower values of the
objective function, as it can be observed in Tabs. 2-4.

In Figs. 9-11 are shown the evolutions of the objective function for the best runs
obtained with both the PCA and the LJ.

It is interesting to observe that even though the LJ reaches a lower value of the
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Figure 11: Evolution of the objective function. Case 3.

objective function, the PCA performs better at the beginning of the search. As it
can be seen in Figs. 9-11, the PCA performed better until around 7,500 function
evaluations in Case 1 and until around 5,000 function evaluations in Case 2. In
Case 3, the methods performed competitively until around 8,000 iterations.

Such fact may explain the good results obtained by the PCA in a hybrid strategy,
where the stochastic method is used for a few number of function evaluations, just
to find regions of local optima to be further exploited by a gradient based method
as investigated by [Knupp, Silva Neto and Sacco (2007)].

With that in mind, it was proposed the use of the PCA set with nPCA = 3 and
nexploitation = 500, in order to generate an initial guess for the LJ set with nLJ,out =
142, nLJ,in = 200, and the search space beginning as if 58 iterations had already
been performed. With such configuration the LJ performs 11,600 less evaluations
of the cost function. With this hybrid approach, named PCA-LJ, each run took
around 1h55min (26% faster than the canonical LJ with nLJ,out = 200 and nLJ,in =
200).

The results of 10 runs are presented in Tabs. 5-7 for Cases 1, 2 and 3, respec-
tively. ~Zworst,PCA and ~Zbest,PCA represents the initial guess of the worst and the best
estimate, respectively.

As it can be observed in Tabs. 5-7, with exception of one run that did not converge
for Case 2, the results obtained by the PCA-LJ were as good as those obtained by
the LJ, with less computational effort (26% faster). In Tab. 8 are presented the
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relative standard deviations of the estimates obtained with each one of the three
methods presented in this work: PCA, LJ and PCA-LJ. Regarding the worst run for
Case 2, it is important to stress that among the 10 runs performed, that was the only
one that did not converge and it was not included in the calculation of the average.

5 Conclusion

From the results presented in the previous section one concludes that .both the PCA
and the LJ provides good solutions for the inverse problem of radiative transfer
properties estimation. Joining the better performance of the PCA in the beginning
of the search with the better accuracy provided by LJ it was possible to implement
the hybrid version PCA-LJ, which performed even better. As further development
of this approach, it may be considered in future works the use of a hybrid version of
the PCA with the Nelder-Mead Simplex, which was successfully applied in nuclear
reactors core design [Sacco, Alves Filho, Henderson and Oliveira (2008)].
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