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Abstract: In this article we use the new, unified framework of high order one-
step PNPM schemes recently proposed for inviscid hyperbolic conservation laws
by Dumbser, Balsara, Toro, and Munz (2008) in order to solve the viscous and
resistive magnetohydrodynamics (MHD) equations in two and three space dimen-
sions on unstructured triangular and tetrahedral meshes. The PNPM framework uses
piecewise polynomials of degree N to represent data in each cell and piecewise
polynomials of degree M ≥ N to compute the fluxes and source terms. This new
general machinery contains usual high order finite volume schemes (N = 0) and
discontinuous Galerkin finite element methods (N = M) just as special cases of
a more general unified class of numerical methods. The new time discretization
approach used in our schemes is of the one–step type and is obtained by a local
space–time Galerkin predictor–corrector method, where in the predictor step a lo-
cal weak form of the governing PDE is solved in the small. The formal order of
accuracy of our one–step time discretization automatically matches the spatial dis-
cretization order.
We perform a numerical convergence study for an unsteady test case on unstruc-
tured meshes with PNPM methods from third to eighth order of accuracy in space
and time and show detailed CPU times to allow the reader a critical performance
assessment. We present numerical results for the viscous Orszag–Tang vortex sys-
tem, for the first problem of Stokes and for a steady laminar boundary layer at
high Reynolds number. We furthermore compute the unsteady flow past a circular
cylinder and the Kelvin-Helmholtz instability in two and three space dimensions.
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1 Introduction

Magnetized plasma flows are of increasing relevance in engineering applications
and science. Traditional engineering applications of plasma flows consist for ex-
ample in plasma thrusters for propulsion and trajectory control of small spacecraft
and satellites, see Dali, Wansheng, and Xiaoming (2008); Auweter-Kurtz (1994);
Scheuer, Schoenberg, Gerwin, Hoyt, Henins, Black, Mayo, and Moses (1994); Bur-
ton and Turchi (1998); Popov and Ryzhov (1993). More recently, plasma actuators
have also been used for active control of boundary layers by Grundmann and Tro-
pea (2008, 2009), for active control of jets by Kearney-Fischer, Kim, and Samimy
(2009); Samimy, Kim, Kastner, Adamovich, and Utkin (2007) or for active noise
reduction by Peers, Huang, and Luo (2009). Other potential future engineering ap-
plications of magnetized plasma flows in the sector of civil energy production are
inertial confinement fusion (ICF), see e.g. Goncharov, McKenty, Skupsky, Betti,
McCrory, and Cherfils-Clerouin (2000); Piriz (2001); Betti, Goncharov, McCrory,
and Verdon (1998) and magnetic confinement fusion (MCF), Todd and Windsor
(1998); Walker and Picologlou (1985). The most important scientific applications
of magnetized plasma flow can be mainly found in the astrophysical context, such
as in accretion discs, see e.g. Merloni (2003); D.X. Wang and Lei (2002); Wolf
and Klahr (2002); Klahr and Bodenheimer (2003), neutron star and pulsar mag-
netospheres Komissarov (2006); McKinney (2006) or in solar physics, see e.g.
Glencross (1980); Galsgaard and Nordlund (1997); Sakao, Kano, Narukage et al.
(2007). In order to model correctly turbulent non–ideal plasma flows, it is of vi-
tal importance to take into account also resistivity and viscosity effects, where the
viscosity may be either the molecuar viscosity or an eddy viscosity, stemming for
example from a subgrid scale turbulence model. In order to resolve the small ed-
dies and vortices in turbulent plasma flows for long times and over long distances,
high order accurate and only little diffusive numerical algorithms are needed. An
additional problem comes from the fact that the flows of interest in engineering
and science contain simultaneously shock waves and other discontinuities as well
as smooth features, which makes the design of numerical algorithms for such kind
of flows particularly difficult. In the past, most research concerning high resolu-
tion shock capturing algorithms has been concentrated on hyperbolic conservation
laws, such as the pioneering method of Godunov (1959), the MUSCL scheme of
van Leer (1979), the ENO scheme of Shu and Osher (1989) and Harten, Engquist,
Osher, and Chakravarthy (1987), or the WENO method of Jiang and Shu (1996).
The generalization of these high order schemes to general unstructured meshes
has been put forward by Abgrall (1994); Sonar (1997); Hietel, Meister, and Sonar
(1996) for ENO finite volume methods and by Hu and Shu (1999); Dumbser, Käser,
Titarev, and Toro (2007); Zhang and Shu (2009) for WENO finite volume schemes.
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Recently, a new type of high order shock capturing numerical algorithm enjoys
increasing popularity in the community of scientific computing due to its high flex-
ibility and easy applicability on general meshes: the discontinuous Galerkin (DG)
finite element method. However, also the DG finite element method was initially
developed for hyperbolic conservation laws, see for example Cockburn, Lin, and
Shu (1989); Cockburn, Hou, and Shu (1990); Cockburn and Shu (1998b); van der
Vegt and van der Ven (2002); Bassi and Rebay (1997b). A non–exhaustive list of
contributions to the extension of high order DG finite element schemes to viscous
PDE can be found in the works of Bassi and Rebay (1997a); Baumann and Oden
(1999); Lomtev and Karniadakis (1999); Lomtev, Quillen, and Karniadakis (1998);
Cockburn and Shu (1998a, 2001); Klaij, van der Vegt, and van der Ven (2006);
Hartmann and Houston (2008); Gassner, Lörcher, and Munz (2007); van Leer and
Nomura (2005). A unified analysis of various discontinuous Galerkin finite element
schemes for second order elliptic PDE can be found in Arnold, Brezzi, Cockburn,
and Marini (2002). The first high order DG finite element scheme especially de-
signed for the viscous and resistive MHD equations was reported by Warburton and
Karniadakis (1999). Their spectral DG scheme was of arbitrary order of accuracy
in space and the time discretization was of the Adams–Bashforth type.

In the numerical algorithm proposed in this paper, we use a new arbitrary high
order one–step method in space and time whose temporal accuracy automatically
matches the spatial accuracy and where no intermediate stages or previous stage
values have to be computed or stored, in contrast to the scheme of Warburton
and Karniadakis (1999). We furthermore use the generalized framework of PNPM

schemes that allows us at the same time the construction of high order finite volume
and discontinuous Galerkin finite element methods.

As already mentioned in the abstract, the main idea behind the PNPM schemes is
to use test functions from the space of piecewise polynomials of degree N and to
compute the fluxes and source terms in the resulting variational formulation using
piecewise polynomials of degree M ≥ N. In the special case N = 0 we repro-
duce classical high order finite volume schemes and for N = M we reproduce the
usual discontinuous Galerkin finite element method of Cockburn and Shu (1998b).
Formally, our general class of PNPM schemes can be interpreted as belonging some-
how to the class of Petrov–Galerkin schemes, where the test functions and the ba-
sis functions are different, in contrast to classical Galerkin finite element methods,
where test and basis functions coincide. Petrov–Galerkin schemes enjoy an increas-
ing level of popularity in the community of computational mechanics. However,
they are usually applied in their meshless variant, in particular under the form of
the meshless local Petrov–Galerkin (MLPG) method introduced by Atluri and Zhu
(1998). MLPG schemes have already been successfully applied to viscous fluid
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flows, see Lin and Atluri (2001); Almeida and Galeao (1996); Mohammadi (2008)
and to solid mechanics, see Atluri, Liu, and Han (2006). They are also becoming
more and more important in the field of computational electromagnetics, see e.g.
the work by Soares (2009) and the one by Zhao and Nie (2008). The effects of
magnetic diffusion, which are also treated in the present article, have been stud-
ied at the aid of MLPG schemes by Johnson and Owen (2007). A meshless finite
volume method based on the MLPG approach is discussed by Atluri, Hand, and
Rajendran (2004) and some of the first three–dimensional applications have been
recently presented by Pini, Mazzia, and Sartoretto (2008). First applications of
MLPG schemes to the MHD equations have been shown by Dehghan and Mirzaei
(2009). Since our general family of PNPM schemes uses unstructured triangular or
tetrahedral meshes, it has another common feature with meshless MLPG schemes,
namely the characteristics of being able to deal rather easily and very naturally with
complex geometries. Unstructured triangular and tetrahedral mesh generation can
be done almost automatically, without requiring many manual user interactions.
Problems with very complicated geometries typically arise in the context of civil,
industrial and environmental engineering, as well as in geophysics. Note that our
schemes have been implemented on the primal mesh, although an implementation
on the dual or Voronoi mesh would be also possible thanks to the weak (integral)
formulation of the main scheme and the underlying reconstruction operator, which
does not require any particular mesh type or any particular shape of the control
volumes. Concerning recent finite volume methods on unstructured (dual) Voronoi
meshes for the solution of the Navier–Stokes equations we refer for example to the
work of Mariani, Alonso, and Peters (2008).

The outline of the paper is as follows: in section 2 we briefly recall the general one–
step PNPM framework, explained in detail in Balsara, Altmann, Munz, and Dumbser
(2007); Dumbser, Balsara, Toro, and Munz (2008); Dumbser (2010). The viscous
and resistive MHD equations are presented in section 3. In section 4 we then show
numerical convergence results for an unsteady test problem on unstructured trian-
gular meshes up to 8th order of accuracy in space and time. In section 5 we present
numerical results for some typical applications, such as laminar boundary layer
flow, the first problem of Stokes, the Orszag–Tang vortex system or the unsteady
flow past a circular cylinder. We also simulate the Kelvin–Helmholtz instability in
two and three space dimensions. The conclusions are drawn in section 6.

2 The General Framework of High–Order One–Step PNPM Schemes

In this article we consider general multi-dimensional balance laws of the form

∂

∂ t
W +∇ ·F (W,∇W ) = S(W ), (1)
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where W =W (~x, t) is the vector of conserved quantities, F is a nonlinear flux tensor
that depends on the state W and also on its gradient ∇W to take into account vis-
cous effects. S(W ) is a nonlinear algebraic source term that can also become stiff.
The viscous and resistive MHD equations can be written in this form, as shown in
section 3.

2.1 PNPM Reconstruction on Unstructured Meshes

The spatial discretization of eqn. (1) used in this work is based on the PNPM re-
construction operator first introduced on unstructured meshes in Dumbser, Balsara,
Toro, and Munz (2008). In this section, we only give a short overview over the
PNPM reconstruction operator and for details we refer the reader to the publication
of Dumbser, Balsara, Toro, and Munz (2008) and references therein. The compu-
tational domain Ω is discretized by conforming elements Ti that are chosen to be
triangles in 2D and tetrahedrons in 3D, although also other, more general, element
shapes would be possible. Each element is indexed by a single mono-index i rang-
ing from 1 to the total number of elements NE . The union of all elements is called
the triangulation (2D) or the tetrahedrization (3D) of the domain, respectively,

TΩ =
NE⋃
i=1

Ti. (2)

At the beginning of a time-step, the numerical solution of (1) for the state vector
W , denoted by uh, is represented by piecewise polynomials of degree N from the
space Vh, spanned by the basis functions Φl = Φl(~x), i.e. at t = tn we have for each
element

uh(~x, tn) = ∑
l

Φl(~x)ûn
l . (3)

From the polynomials uh, we then reconstruct piecewise polynomials wh of degree
M ≥ N from the space Wh, spanned by the basis functions Ψl = Ψl(~x):

wh(~x, tn) = ∑
l

Ψl(~x)ŵn
l . (4)

According to Dumbser, Balsara, Toro, and Munz (2008), the Ψl are chosen to be
orthogonal and are identical with the Φl up to polynomial degree N. We note that
the actual choice for the basis functions is not important, but only the choice of
the approximation spaces Vh and Wh, i.e. the choice of the piecewise polynomial
degrees N and M. However, the choice of an orthogonal basis used here leads
to simple reconstruction equations and to diagonal element mass matrices, which
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makes the practical computation easier. To obtain the reconstruction polynomial
wh on element Ti, we now choose a reconstruction stencil

Si =
ne⋃

k=1

Tj(k) (5)

that contains a total number of ne elements. Here 1 ≤ k ≤ ne is a local index,
counting the elements in the stencil, and j = j(k) is the mapping from the local
index k to the global indexation of the elements in TΩ. For ease of notation, we
write in the following only j, meaning j = j(k).
In the present paper we need the following three operators:

〈 f ,g〉Ti
=

tn+1∫
tn

∫
Ti

( f (~x, t) ·g(~x, t))dV dt, (6)

[ f ,g]tTi
=
∫
Ti

( f (~x, t) ·g(~x, t))dV, (7)

{ f ,g}
∂Ti

=
tn+1∫
tn

∫
∂Ti

( f (~x, t) ·g(~x, t))dSdt, (8)

The first operator defines a space-time scalar product of two functions f and g
over the space-time element Ti×

[
tn; tn+1

]
, the second operator defines the standard

spatial scalar product of f and g over the spatial element Ti, and the last operator
defines a product of f and g over the space-time boundary element ∂Ti×

[
tn; tn+1

]
.

The notation 〈 f ,g〉 and [ f ,g]t , i.e. without the index Ti, is used to define scalar
products on the space-time reference element TE× [0;1] and on the spatial reference
element TE at time t, respectively. The spatial reference element TE is defined as the
unit simplex with vertices (0,0), (1,0), (0,1) in two space dimensions and vertices
(0,0,0), (1,0,0), (0,1,0) and (0,0,1) in three space dimensions, respectively.

The reconstruction is now obtained via L2-projection of the (unknown) piecewise
polynomials wh from the space Wh into the space Vh on each stencil Si, i.e. we
require a weak identity between uh and wh in each stencil element as follows:

[Φk,wh]
tn

Tj
= [Φk,uh]

tn

Tj
, ∀Tj ∈Si. (9)

During the reconstruction step, the polynomials wh are continuously extended over
the whole stencil Si. After reconstruction, the piecewise polynomials wh are again
restricted onto each element Ti. The number of elements in the stencils are chosen
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in such a way that the number of equations in (9) is larger that the number of
degrees of freedom in the space Wh. Eqn. (9) constitutes thus an overdetermined
linear algebraic equation system for the coefficients of wh and is solved using a
constrained least squares technique based, see Dumbser, Balsara, Toro, and Munz
(2008); Dumbser and Käser (2007). The linear constraint is that Eqn. (9) is at least
exactly satisfied for Tj = Ti, i.e. inside the element Ti under consideration:

[Φk,wh]
tn

Ti
= [Φk,uh]

tn

Ti
. (10)

The constraint (10) is incorporated in the least squares problem using a standard
Lagrangian multiplier technique, see Dumbser and Käser (2007) for details. The
integral on the left hand side in (9) is computed using classical multidimensional
Gaussian quadrature of appropriate order, see Stroud (1971). The integral on the
right hand side can be computed analytically and involves the standard element
mass-matrix.
The resulting PNPM least squares reconstruction operator can be interpreted as a
generalization of the k-exact reconstruction proposed for pure finite volume schemes
in the pioneering work of Barth and Frederickson (1990) and further discussed in
Petrovskaya (2008).

2.2 The Local Space-Time Galerkin Predictor

Our high order one-step time discretization is based on a local weak formulation of
the governing PDE (1) which is used to solve a local Cauchy problem in the small,
with the reconstruction polynomial wh as initial condition. Since this local solution
is only used as a predictor, similar to the time-evolution to the half time level in
the MUSCL method of van Leer (1979), no coupling to the neighbor elements is
needed. Note that this is a major difference with respect to the global space-time
DG schemes of van der Vegt and van der Ven (2002); van der Ven and van der
Vegt (2002). To that purpose we start from the strong formulation of PDE (1) and
transform the PDE into the reference coordinate system (~ξ ,τ) of the space-time
reference element TE× [0;1] with ~ξ = (ξ ,η ,ζ ) and ∇ξ being the nabla operator in
the ξ −η−ζ reference system and t = tn + τ∆t:

∂

∂τ
W +∇ξ ·F∗

(
W,JT

∇ξW
)

= S∗. (11)

The modified flux tensor and the modified source term are given by

F∗ := ∆t F(W,∇W )JT , S∗ := ∆tS(W ), ∇W = JT
∇ξW, J =

∂~ξ

∂~x
, (12)
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as obtained after simple algebraic manipulations. We now multiply Eqn. (11) by
a space-time test function θk = θk(ξ ,η ,ζ ,τ) from the space of piecewise space-
time polynomials of degree M and integrate over the space-time reference control
volume TE × [0;1] to obtain the following weak formulation:〈

θk,
∂

∂τ
Wh

〉
+
〈

θk,∇ξ ·F ∗
h

(
Wh,JT

∇ξ Wh
)〉

= 〈θk,S
∗ (Wh)〉 . (13)

Integration by parts of the first term in time allows us to introduce the initial condi-
tion wh(~x, tn) in a weak form and leads to

[θk,Wh]1− [θkwh]0−
〈

∂

∂τ
θk,Wh

〉
+
〈

θk,∇ξ ·F ∗
h

(
Wh,JT

∇ξ Wh
)〉

= 〈θk,S
∗ (Wh)〉 . (14)

For the numerical solution of Eqn. (14) and its gradient as well as for the flux tensor
and the source term we use the ansatz

Wh = Wh(ξ ,η ,ζ ,τ) = ∑
l

θl(ξ ,η ,ζ ,τ)Ŵl := θlŴl, (15)

∇ξ Wh = ∇ξ Wh(ξ ,η ,ζ ,τ) = ∑
l

θl(ξ ,η ,ζ ,τ)∇̂ξ W l := θl∇̂ξ W l, (16)

F ∗
h
= F ∗

h
(ξ ,η ,ζ ,τ) = ∑

l
θl(ξ ,η ,ζ ,τ)F̂ ∗

l
:= θlF̂

∗
l
, (17)

S ∗
h = S ∗

h (ξ ,η ,ζ ,τ) = ∑
l

θl(ξ ,η ,ζ ,τ)Ŝ ∗
l := θlŜ ∗

l , (18)

using the same space-time basis functions θl as used for the test functions. To facil-
itate notation, from now on we use the Einstein summation convention throughout
the paper, which implies summation over indices appearing twice. Using a weak
identity between the ansatz (16) and the gradient of Wh it is easy to show that the
degrees of freedom ∇̂ξ W l of the gradient can be computed from the degrees of

freedom Ŵl of the state by a simple matrix-vector multiplication as

∇̂ξ W k = 〈θk,θm〉−1 〈
θm,∇ξ θl

〉
Ŵl. (19)

We use the nodal space-time basis and test functions θk proposed in Dumbser,
Balsara, Toro, and Munz (2008), since this has shown to be computationally more
efficient than a modal basis, which requires a more expensive L2-projection. For an
efficient implementation on Cartesian meshes, see Balsara, Rumpf, Dumbser, and
Munz (2009).
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In the nodal space-time framework we therefore compute the degrees of freedom
of the interpolants for the flux and the source term simply as

F̂
∗
l
= F∗

(
Ŵl, ∇̂ξ W l

)
, Ŝ ∗

l = S∗(Ŵl). (20)

To solve the weak form (14) we insert (15)-(18) into (14) and then use the following
simple and robust fixed-point iteration scheme:(

[θk,θl]1−
〈

∂

∂τ
θk,θl

〉)
Ŵl

i+1
= [θk,ψm]0ŵn

m + 〈θk,θl〉 Ŝ∗l
i
−
〈
θk,∇ξ θl

〉
· F̂ ∗

l

i
.

(21)

If the source term is stiff, it has to be taken implicitly in (21). Further details of
this algorithm are given in the following references: Dumbser, Balsara, Toro, and
Munz (2008); Dumbser and Zanotti (2009); Dumbser (2010).

2.3 Fully Discrete PNPM Schemes for Viscous PDE

Applying the operator 〈Φk, ·〉Ti
to PDE (1) one obtains〈

Φk,
∂

∂ t
W
〉

Ti

+
〈
Φk,∇ ·F

〉
Ti

= 〈Φk,S(W )〉Ti
. (22)

For the first term in Eqn. (22) we approximate W with uh from the space Vh and
perform integration by parts in time. Note that Φk does not depend on time. For
all the other terms in Eqn. (22) the vector W is approximated by the solution Wh
of the local space-time Galerkin predictor of section 2.2. Since Wh usually exhibits
jumps at the element interfaces we integrate the second term by parts in space and
introduce a simple Rusanov–type intercell flux Gi+ 1

2
to give a sense to the element

boundary integrals. We hence obtain the following family of fully discrete one-step
PNPM schemes for PDE (1):

[
Φk,un+1

h

]tn+1

Ti
− [Φk,un

h]
tn

Ti
−
〈

F
h
,∇Φk

〉
Ti\∂Ti

+
{

Φk,G i+ 1
2
(W −

h ,∇W −
h ,W +

h ,∇W +
h ) ·~n

}
∂Ti

= 〈Φk,S(Wh)〉Ti
, (23)

where W −
h and ∇W −

h denote the boundary extrapolated data and gradient from
within element Ti and W +

h and ∇W +
h denote the boundary extrapolated data and

gradient from the neighbor, respectively. Gi+ 1
2

is a simple Rusanov–type flux, in-
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cluding both the convective and the viscous terms, as proposed in Dumbser (2010):

G
i+ 1

2
·~n =

1
2
(
F(W +

h ,∇W +
h )+F(W −

h ,∇W −
h )
)
·~n

− 1
2

(|λ max
c |+2η |λ max

v |)
(
W +

h −W −
h

)
. (24)

Here, |λ max
c | is the maximum absolute value of the eigenvalues of both convective

Jacobian matrices in normal direction An(W −
h ,∇W −

h ) and An(W +
h ,∇W +

h ), with

An =
∂Fn(W,∇W )

∂W
, and Fn = F ·~n, (25)

and |λ max
v | is the maximum absolute value of the eigenvalues of both viscous Jaco-

bian matrices in normal direction Dn(W −
h ,∇W −

h ) and Dn(W +
h ,∇W +

h ), with

Dn =
∂Fn(W,∇W )

∂∇W
·~n. (26)

Following the ideas developed in Gassner, Lörcher, and Munz (2007) η can be
computed from the solution of the generalized diffusive Riemann problem as

η =
2N +1

h
√

1
2 π

, (27)

where the characteristic length h is taken to be the twice the distance between the
barycenter of the element and the barycenter of the edge/face for which the flux is
to be computed.

3 The Viscous and Resistive MHD Equations

The three-dimensional viscous and resistive magnetohydrodynamics (MHD) equa-
tions have the structure given by (1). The nine conserved quantities are

W =
(

ρ,ρ~vT ,ρE,~BT ,ψ
)T

, (28)

where ψ is a scalar used for divergence cleaning according to the approach of Ded-
ner, Kemm, Kröner, Munz, Schnitzer, and Wesenberg (2002) in order to avoid the
accumulation of numerical divergence errors that would spoil the numerical solu-
tion, as reported by Brackbill and Barnes (1980). With these conserved variables,
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the flux tensor is

F(W,∇W ) =



ρ~vT

ρ~v~vT +σ(W,∇W )

~vT (IρE +σ(W,∇W ))−κ∇T − η

4π
~BT
(

∇~B−∇~BT
)

~B~vT −~v~BT + ψI−η

(
∇~B−∇~BT

)
c2

0
~BT

 , (29)

with the fluid viscosity µ and the magnetic viscosity η , also called magnetic resis-
tivity. The total stress tensor σ , using Stokes’ hypothesis, is defined as:

σ =
(

p+
1

8π
~B2 +

2
3

µ∇ ·~v
)

I− 1
4π

~B~BT −µ
(
∇~v+∇~vT ) . (30)

To close the system, we use the equation of state of an ideal gas

p
ρ

= RT, p = (γ−1)
(

ρE− 1
2

ρ~v2− 1
8π

~B2
)

. (31)

The heat conduction coefficient κ is linked to the viscosity µ by the Prandtl number
Pr

κ =
µγcv

Pr
, with cv =

1
γ−1

R. (32)

Here, γ denotes the ratio of the specific heats at constant pressure cp and at con-
stant volume cv and R is the gas constant. The classical dimensionless variables
(Reynolds number Re, resistive Lundquist number or magnetic Reynolds number
Sr, Alfven number β and magnetic Prandtl number Prm) based on the reference
length L, the reference density ρ0 and the reference velocity U0 are:

Re =
ρ0U0L

µ
, Sr =

U0L
η

, β =

√
~B2

4πρ0U2
0
, Prm =

Sr
Re

=
µ

ρ0η
. (33)

4 Numerical Convergence Studies

To study the accuracy of our numerical method, we propose a test case with an
artificial exact solution We of (1) that is obtained by balancing the left hand side
of (1) with a source term Se(~x, t) on the right hand side (so–called manufactured
solution method). Hence, we have

∂We

∂ t
+∇ ·F(We,∇We) = Se(~x, t). (34)
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Using the abbreviation α =~k ·~x−ωt, the exact manufactured solution of our prob-
lem in terms of primitive variables U = (ρ,~v, p,~B,ψ)T is defined to be

Ue =
(

ρb +ρ0 cos(α),~v0 sin(α), pb + p0 sin(α),~B0 sin(α),0
)T

. (35)

From (35) we can compute We and ∇We and insert them into (34) in order to com-
pute Se, which is only a function of position~x and time t. To test the accuracy of the
schemes for rather viscous flows at low Reynolds numbers we set µ = η = 10−1.
The Prandtl number is fixed to the constant value Pr = 1.0, the ratio of specific
heats is chosen as γ = 5

3 and the heat capacity at constant volume is chosen as
cv = 1. We solve (1) on the periodic computational domain Ω = [0;10]× [0;10]
until time te = 0.1. For the exact solution in primitive variables Ue given by (35)
we use the constants ρb = 1, pb = 1, ρ0 = 0.25, ~v0 = 1

2(1,1)T , ~B0 = 1
2(1,1)T ,

p0 = 0.25,~k = 2π

10 (1,1)T and ω = 2π . The source term Se can then be easily com-
puted using a computer algebra package. The convergence results for all third to
8th order schemes are presented in Table 1, where the pure finite volume schemes
N = 0 can be found on the left of the Table and the pure DG methods N = M are
on the diagonal. We note that the symbol NG denotes the number of triangle edges
per space–dimension used to discretize the computational domain. If two values
for NG are reported, the first and higher number refers to the pure finite volume
schemes, i.e. the schemes with N = 0. We find that both, the pure finite volume
schemes as well as the odd order DG schemes only reach a sub–optimal order of
accuracy. However, for the intermediate PNPM schemes with N > 0, M > N, we
always observe that the optimal order of accuracy M +1 is reached, for odd as well
as for even order schemes. The results of the presented convergence study justify
our choice of a very simple viscous Rusanov-type flux (24) for the new intermedi-
ate class of PNPM schemes with N > 0 and M > N, rather than the use of the more
sophisticated lifting operators, as proposed in Bassi and Rebay (1997a) or the more
complex local DG schemes of Cockburn and Shu (1998a). The computations have
been carried out on one core of an Intel Dual Core machine with 4 GB of RAM
and 2.5 GHz clock speed. From the CPU times reported in Table 1 we can deduce
that the new intermediate PNPM schemes are definitely much more efficient than
classical finite volume schemes of the same order and that in several cases they are
also computationally more efficient than pure discontinuous Galerkin finite element
schemes. The time step has been chosen in all our computations as

∆t =
CFL

2N +1
· h
|λ max

c |+2|λ max
v |2N+1

h

, (36)

which is consistent with the choice of η for the viscous part of the Rusanov flux, see
Gassner, Lörcher, and Munz (2007, 2008). For a von-Neumann stability analysis of
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the general PNPM schemes see Dumbser, Balsara, Toro, and Munz (2008) and for a
stability analysis of the viscous flux see Gassner, Lörcher, and Munz (2008, 2007).
In all 2D computations the Courant number has been always set to CFL = 0.5.

5 Applications

In this section we apply the high order PNPM schemes to the two- and three-dimensional
viscous and resistive MHD equations, comparing our results whenever possible
against some exact or other numerical reference solutions.

5.1 The First Problem of Stokes

Exact solutions of the unsteady viscous and resistive MHD equations are very rare.
One very simple but important solution is known from classical fluid dynamics as
the first problem of Stokes. It consists of a fluid flow at constant velocity every-
where in the half-plane y > 0 over an infinite flat plate at rest at y = 0. In the case
of the incompressible Navier-Stokes equations the governing PDE can be solved
exactly, since the problem reduces to a linear one-dimensional diffusion equation,
see Schlichting and Gersten (2005). We can do the same also in the case of resis-
tive and viscous MHD, solving the problem at a very small Mach number, so that
compressibility effects can be neglected. Making the appropriate simplifications,
the exact solution of the problem is then given by the solution of the following two
decoupled linear diffusion equations for the horizontal velocity component u and
the horizontal magnetic field component Bx,

∂

∂ t
u = ν

∂ 2

∂y2 u,
∂

∂ t
Bx = η

∂ 2

∂y2 Bx, ν =
µ

ρ
, (37)

with the initial conditions u(y,0) = u∞, Bx(y,0) = B∞ and the boundary conditions
u(0, t) = Bx(0, t) = 0. The exact solutions for the velocity component and magnetic
field component in x-direction are then

u(y, t) = u∞erf
(

y√
2νt

)
, and Bx(y, t) = B∞erf

(
y√
2ηt

)
. (38)

We run the two- and three-dimensional simulations of the compressible viscous
and resistive MHD equations in the 2D domain Ω2D = [−1

2 ; 1
2 ]× [0;2] and in the

3D domain Ω3D = [−1
2 ; 1

2 ]× [0;2]× [−1
2 ; 1

2 ]. In x and z direction periodic boundary
conditions are applied. At y = 0 we put an adiabatic wall and at y = 2 we impose
the freestream values. The initial condition of the problem is given by the constant
freestream condition ρ∞ = 1, u = u∞ = 10−1, v = w = 0, p = 0.6, Bx = B∞ =√

4π

100 , By = Bz = 0 and ψ = 0. For the fluid viscosity we choose µ = 10−3, for
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the resistivity we use η = 10−1, so that the magnetic Prandtl number becomes
Prm = 10−2. The usual Prandtl number is set to Pr = 1, the ratio of specific heats
is γ = 5

3 and the heat capacity at constant volume is cv = 1. Computations of this
unsteady test case are performed until t = 1.

The comparisons between the analytical solution and our numerical simulations
using the P5P7 scheme on a triangular mesh with h = 0.25 and 1046 elements in
2D, see Fig. 1, and the P2P4 scheme on a tetrahedral mesh with h = 0.125 and 7343
elements in 3D, see Fig. 2, show an excellent agreement.
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Figure 1: First problem of Stokes in 2D with a magnetic Prandtl number of
Prm = 10−2. Unstructured triangular mesh and distributions of velocity (left) and
magnetic field (middle). Comparison of the numerical results obtained with a P5P7
scheme and the exact solution at time t = 1 (right).

5.2 Laminar High Reynolds Number Boundary Layer Flow

The most famous non-trivial stationary solution of the governing equations in fluid
mechanics is the one of the laminar flow over a semi-infinite flat plate. After Lud-
wig Prandtl had discovered the revolutionary boundary layer concept together with
the boundary layer equations in Prandtl (1904), Blasius was the first to solve the
boundary layer equations for this particular test problem in Blasius (1908). For the
incompressible resistive and viscous MHD equations the first studies on boundary
layers were reported by Jungclaus (1965) and Stewartson (1965) and more recently
free shear layers have been studied in great detail by Shukhman (2002) based on
a system of two weakly nonlinear ODE that allow for a self-similar solution of
the boundary layer equations. In this paper we use the ODE system proposed by
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Figure 2: First problem of Stokes in 3D with a magnetic Prandtl number of
Prm = 10−2. Unstructured tetrahedral mesh and contour levels of the magnetic
field component Bx (left). Comparison of the numerical results obtained with a
P2P4 scheme and the exact solution at time t = 1 (right).

Shukhman in order to compute the reference solution for our two-dimensional sim-
ulations. With the convention 4πρ = 1 and introducing the variable ξ = y√

νx one
can reduce the original MHD boundary layer equations over a semi-infinite flat
plate to the ODE system

f ′′′ =
1
2
(
χχ
′′− f f ′′

)
, χ

′′′ =
Prm

2
(
χ f ′′− f χ

′′) , (39)

where f = f (ξ ) and χ = χ(ξ ) are the scaled velocity and magnetic potentials,
respectively, and the prime denotes differentiation with respect to ξ . Note that for
vanishing magnetic fields (χ = 0) one reproduces the original Blasius equation.
The physical variables are linked to these potentials as follows:

u = f ′, v =
1
2

√
ν

x
(ξ f ′− f ), Bx = χ

′, By =
1
2

√
ν

x
(ξ χ

′−χ). (40)

The necessary six boundary conditions are imposed as

f (0) = f ′(0) = 0, χ(0) = χ
′(0) = 0, f ′(∞) = U∞, χ

′(∞) = B∞, (41)

so that the velocity and magnetic fields vanish at the plate and the components
in x-direction reach their prescribed free-stream values as ξ → ∞. We obtain the
reference solution by solving the ODE system (39) together with the boundary con-
ditions (41) using the fifth order time discontinuous Galerkin ODE solver proposed
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in Dumbser (2010) for the solution of the boundary layer equations. The boundary
value problem has been solved as usual by a shooting algorithm based on Newton’s
method after having converted the two third order ODE into a first order system.

For our two-dimensional computations we use the following setup. The domain
is Ω = [−0.5;2]× [0;0.05], discretized with 1430 triangular elements and a P3P5
scheme. For x > 0 at y = 0 we impose a solid, adiabatic wall boundary condition.
The Reynolds number is chosen as Re = 106, the magnetic Prandtl number as Prm =
0.1, the usual Prandtl number Pr = 1 and γ = 5

3 . Initially the state of the fluid is
4πρ = 1, u = 1, p = 25ρ

γ
, Bx = 0.5 and v = w = By = Bz = 0. We then let the

method run towards a steady state.
In Fig. 3 (left) we show a zoom into the unstructured triangular mesh as well as the
contour levels of the horizontal magnetic field component Bx. In Fig. 3 (right) a
comparison with the solution of the MHD boundary layer equations (39) and (41) is
made for the profiles of horizontal velocity u and magnetic field Bx at x = 0.25. An
excellent agreement between our numerical solution and the solution of the MHD
boundary layer equations of Shukhman (2002) can be noted. For comparison, we
also show the classical Blasius solution at the same Reynolds number.
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Figure 3: MHD boundary layer at Re = 106 and Sr = 105 over a flat plate. Un-
structured triangular mesh, Bx contour colors and velocity vectors at x = 0.25 (left).
Horizontal velocity and magnetic field profiles at x = 0.25 and comparison with the
MHD boundary layer solution (right). For comparison purposes, also the standard
Blasius solution at the same Reynolds number is indicated.

5.3 Viscous and Resistive Orszag–Tang Vortex

The Orszag–Tang vortex system Orszag and Tang (1979) has first been studied
numerically in much detail by Dahlburg and Picone Dahlburg and Picone (1989);
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Picone and Dahlburg (1991). In this article we use the computational setup pro-
posed by Warburton and Karniadakis (1999). The computational domain is Ω =
[0;L]× [0;L] with L = 2π and the initial condition for the fluid is

ρ = 1, u =−sin(y), v = sin(x), w = 0,

Bx =−
√

4π sin(y), By =
√

4π sin(2x), Bz = 0,

p = C +
1
4

cos(4x)+
4
5

cos(2x)cos(y)− cos(x)cos(y)+
1
4

cos(2y).

The other relevant parameters are set to γ = 5
3 , Re = 100, Sr = 100, Pr = 1 and the

constant C = 15
4 is chosen so that the average Mach number of the flow is M = 0.4.

The divergence cleaning speed is set to c0 = 2.5. We use a rather coarse mesh
with only 990 triangular elements, solving the problem with an eighth order P4P7
method until the final time t = 2.0. The results for this test case are shown in Fig.
4 and compare very well with the ones of Warburton and Karniadakis (1999). Note
that in our numerical approach, spatial and temporal accuracy automatically match
so that the schemes reach full uniform formal order of accuracy at constant Courant
number. The high time-accuracy offered by our proposed numerical methods may
serve in the future for simulating long-time evolution problems of compressible
MHD turbulence in astrophysics, where the relevant time scales are very large.
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Figure 4: Numerical solution for the viscous and resistive Orszag–Tang vortex at
t = 2.0 obtained with a P4P7 scheme. Instantaneous streamlines (left) and magnetic
field lines (right).
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5.4 Flow Around a Circular Cylinder

This problem is an extension of the one proposed by Warburton and Karniadakis
(1999), where the authors suggested as test case the compressible subsonic flow
(Mach number M = 0.5) of a magnetized fluid around a circular cylinder at a
Reynolds number of Re = 100 and at a resistive Lundquist number of Sr = 100.
For the simulation presented in this article we considerably extend the computa-
tional domain with respect to the one used in Warburton and Karniadakis (1999)
in order to capture also the sound waves, generated by the unsteady flow in the
cylinder wake and propagating into the far field. We use a circular domain Ω with
outer radius R = 200 and a cylinder located at its origin with diameter d = 1. The
initial condition is ρ = 1, u = 0.5, p = 0.6, Bx = 5

100

√
4π , v = w = By = Bz = 0.

The divergence cleaning speed is set to c0 = 2 and for the ratio of specific heats we
use γ = 5

3 . As in Warburton and Karniadakis (1999) the Reynolds number and the
resistive Lundquist number are Re = Sr = 100. The problem is solved with a P3P5
scheme until the final time t = 1000, covering Ω with 22272 triangular elements.
The unstructured triangular mesh and the instantaneous pressure contours in the far
field are depicted in Fig. 5. The contour levels of the magnetic field component Bx

and the velocity magnitude |~v| are shown in Fig. 6. The flow field and the mag-
netic field agree qualitatively very well with the results shown in Warburton and
Karniadakis (1999).

We also performed a second simulation with the same parameters except for the
difference that a magnetic field of the same magnitude but perpendicular to the
incident flow was switched on. The flow remains stationary even after a very long
time t = 1000, corresponding to 1099560 time steps. To save space, we omit graph-
ical representations of the computational results here.

5.5 Kelvin–Helmholtz instability in 2D

The Kelvin-Helmholtz instability for the MHD equations has been extensively stud-
ied in literature, see e.g. Keppens, Tóth, Westermann, and Geodbloed (1999); Kep-
pens and Tóth (1999); Jeong, Ryu, Jones, and Frank (2000) and references therein.
In this section we use a two-dimensional initial configuration similar to the one
proposed by Jeong, Ryu, Jones, and Frank (2000), but with an analytic initial per-
turbation instead of random initial perturbations as used in Jeong, Ryu, Jones, and
Frank (2000). The density and the pressure field are initially uniform ρ = 1 and
p = 0.6 in the whole computational domain Ω = [0;1]× [0;1], and the ratio of spe-
cific heats is chosen as γ = 5

3 . The Reynolds number and the resistive Lundquist
numbers are Re = Sr = 105, while the usual Prandtl number is chosen as Pr = 1.
We apply periodic boundary conditions in x-direction and reflective no-slip wall
boundaries in y-direction. The initial horizontal velocity component u is given by
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Figure 5: Left: Unstructured triangular mesh used for the flow around a circular
cylinder at Re = Sr = 100. Right: Pressure contours in the far field at time t = 1000.

Figure 6: Left: Contour levels of the magnetic field component Bx in the cylinder
wake at t = 1000. Right: Contour levels of the velocity magnitude |~v| in the cylinder
wake at t = 1000.
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the profile

u =−U0

2
tanh

(
y− 1

2
a

)
, (42)

whereas w = 0 and the velocity component v is perturbed by the ansatz

v = δvsin(2πx)sin(πy). (43)

Finally, the initial magnetic field is defined by

~B =


(B0,0,0)T , if 1

2 +a < y < 1,

(B0 sin(χ),0,B0 cos(χ))T , if 1
2 −a≤ y≤ 1

2 +a,

(0,0,B0)T , if 0 < y < 1
2 −a,

(44)

with χ = π

2
y−0.5+a

2a . The parameters specifying the initial condition are: a = 1
25 ,

U0 = 1, δv = 0.01 and B0 = 0.07
√

4π .

We run our simulations using a P3P5 scheme on an unstructured triangular mesh
containing 140676 elements of characteristic size h = 1/250 until the final time
t = 10. The computational results obtained for the density field are shown at various
intermediate times in Fig. 7, where we plot three spatial periods in x-direction for
the sake of clarity. We see the development of the usual cat-eye vortices at time t =
5, which are then disrupted by nonlinear effects at later times. Note that in Jeong,
Ryu, Jones, and Frank (2000) the results have been obtained with the ideal MHD
equations, whereas we run a high Reynolds number simulation with real physical
viscosity and resistivity. Due to the chosen grid resolution h = 1/250 and the use
of a very high order P3P5 scheme, the numerical viscosity and resistivity inherent
in our scheme are well below the physical viscosity and resistivity. This was also
confirmed by analyzing the jumps of the flow quantities between the elements.
Note that in a computation performed with PNPM schemes, the difference between
the numerical solution uh and the reconstructed solution wh can be directly used as
an additional indicator whether the computation is well-resolved or not.

5.6 Kelvin–Helmholtz instability in 3D

Our three-dimensional setup for the Kelvin–Helmholtz instability is directly taken
from the paper of Keppens and Tóth (1999), where also a detailed analysis of the
underlying flow physics of the problem is given. Since such a thorough analysis
is beyond the scope of the present publication, which is essentially focused on a
new numerical method, we refer the interested reader to the references Keppens,
Tóth, Westermann, and Geodbloed (1999); Keppens and Tóth (1999); Jeong, Ryu,
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Figure 7: Development of a two-dimensional Kelvin-Helmholtz instability in the
viscous and resistive MHD equations at Re = Sr = 105 using a P3P5 scheme. From
top left to bottom right the density contours are shown at times t = 5,6,7,8,9,10.
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Jones, and Frank (2000). The main difference between our simulations and the
ones performed in the above-mentioned references is that we perform a DNS of the
viscous and resistive MHD equations with Re = Sr = 104 and Pr = 1, whereas the
other authors solved the ideal MHD equations.

The density, pressure and magnetic fields are initially uniform with ρ = p = 1
and ~B = (B0,0,0). The velocity field of the jet, flowing in x-direction, is defined
by ~v = (V0 tanh r−R

a ,δvr cosθ ,δvr sinθ), and the initial modal perturbations of the
radial velocity field are imposed as

δvr = ∆vr exp

(
−
(

r−R
4a

)2
)

cos(mθ)sin(2πnx), (45)

leading to a truely three-dimensional velocity field. Here, the usual relations r2 =
y2 + z2, y = r cosθ and z = r sinθ between Cartesian and cylindric coordinates ap-
ply. The basic flow parameters are taken as in Keppens and Tóth (1999), taking into
account their different scaling of the magnetic field: V0 = 0.645, B0 = 0.129

√
4π

and ∆vr = 10−2. The adiabatic coefficient is γ = 5
3 .

The brick-shaped 3D computational domain is defined by Ω = [−1
2 ; 1

2 ]× [−1;1]2

with periodic boundary conditions in x-direction and slip wall boundaries in y and
z direction. We solve the problem with a P2P4 scheme on a regular tetrahedral
mesh consisting of 655360 tetrahedral elements, leading to 22,937,600 degrees of
freedom per equation. The unstructured mesh is built on the basis of a 32×64×64
Cartesian grid, subsequently dividing each Cartesian cell in five tetrahedrons. A
sketch of the mesh topology is depicted on the left of Fig. 8. On the left of Fig. 9
we show the u = 0 contour surface at time t = 4.0 (after 11795 time steps) for the
case where the initial velocity perturbation is performed on the mode m = n = 1
and on the right of the same Figure the density contour levels are depicted in the
three cut planes x = 0, y = 0 and z = 0. Our results agree qualitatively very well
with the ones shown in Keppens and Tóth (1999).

A flow field with much more structures develops if the initial velocity field is per-
turbed on the mode m = 2, n = 1. The results of this simulation at time t = 4.0 are
shown in Fig. 10. The corresponding u = 0 iso-surface is depicted on the top left
and three simultaneous cuts in the planes x = 0, y = 0 and z = 0 are shown on the
top right of Fig. 10. One clearly notes the development of secondary vortices, as
reported in Keppens and Tóth (1999).

6 Conclusions

In this paper we have applied the new general high-order one-step PNPM frame-
work of Dumbser, Balsara, Toro, and Munz (2008) to the classical viscous and re-
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Figure 8: Sketch of the regular tetrahedral mesh used for the simulation of the 3D
Kelvin-Helmholtz instability.

Figure 9: Viscous and resistive 3D Kelvin-Helmholtz instability according to Kep-
pens and Tóth (1999) at t = 4.0 forcing the first mode (m = 1). Re = Sr = 104.
Left: u = 0 iso-surface. Right: density contours in the cut planes x = 0, y = 0 and
z = 0.
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Figure 10: Viscous and resistive 3D Kelvin-Helmholtz instability according to Kep-
pens and Tóth (1999) at t = 4.0 forcing the second mode (m = 2). Re = Sr = 104.
Left: u = 0 iso-surface. Right: density contours in the cut planes x = 0, y = 0 and
z = 0.

sistive magnetohydrodynamics (MHD) equations. Numerical convergence results
have been presented for PNPM schemes from third to eighth order of accuracy in
space and time on unstructured triangular meshes. The CPU times provided to-
gether with the convergence study clearly indicate that the new intermediate class
of PNPM schemes with 0 < N < M is computationally more efficient with respect to
classical high order finite volume or discontinuous Galerkin finite element schemes
when comparing accuracy and the necessary CPU time. The higher accuracy with
respect to high order finite volume schemes is due to the possibility of sub-cell
resolution because of the high order piecewise polynomial data representation in
each cell, compared to the piecewise constant data representation by cell averages
in the finite volume framework. The better performance of the intermediate PNPM

schemes compared to DG finite element methods is mainly caused by the more
generous time-step restriction and to a small extent also by the smaller computa-
tional cost per element update.
The numerical results obtained for classical test cases such as the first problem of
Stokes, the laminar boundary layer, the Orszag–Tang vortex system or the flow
past a circular cylinder show an excellent agreement with theoretical or numerical
reference solutions. Furthermore, our viscous and resistive computations of the
Kelvin–Helmholtz instability in 2D and 3D compare qualitatively very well with
the results obtained by Keppens, Tóth, Westermann, and Geodbloed (1999); Kep-
pens and Tóth (1999); Jeong, Ryu, Jones, and Frank (2000).
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Future research will be conducted to extend the PNPM framework to the viscous and
resistive relativistic MHD equations. Furthermore, we will compare the present re-
sults obtained by PNPM schemes with simulations based on meshless Lagrangian
particle methods, in particular using the new alternative formulations of the smooth
particle hydrodynamics (SPH) method recently published by Ferrari, Dumbser,
Toro, and Armanini (2008, 2009).
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