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Numerical Characterization of Porous Solids and
Performance Evaluation of Theoretical Models via the

Precorrected-FFT Accelerated BEM
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Abstract: An 3-D precorrected-FFT accelerated BEM approach for the linear
elastic analysis of porous solids with randomly distributed pores of arbitrary shape
and size is described in this paper. Both the upper bound and the lower bound
of elastic properties of solids with spherical pores are obtained using the devel-
oped fast BEM code. Effects of porosity and pore shape on the elastic properties
are investigated. The performance of several theoretical models is evaluated by
comparing the theoretical predictions with the numerical results. It is found that
for porous solids with spherical pores, the performances of the generalized self-
consistent method and Mori-Tanaka method are comparable and are much better
than that of the self-consistent method and the differential scheme. In particular,
the generalized self-consistent method gives the best approximations to three elas-
tic moduli while Mori-Tanaka method agrees particularly well with the numerical
value of Poisson’s ratio.

Keywords: Boundary element method, pFFT acceleration technique, porous ma-
terial, elastostatics, random distribution

1 Introduction

Porous materials are an important class of materials that have been widely utilized
in a variety of fields. Mechanical characterization is without doubt an essential step
in the applications of these materials. Over the past fifty years, many theoretical
approaches have been proposed for the evaluation of the effective elastic mechani-
cal properties of composite/porous materials. These approaches are however based
on various simplifications. For example, the self-consistent method calculates the
effective properties by assuming that any inclusion/void is surrounded by the ef-
fective as-yet-unknown material [Budiansky (1965); Hashin (1962); Hill (1965)].
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The differential scheme (DS) proposed by Norris was derived based on the idea of
realization; that is, the composite is assumed to be formed by adding inclusions
of different phases to the current matrix iteratively until the inclusions reach the
required volume fraction [Norris (1985)]. The generalized self-consistent method
(GSCM) [Benveniste (2008); Christensen (1998); Christensen and Lo (1979); Lu,
Huang and Wang (1995)] supposes that the inclusion is coated by a matrix material
shell and then is wholly embedded in the effective as-yet-unknown material. Based
on the framework of the "direct approach", Benventiste (1987) elucidated that the
essential approximation in Mori-Tanaka’s method [Mori and Tanaka (1973); Ben-
veniste (1987); Hwang and Huang (1999)] was that the concentration factors were
found by embedding a single particle in an all-matrix medium subject to a uniform
stress or strain at infinity. Unlike the simple model based on the "dilute" approxi-
mation, the applied uniform stress or strain was the average stress or strain of the
matrix. As such, the interactions between inclusions were accounted for. A com-
mon and essential requirement in all the above schemes is that the material has to
be macroscopically isotropic and homogeneous. This is however difficult to be met
in practice because many porous materials particularly those naturally formed such
as bone are inherently heterogeneous.

With the advent of advanced numerical techniques and rapidly developed comput-
ing power, detailed three-dimension numerical modeling of realistic porous solids
has become increasingly popular due to its capability to produce accurate predic-
tions of mechanical responses of these structures and its capability of capturing the
effects of non-uniform distribution, irregular shapes and size on the overall behav-
ior of porous solids. Such a trend can be clearly observed from the literature where
the recent modeling effort has been shifted from analytical analysis towards numer-
ical simulations. Examples include but are not limited to Day, Snyder, Garboczi and
Thorpe (1992); Gusev (1997); Simone and Gibson (1998); Hu, Wang, Tan, Yao and
Yuan (2000); Roberts and Garboczi (2000); Segurado and Llorca (2002); Segurado,
Gonzalez and Llorca (2003); Yao, Kong and Zheng (2003); Gatt, Monerie, Laux
and Baron (2005) and Kari, Berger, Rodriguez-Ramos and Gabbert (2007).

It is perhaps fair to say that the current leading method in the simulation of porous
solids is the finite element method (FEM). Indeed, the FEM is a mature, powerful
and versatile method suitable for an extremely wide scope of problems. However,
one challenge in using the FEM is the generation of good-quality volume fitting
mesh for problems with complex 3-D domains. With irregular shapes and random
distribution of pores, porous solids particularly those with large porosity could be
one of these examples in which a good quality volume mesh is difficult to pro-
duce. The boundary element method (BEM) [Banerjee (1994)], on the other hand,
requires only surface mesh for linear problems. It is thus particularly suitable for
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problems with complex 3-D geometry and/or moving boundaries. Applications
of the BEM can be found in many fields including, for example, stress analysis
[Tan, Shiah and Lin (2009)], crack propagation [Karlis, Tsinopoulos, Polyzos and
Beskos (2008)], contact problems [Zozulya (2009)], analysis of graded isotropic
elastic solids [Criado, Ortiz, Mantič, Gray and París (2007)], elastoplastic problems
[Owatsiriwong, Phansri and Park (2008)], electromagnetics [Soares and Vinagre
(2008)], acoustics [Yan, Hung and Zheng (2003); Yang (2004)] and fluid mechan-
ics [Mantia and Dabnichki (2008)]. For porous solids, the surface mesh of each
pore and the solid phase can be generated independently and parallel, greatly re-
ducing the meshing complexity and improving the meshing efficiency. In addition,
the recently developed acceleration techniques, such as the fast multipole method
(FMM) [Greengard and Rokhlin (1997)], the precorrected Fast Fourier Transforma-
tion (pFFT) technique [Phillips and White (1997)], the combined fast Fourier trans-
form and multipole method [Ong, Lim, Lee and Lee (2003)], the panel clustering
method [Hackbusch and Nowak (1989); Aimi, Diligenti, Lunardini and Salvadori
(2003)], and the adaptive cross approximation technique [Bebendorf, Rjasanow
(2003); Brancati, Aliabadi and Benedetti, (2009)] when combined with the iter-
ative linear system solvers, have greatly reduced the computational time and the
memory required in solving the discretized system, making the BEM suitable for
large-scale problems. Successful applications of the accelerated BEM in solving
large scale problems can be found in the areas of microelectromechanical systems
[Ye, Wang, Hemmert, Freeman and White (2003); Ding and Ye (2004); Frangi and
Gioia (2005)], composite materials [He, Lim and Lim (2008); Liu, Nishimura and
Otani (2005); Liu, Nishimura, Otani, Takahashi, Chen and Munakata (2005); Wang
and Yao (2005); Wang and Yao (2008); Wang and Yu (2008)], graphite materials
[Wang, Hall, Yu and Yao (2008)], corrosion problems [Aoki , Amaya, Urago and
Nakayama (2004)], electromagnetics [Chew, Song, Cui, Velamparambil, Hastriter
and Hu (2004)], etc. In the applications related to mechanical analysis of porous
solids, Liu presented a FMM accelerated BEM for the elastostatic analysis of 2D
structures and analyzed the perforated plates with many uniformly or randomly
distributed holes [Liu (2006)]. Wang and Yu (2008) studied the mechanical and
thermal properties of three dimensional nuclear graphite with several hundred ran-
domly distributed micro pores using the FMM accelerated BEM. He, Lim and Lim
(2008) employed the fast Fourier transform on multipole method to study the elastic
properties of porous materials with uniformly distributed voids.

In this paper, an efficient boundary element method based on the precorrected Fast
Fourier Transformation (pFFT) technique is developed for the linear elastostatic
analysis of 3-D porous solids with randomly distributed pores of arbitrary shapes.
This method is then employed to numerically study the effective elastic properties
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of solids with ellipsoidal pores of various porosities. The effects of some important
parameters such as the pore shape and size are numerically investigated. In addi-
tion, the performance of some theoretical models is evaluated via the comparison
between the numerical results and theoretical predictions. In the following section,
methods for the generation of geometric models of porous solids with randomly
distributed pores are described. It is followed by a description of the boundary
integral formulation for elastostatics and the pFFT technique. Some important is-
sues in the numerical implementation such as the evaluation of nearly singular and
singular integrals are also discussed. Next elastic properties deduced from sev-
eral theoretical approaches are presented. In Section 5, validation of the developed
method and code is described followed by the presentation of the mechanical char-
acterization of various porous solids and the comparison with various theoretical
models. A summary of the presented work is given in Section 7.

2 Model generation of porous solids

To facilitate the comparison with theoretical models, cubes with randomly but
macroscopically homogeneously distributed spherical pores of different porosi-
ties are constructed and employed to study the relationship between the effective
elastic properties and the porosity. Two common algorithms for the generation of
randomly distributed non-overlap spherical pores are the random sequential addi-
tion algorithm (RSA) and the Gusev scheme [Gusev (1997); Rintoul and Torquato
(1997)]. In the RSA, pores are added sequentially at locations that are randomly
selected. This method is easy to implement, but the porosity it can generate can
not exceed 0.3. Modifications or other schemes should be devised if a larger poros-
ity is desired [Kari, Berger, Rodriguez-Ramos and Gabbert (2007); Segurado and
Llorca (2002)]. In the Gusev scheme, spherical pores are generated initially on a
cubic lattice. They are then allowed to move sequentially about a certain distance
along a randomly chosen direction if the following conditions are met: (1) the dis-
tance between the pore to be relocated and any other pores is larger than or equal
to 2r +δ , where r is the radius of the spherical pore and δ is a positive value, and
(2) the distance from this pore to the boundary of the cube is larger than or equal to
r + δ . In this work, δ is chosen to be 0.05r and the distance that each pore moves
is a random value uniformly distributed in the range of (0,d), where d is the initial
gap between two pores. The movement continues until a macroscopically homoge-
neous model is obtained. Based on our experience, it is easier to generate models
with high porosities using the Gusev scheme. Hence this scheme is employed for
the generation of models with high porosity.

The inhomogeneous level of the pore distribution is accessed using the pair corre-
lation function defined as g(1) = V

4πr2N
dK(l)

dl , where K(1) is the average number of
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spherical pores located within a distance, l, from any sphere and N represents the
total number of pores in the volume V considered [Segurado and Llorca (2002)]. In
a statistically homogeneous distribution, the correlation function should approach
to one as l increases. Fig.1 shows the pair correlation function of a model obtained
after two million movement steps as a function of the ratio of l and r. From this plot,
it is evident that the distribution of the spherical pores is statistically homogeneous.
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Figure 1: Pair correlation function of a model containing 125 spherical pores with
a volume porosity of 0.4.

In this work, the influence of pore shape on the mechanical response of porous
solids is also studied. Hence, models with non-overlapping ellipsoidal pores of dif-
ferent shapes are generated and the RSA algorithm is employed for the generation.
In the implementation of the RSA algorithm, the most critical step is the detection
of the overlap between two pores. For ellipsoids, a method proposed by Wang,
Wang and Kim (2001) is employed. The generation procedure is as follows: an el-
lipsoid with its centroid located at (xo,yo,zo) and its three semi-principal axes along
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the three randomly chosen but uniformly distributed and mutually perpendicular
directions is generated first. A check for any overlap with the existing pores or the
outer surfaces of the solid is then performed. If none has been detected, this ellip-
soid is kept. Otherwise it is deleted and a new ellipsoid is generated following the
same procedure. The aforementioned detection method however does not exclude
the contacting cases. To guarantee a minimum distance between the pores, ellip-
soids are shrunk about 2.5% of their initial size. Fig.2 shows the interior of three
models with randomly distributed ellipsoidal pores of different aspect ratios. The
volume porosity in all three models is c = 0.2.

               
 (a) 1.0λ =  (spherical pores)                       (b) 0.5λ =                                (c) 2.0λ =  

 Figure 2: Three models of a cube with ellipsoidal pores of different aspect ratio, λ

defined as the ratio of two radii.

3 The precorrected-FFT accelerated boundary element method for elasto-
statics

3.1 Boundary integral formulation for elastostatics

Consider a 3D linear elastostatic interior problem. In the absence of body forces,
the integral formulation of the Navier’s equation reads [Banerjee (1994); Becker
(1992)]

ci j (p)u j (p) =
∫ ∫

S

[Gi j (p,q)τ j (q)−Fi j (p,q)u j (q)]dSq, (1)

where the kernels Gi j (p,q) and Fi j (p,q) are given as

Gi j (p,q) =
C1

r

(
C3δi j +

∂ r
∂xi

∂ r
∂x j

)
(2)
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and

Fi j (p,q) =−C2

r2

{
∂ r
∂nq

(
C4δi j +3

∂ r
∂xi

∂ r
∂x j

)
+ C4

(
ni

∂ r
∂x j

−n j
∂ r
∂xi

)}
. (3)

In the above equations, n = [n1 n2 n3]
T represents the outward unit normal vector,

r (p,q) represents the Euclidean distance between points p and q, and δi j is the
Kronecker delta function. On smooth boundaries, the solid angle ci j (p) = 0.5δi j.
It is δi j when p is inside the domain and 0 when p is outside the domain. The
subscripts i and j in the above equations denote the index of the degrees of freedom
and the Einstein summation convention is implied. The constants C1,C2,C3,C4 in
Eqs. (2) and (3) are C1 = 1

16πG(1−ν) , C2 = 1
8π(1−ν) , C3 = 3− 4ν , C4 = 1− 2ν

respectively, where G = E
2(1+ν) is the shear modulus, E is the Young’s modulus and

ν is the Poisson’s ratio.

Stress σi j inside the structure can be expressed in terms of the boundary quantities
as

σi j (p) =
∫∫
S

[
Gσ

ki j (p,q)τk (q)−Fσ

ki j (p,q)uk (q)
]
dSq, (4)

where the kernels Gσ

ki j and Fσ

ki j are given by

Gσ

ki j (p,q) =
C2

r2

{
C4

(
δki

∂ r
∂x j

+δk j
∂ r
∂xi

−δi j
∂ r
∂xk

)
+ 3

∂ r
∂xi

∂ r
∂x j

∂ r
∂xk

}
(5)

Fσ

ki j (p,q) =−2µC2

r3

{
ni

[
3ν

∂ r
∂x j

∂ r
∂xk

+C4δ jk

]
+n j

[
3ν

∂ r
∂xi

∂ r
∂xk

+C4δik

]
+

nk

[
3C4

∂ r
∂xi

∂ r
∂x j

+(1−4ν)δi j

]
+3

∂ r
∂nq

(
C4δi j

∂ r
∂xk

+ν

(
δ jk

∂ r
∂xi

+δik
∂ r
∂x j

)
−5

∂ r
∂xi

∂ r
∂x j

∂ r
∂xk

)}
.

(6)

3.2 The precorrected-FFT algorithm for elastostatics

In the conventional BEM, the final influence matrices are dense. This feature
has greatly limited the application scope of the BEM in the modeling of large-
scale problems. Fortunately, several acceleration algorithms have been invented
in the past several decades. The combination of the fast algorithms and iterative
solvers has greatly reduced both the memory usage and the computational time
required. One of the popular acceleration schemes is the precorrected-FFT tech-
nique [Phillips and White (1997)]. This scheme is easy to implement and has the
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advantage of being relatively kernel independent. Similar to the other acceleration
schemes such as the fast multipole method, the main idea of the precorrected-FFT
acceleration scheme is that instead of computing the influence matrix entries corre-
sponding to the far-field interaction explicitly and then multiplying them with the
sources, the far-field interactions are computed directly via an approximate method.
More specifically, in the precorrected-FFT (pFFT) technique, a parallelepiped is
constructed to enclose a three-dimensional problem after it has been discretized
into n surface panels. This parallelepiped is then subdivided into an array of small
cubes so that each small cube contains only a few panels. Fig. 3(a) shows a 2-D
view of a quarter of a discretized 3-D solid block with a spherical cavity located
at its center. The parallelepiped which has been divided into an 7×7×7 array of
small cubes is shown in Fig. 3(b) together with the discretized block. It should
be pointed out that the surface panels and the pFFT cubes can intersect with each
other. There is no need to maintain any consistency between the surface panels
and the cubes. The acceleration of surface integration is achieved by exploiting
the fact that the kernels in the surface integrals such as those in Eqs. (2) and (3)
have piecewise-smooth convolution form. Thus with the aid of the uniform grid
formed by the cubes in the parallelepiped, these integrals can be computed approx-
imately using the Fast Fourier Transform technique. To ensure accuracy, such an
approximation is only employed for far-field interactions, that is, integrals in which
the evaluation point is far away from the field panel (Figure 3(c)). For nearby in-
teractions, direct evaluation is required. The main steps in the precorrected-FFT
acceleration technique include

(1) Construction and superposition of the 3-D uniform grid and the discretized
problem domain (Fig. 3(b));

(2) Determination of the near- and far-field for each panel using the cubes of the
parallelepiped; for example, for panel P inside cube S, its near field and far
field are illustrated in Fig. 3 (c);

(3) Projection of the panel source onto the surrounding grid points based on poly-
nomial interpolation;

(4) Calculation of the grid to grid integration using the Fast Fourier Transforma-
tion;

(5) Interpolation of the grid interaction back to panels;

(6) Subtraction of the near-field interaction;

(7) Computation of the near-field interaction using direct calculation;
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(8) Summation of the near-field and far-field contributions.

For a detailed description of this technique, readers are referred to Phillips and
White (1997) and Masters and Ye (2004).

                       
               (a)                                             (b)                                                              (c)  
 

Near 
field

Far 
field 

Figure 3: Side views of a problem domain: one quarter of a solid block with a
spherical cavity located at its center: (a) surface mesh of the problem domain (852
panels); (b) the superimposed 3-D parallelepiped decomposed into 7×7×7 cubes
and the surface mesh; (c) illustration of the near field and far field of panel P located
inside cube S.

3.3 Numerical implementation

A piecewise constant collocation scheme is employed to discretize the integral
equation shown in Eq. (1). The surfaces of the solid and each pore are discretized
into small triangular panels. At each panel, the displacement and the traction are
assumed to be constant. The resultant linear system is then solved using the gener-
alized minimal residual algorithm (GMRES) [Saad and Schultz (1986)] accelerated
with the precorrected-FFT technique.

A major challenge in the solution procedure is the accurate evaluation of the nearly
singular and singular integrals which occur quite frequently in porous solids par-
ticularly when the porosity is large. In the literature, a variety of methods have
been proposed and developed for the evaluation of nearly singular integrals [Scud-
eri (2008); Ye (2008)], weakly singular integrals [Han and Atluri (2007); Nagarajan
and Mukherjee (1993)], strongly singular [Cruse (1969); Ding and Ye (2004); Liu
(2000)] and hypersingular integrals [Chen and Hong (1999); Dominguez, Ariza
and Gallego (2000); Gao, Yang and Wang (2008); Li, Wu and Yu (2009); Qian,
Han and Atluri (2004); Qian, Han, Ufimtsev and Atluri (2004); Sanz, Solis and
Dominguez (2007); Yan, Cui and Hung (2005)]. In this work, the nonlinear trans-
formation technique described by Ye (2008) is employed to compute the nearly
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singular integrals. The weakly singular integrals associated with the G kernel (Eq.
(2)) are evaluated using the method proposed by Nargarjan and Mukherjee (1993)
in which a transformation to the polar coordinate system is employed to eliminate
the near singularity. For the evaluation of strongly singular integrals; that is, those
associated with the F kernel, the analytical method proposed by Cruse (1969) is
employed. In this method, each triangular panel is first divided into three subtri-
angles with the centroid of the origin panel being the common vertex as illustrated
in Fig. 4. A local coordinate system with the origin at the centroid is then set up
for each subtriangle. For example, for the subtriangle c20, a local coordinate sys-
tem ξ1ξ2 is constructed so that the axis ξ1 is parallel to the edge and the axis ξ2 is
perpendicular to the edge. The integration of the kernel C2C4

1
r2

(
ni

∂ r
∂x j
−n j

∂ r
∂xi

)
on

this subtriangle can then be obtained analytically as

Ic20
i j =−C2C4εi jke1k [log(ξ1 + r)]20 , (7)

where εi jk is the permutation tensor, e1k is the projection of the unit vector of along
ξ1-axis on the k-th global axis, and the variable r represents the distance between a
point on the edge and the centroid of the original panel c.
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Figure 4: Illustration of the local coordinate system of the subtriangle c20.

It should be noted that due to flat panels, the integral corresponding to the first term
in the F kernel (Eqn. (3)) vanishes because ∂ r/∂nq ≡ 0.

4 Theoretical models

Several theoretical schemes are employed to calculate the effective elastic prop-
erties of porous materials with spherical pores. These properties are used in the
performance comparison presented in Section 5. Throughout the rest of the paper,
the effective shear, bulk, Young’s moduli and Poisson’s ratio are denoted as G,K,E
and v, respectively. Letters with subscript m represent material properties of the
matrix.
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4.1 Self-consistent method

By setting both the shear and bulk moduli of inclusions to be zero in Eqs. (2-6)-(2-
10) in Budiansky (1965), the effective shear and bulk moduli of porous materials
with spherical pores satisfy the following two equations:

1
G

=
1

Gm
+

c
(1−β )G

(8)

1
K

=
1

Km
+

c
(1−α)K

, (9)

where α = 1+ν

3(1−ν) = 3K
3K+4G ,β = 2(4−5ν)

15(1−ν) = 6(K+2G)
5(3K+4G) . Further mathematic manipula-

tion yields the following equations from which the effective shear and bulk moduli
can be readily obtained.

8G2 +[3(3− c)Km−8Gm +20 · c ·Gm]G+(18c−9)KmGm = 0, (10)

K =
4(1− c)KmG
4G+3cKm

(11)

4.2 Differential scheme

Based on the idea of realization, the expressions [Norris (1985)] for the effective
bulk and shear moduli of porous materials in the differential form are obtained as,

dK
dc

=−K
3K +4G

4G
1

1− c
(12)

dG
dc

=−G
15K +20G
9K +8G

1
1− c

(13)

with the initial conditions of K(0) = Km and G(0) = Gm. Using the central differ-
ence method one can obtain the numerical values of K and G from Eqs. (12) and
(13).

4.3 Generalized self-consistent method

In this method, the inclusions/pores are coated with a matrix shell and then are
embedded in an infinite effective material with as-yet-unknown elastic constants
[Benveniste (2008); Christensen and Lo (1979)]. Formulas for the effective prop-
erties of porous materials can be derived and are given as,

K
Km

= 4
(1− c)Gm

4Gm +3cKm
(14)
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A(
G

Gm
)2 +2B

G
Gm

+C = 0 (15)

where

A = 4(7−10vm)(7−5vm)+50(7−12vm +8v2
m)c−252c5/3 +25(7− v2

m)c7/3

+ 2(4− 5vm)(7 + 5vm)c10/3,

B =−(3/2)(7−5vm)(7−15vm)−75vm(3− vm)c+252c5/3−25(7− v2
m)c7/3

+(1/2)(7 + 5vm)(5vm−1)c10/3,

C =−(7−5vm)(7+5vm)+25(7− v2
m)c−252c5/3 +25(7− v2

m)c7/3

− (7 + 5vm)(7− 5vm)c10/3.

For more detailed information please refer to Eqs.(3.15-3.18) in [Christensen and
Lo (1979)] or Eqs.(31-33) in [Lu, Huang and Wang (1995)].

4.4 Mori-Tanaka method

The elastic moduli of porous materials can be obtained from Benveniste (1987) as,

K
Km

= 4
(1− c)Gm

4Gm +3cKm
(16)

G
Gm

= 1− 5(3Km +4Gm)
3(3+2c)Km +4(2+3c)Gm

c (17)

4.5 Hashin bounds

Based on the “variational principle”, Hashin et al [Hashin (1962) ; Hashin and
Shtrikman (1963)] derived the upper and lower bounds for both bulk and shear
moduli of composite materials. When the inclusions/pores are spherical, the bounds
of the bulk modulus coincide which yield the exact solution for the bulk modulus
as shown in Eqn. (18).

K
Km

= 4
(1− c)Gm

4Gm +3cKm
(18)

This formula is identical to that obtained from the generalized self-consistent method
and Mori-Tanaka method shown in Eqs. (14) and (16). Unfortunately the bounds
for the shear modulus do not coincide. Hashin (1962) provided a simple formula
which produces an intermediate value between the two bounds.

G
Gm

= 1− 5(3Km +4Gm)
3(3+2c)Km +4(2+3c)Gm

c (19)
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5 Validation of the pFFT accelerated BEM

In this section, numerical simulations of two examples using the developed pFFT
accelerated BEM code are presented. Results are compared with the analytical
solution and the solution obtained from ANSYS, a commercial FEM software.

5.1 A pressurized thick-wall cylindrical vessel

A 3D pressurized thick-wall cylindrical vessel with an inner radius of ri = 3m and
an outer radius of ro = 6m is subject to an inner pressure of pi = 1Pa and a zero
outer pressure. The Young’s modulus and the Poisson’s ratio of the vessel material
are Em = 1.0× 105Pa and νm = 0.3, respectively. The radial displacement of the
vessel as a function of the radial distance r can be derived analytically as [Becker
(1992); Lu and Luo (1997)]

ur (r) = c1r +
c2

r
(20)

where c1 = 1
E∗

(1−ν∗)r2
i pi

r2
o−r2

i
, c2 = 1

E∗
(1+ν∗)r2

i r2
o pi

r2
o−r2

i
and E∗ = Em

1−ν2
m
,ν∗ = νm

1−νm
.

Substituting the parameters associated with the vessel into Eqn. (20), one obtains
c1 = 26/15× 10−6 ≈ 1.73333× 10−6 and c2 = 1.56× 10−5m2. Therefore, the
analytical solutions of the radial displacements of the inner and outer cylindrical
surfaces are ur (3) =57.2 µm and ur (6) =36.4 µm, respectively.

The developed 3-D pFFT accelerated BEM code is employed to calculate the ra-
dial displacement of the pressurized vessel. Due to symmetry, only a quarter of
the structure is modeled. Fig. 5 shows the simulation domain together with its two
discretized models. The height of the simulation model is set to be H = 9m. In
order to model the infinitely long cylinder, symmetrical boundary conditions are
applied at the top and the bottom surfaces. The simulated radial displacements at
the inner and outer surfaces are listed in Table 1. Several different discretizations
are employed starting from the coarse mesh with 60 triangular panels to the finest
mesh with 59392 panels. The mesh is refined in such a way that the number of the
elements along the edges of the structure is doubled in each refinement. Results
obtained from the direct BEM simulations, i.e., without the acceleration, are also
presented in Table 1 for comparison. Due to the limited memory of our computer,
the finest discretization that can be simulated in the direct calculation is 3712. Over-
all, the linear convergence rate is observed in both sets of the results. In addition,
the accuracies of the two sets of results are also comparable, indicating that the
acceleration via the pFFT technique does not affect both the convergence rate and
the accuracy. Also listed in Table 1 are the consumed memory and the CPU time
associated with each method. To provide a clear picture of both the memory and
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the CPU time, Fig. 6 plots the consumed memory and the CPU time as functions of
the number of panels. The lines corresponding to O(n), O(n logn) and O

(
n2
)

are
also plotted for reference. It is evident that both the CPU time and memory usage
of the pFFT accelerated BEM are of O(n logn), a great improvement from O

(
n2
)

particularly when n is large.

       
      (a) One quarter of the vessel      (b) Discretization with 60 panels  (c) Discretization with 3712 panels 
 Figure 5: Simulation model and surface mesh for a pressurized thick-wall cylindri-

cal vessel.

Table 1: Illustration of the convergence and efficiency of the pFFT BEM and the
direct BEM

Method
Number of panels

60 232 928 3712 14848 59392

pFFT BEM

memory (MB) 3 21 51 174 1445 6509
time (s) 2 11 36 156 1408 8719
uo

r (µm) 37.6250 36.7542 36.5204 36.5133 36.5062 36.4423
error 3.37% 0.97% 0.33% 0.31% 0.29% 0.12%

ui
r(µm) 62.6100 59.0800 57.9006 57.6281 57.4708 57.3066
error 9.46% 3.29% 1.22% 0.75% 0.47% 0.19%

Direct BEM

memory (MB) 3 23 266 4251
time (s) 2 14 228 4986
uo

r (µm) 37.6250 36.7542 36.5742 36.4971
error 3.37% 0.97% 0.48% 0.27%

ui
r(µm) 62.6100 59.0800 58.0275 57.6000
error 9.46% 3.29% 1.45% 0.70%

5.2 A pressurized cube with a spherical cavity at its center

To further validate the in-house code based on the fast pFFT BEM for elastostatic
problems, the case of a cube with a spherical cavity located at its center is simu-
lated. Again the material is characterized by Young’s modulus Em = 1.65×105Pa
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Figure 6: Consumed memory and computational time as functions of the number
of panels

and Poisson’s ratio νm = 0.33. The length of the cube is set to be 1 m and the radius
of the spherical cavity is 0.15 m. Uniform normal pressure P = 1 Pa is applied at
the surfaces of z =±0.5. Because of symmetry, only one octant of the cube is mod-
eled as shown in Fig. 7. The boundary conditions of the simulation model are that
the normal pressure of 1 Pa is set at z = 0.5; zero traction is applied at the surface
of the cavity and the outer surfaces specified by x =−0.5 and y =−0.5. All other
surfaces are treated as the symmetric surfaces.

The simulated displacements along the z-direction, uz, at point A(0,0,0.5) at dif-
ferent discretizations are listed in Table 2. Due to the lack of the analytical solution
in this case, numerical solution,uz =−3.1265µm, obtained from the finite element
analysis using the commercial software ANSYS with 33132 SOLID95 elements
and 47752 nodes is used as the reference value for the error calculation. Again,
the accuracy of the pFFT accelerated BEM and its linear convergence are demon-
strated.

6 Mechanical characterization of porous solids

The effective elastic properties of porous materials can be obtained based on the
principle of energy equivalence; that is, by equating the total strain energy of a
representative sample of the porous material subject to a specific loading to the
total strain energy of the same sample subject to the same loading but made of an
effective homogeneous material, of which the material properties are to be found.
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                              (a) Simulation model                               (b) Surface mesh with 220 panels 
 

(0,0,0.5)A

Figure 7: Model and surface discretization of a cube with a spherical cavity.

Table 2: Illustration of the convergence and efficiency of the fast pFFT BEM and
its comparison with the direct BEM

Method
Number of panels

220 852 3350 13366

pFFT BEM

memory (MB) 8 41 168 599
time (s) 6 14 157 503

uz (A)µm -3.168 -3.151 -3.134 -3.131
error 1.33% 0.78% 0.24% 0.14%

Direct BEM

memory (MB) 22 235
time (s) 13 182

uz (A)µm -3.160 -3.148
error 1.07% 0.69%

The loading can be either a specified displacement or a specified traction boundary
condition, which yields an upper bound or a lower bound for the effective Young’s,
bulk and shear moduli respectively. For Poisson’s ratio, an upper bound is obtained
if a traction boundary is prescribed while a lower bound is obtained by applying a
displacement loading.

Both effective Young’s modulus E and Poisson’s ratio can be calculated by apply-
ing a uniaxial traction or a uniaxial displacement to the sample. To determine the
effective bulk modulus, a uniform normal traction σ0n or a linear displacement
field corresponding to an isotropic strain ε0 is applied on the outer surfaces of a
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representative sample. Based on the “energy equivalence”, the two bounds of the

bulk modulus can be obtained as KL = σ0V
M
∑
j=1

(n·uA) j

and KU =

M
∑
j=1

(T·xA) j

9ε0V , where KL

and KU denote the lower and the upper bounds, respectively, M is the total number
of elements on the outer surfaces, (n,A,x,u,T) j represent the outward unit normal
vector, the area, the centroid, the displacement and the traction of the j-th element,
and V is the volume of the representative sample. Similarly, the effective shear

modulus is obtained as GL = τ2V
M
∑
j=1

(T·uA) j

or GU =

M
∑
j=1

(T·xA) j

4γ2V , corresponding to the

loading conditions of T1 = τn2,T2 = τn1,T3 = 0 and u1 = γx2,u2 = γx1,u3 = 0 ,
respectively. In this work, both bounds are obtained and the average value of the
two bounds serves as the simulated effective property.

Due to the randomly distributed pores, the sample size and the statistical fluctuation
may have strong influence on the calculated properties. In order to obtain accurate
predictions of the properties, the sample size when compared with the pore size
must be sufficiently large so that the influence of sample size on the effective prop-
erties is minimum. Fig. 8 plots the normalized effective Young’s modulus E/Emas
a function of the normalized sample size L/r, where r is the radius of the spherical
pores. The Young’s modulus and Poisson’s ratio of the matrix material in this cal-
culation are chosen to be Em = 70GPa and νm = 0.25. It is observed that when the
normalized sample size is larger than 10, the Young’s modulus starts to converge
and becomes independent of the sample size. Hence, a sample size of 12 or larger
is employed in the calculations presented in this paper. To minimize the influence
of the statistical fluctuations, the material properties are calculated by taking the
average of the values obtained from several different realizations of the same mate-
rial; that is, samples with different distributions of pores but with the same porosity,
pore size and shape.

In the following subsections, effective elastic properties of various porous solids
with randomly but homogeneously distributed ellipsoidal pores are presented. Of
particular interest are the effects of the porosity and pore shape on the effective
elastic properties. A surface mesh with a total of 83842 triangular elements is
employed in all the calculations presented. This value is determined from a con-
vergence study. Table 3 presents the normalized effective Young’s moduli obtained
from two sets of meshes and four samples; each contains 64 spherical pores and
has a volume porosity of 0.2. Clearly a mesh with 83842 elements is sufficiently
fine for the purpose of obtaining effective linear properties.
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Figure 8: Normalized Young’s modulus as a function of the normalized sample
size.

Table 3: Convergence Study

E/Em 83842 elements 191814 elements Relative error (%)
Sample 1 0.6441 0.6400 0.6406
Sample 2 0.6398 0.6357 0.6449
Sample 3 0.6429 0.6387 0.6576
Sample 4 0.6437 0.6396 0.6410
Average 0.6426 0.6385 0.6421

6.1 Porosity effect

The simulated effective properties of porous samples with different porosities are
plotted in Fig.9. The error bars indicate the range of variations caused by dif-
ferent realizations and the dots represent the average values obtained from differ-
ent realizations. As expected, the effective Young’s modulus, shear modulus and
bulk modulus corresponding to the case with a prescribed traction boundary con-
dition are lower than that of the case when a displacement boundary condition is
prescribed. On the contrary, Poisson’s ratio obtained from cases with a traction
boundary condition is larger than that from cases with a displacement boundary
condition. The differences between the two bounds at different porosities are listed
in Table 4. It is observed that the difference increases with the increased porosity.
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All three elastic moduli decrease with the increasing porosity and exhibit a slightly
non-linear dependence on the porosity. The dependence of Poisson’s ratio on the
porosity is however much weaker and is subject to a larger fluctuation. Despite
the variation, a steady reduction in Poisson’s ratio is observed before the porosity
reaches 0.35. It seems that Poisson’s ratio starts to increase with the porosity after
0.35.
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 Figure 9: Simulated effective elastic properties of a porous solid with spherical

pores as functions of its porosity.
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Table 4: Relative differences of elastic properties between the two bounds

Relative difference c=0.1 c=0.2 c=0.25 c=0.3 c=0.35 c=0.4
∆E/Em(%) 0.79 2.09 2.54 3.21 3.87 5.14

∆v(%) 0.05 0.10 0.51 0.58 0.79 1.61
∆K/Km(%) 0.95 2.17 2.76 3.95 4.41 5.19
∆G/Gm(%) 1.84 4.67 5.76 7.98 9.41 10.69

6.2 Shape effect

The effects of pore shape on the Young’s modulus and Poisson’s ratio are studied
by varying the radius along one semi-principal axis of the ellipsoid while keeping
the radii along the other two semi-principal axes fixed, i.e., by varying the aspect
ratio of the ellipsoidal pores, λ , defined as the ratio of a and b, where a and b are
the radii of the ellipsoid along two principal axes. The generation of randomly dis-
tributed ellipsoidal pores with a specific λ is described in Section 2. The orientation
of the ellipsoids is random but uniformly distributed. At each λ , four samples with
the same porosity are constructed and modeled. The simulated Young’s modulus as
a function of the aspect ratios is plotted in Fig.10, which demonstrates a decreas-
ing Young’s modulus with the decreased λ . Such a trend is consistent with that
observed in He, Lim and Lim (2008), in which the effective Young’s moduli were
simulated for cubes containing uniformly distributed ellipsoidal voids of different
aspect ratio. It was found that the stiffness of the cube varied with the aspect ratio
and the orientation of the voids. When the angle between the major axis of the el-
lipsoid and the z-axis is smaller than 45◦, the stiffness increases with the increased
aspect ratio. It decreases with the increased aspect ratio when the angle is larger
than 45◦. However, when compared with the case of spherical pores, the amount
of change in the stiffness is not equal in the two cases. The increase in the stiffness
when the angle is smaller than 45◦ is larger than the amount of the reduction in the
stiffness when the angle is larger than 45◦. Therefore, in our case, even when the
angle is uniformly distributed, the effective Young’s modulus of the cube with ran-
domly distributed ellipsoidal pores increases with the increased aspect ratio. Due
to the large variations, the effect of pore shape on Poisson’s ratio is inconclusive.

6.3 Comparison between theoretical models and numerical simulations

It is of interest to compare the numerical predictions of effective elastic properties
of porous solids with those obtained from various theoretical models. Due to the
various assumptions employed in the theoretical models, numerical characteriza-
tion of realistic materials is a viable approach for the evaluation of the performance
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 Figure 10: Simulated Young’s modulus and Poisson ratio of porous solids with
different ellipsoidal pores.

of these models. In Fig. 11, Young’s modulus, Poisson’s ratio, bulk and shear mod-
uli of porous solids with 125 randomly but homogeneously distributed spherical
pores obtained from numerical simulations and various theoretical models are pre-
sented. Again, the numerical values are the averages of the upper and lower bounds.
Among the four theoretical schemes, the performances of Mori-Tanaka’s method
and the generalized self-consistent method (GSCM) are comparable in the predic-
tion of the effective Young’s, bulk and shear moduli with the GSCM’s performance
being slightly better. Both models give much better predictions than the other two
methods. The self-consistent method yields the worst predictions of all properties.
All methods except Mori-Tanaka’s method do not produce good predictions of the
effective Poisson’s ratio. The good performance of Mori-Tanaka’s scheme in the
present examples is not surprising as this scheme is derived for materials with ran-
domly distributed ellipsoidal inclusions. As illustrated in Benveniste (1987), the
inclusion/pore interaction is accounted in a similar way as that in the GSCM which
explains to a certain extent the similar performance of the two methods.

7 Summary

A 3D precorrected-FFT accelerated BEM approach is developed for the linear elas-
tic analysis of porous solids with randomly distributed pores of arbitrary shape and
size. This approach enables the direct simulation of porous solids with large poros-
ity; hence accurate predictions of elastic behavior of realistic porous solids can be
produced. The developed BEM code is validated using two examples in which
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 Figure 11: Comparison between theoretical schemes and numerical simulations

the analytical solution and the numerical solution obtained by finite element cal-
culations are used for comparison. The accuracy and the efficiency of the BEM
approach have been demonstrated in both examples. As an application of the de-
veloped fast BEM approach, the Young’s, shear and bulk moduli and Poisson’s ratio
of porous solids with spherical pores of different porosities are calculated. Both up-
per and lower bounds are obtained and the average values of the two bounds are
used as the numerical predictions of the elastic properties. The largest porosity sim-
ulated in the present work is 0.4. This value is largely limited by the methods for
model generation. The effects of porosity and pore shape on elastic properties are



Numerical Characterization of Porous Solids 55

investigated using numerical simulations. Despite being macroscopically isotropic,
the Young’s modulus of materials with ellipsoidal pores depends on the aspect ratio
of the ellipsoids.

The developed approach is also employed to evaluate the performances of vari-
ous theoretical schemes for the predictions of effective material properties of com-
posite/porous materials. Overall, both the generalized self-consistent method and
Mori-Tanaka’s method perform quite well compared to the self-consistent method
and the differential scheme by Norris. The generalized self-consistent method gives
the best approximations to the three elastic moduli, while Mori-Tanaka method
agrees well with the numerical value of Poisson’s ratio.
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