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An Object-Oriented MPM Framework for Simulation of
Large Deformation and Contact of Numerous Grains
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Abstract: The Material Point Method (MPM) is more expensive in terms of stor-
age than other methods, as MPM makes use of both mesh and particle data. There-
fore, it is critical to develop an efficient MPM framework for engineering appli-
cations, such as impact and explosive simulations. This paper presents a new ar-
chitecture for MPM computer code, developed using object-oriented design, which
enables MPM analysis of a mass of grains, large deformation, high strain rates
and complex material behavior. It is flexible, extendible, and easily modified for
a variety of MPM analysis procedures. An MPM scheme combining contact al-
gorithm with USF, USL and MUSL formulation is presented, and an improved
contact detection scheme is proposed to avoid contact occurring earlier than ac-
tual time, and several schemes are developed to reduce the memory requirement
and computational cost, including the local multi-mesh contact algorithm, dynamic
internal state variables for materials, dynamic grid and moving grid technique. Fi-
nally, some numerical examples are presented to demonstrate the computational
efficiency and memory requirement of the framework.
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1 Introduction

As one of the innovative spatial discretization methods, the Material Point Method
(MPM) developed by Sulsky et al. [Sulsky, Chen and Schreyer (1994); Sulsky,
Zhou and Schreyer (1995)] is an extension of FLIP [Brackbill and Rupple (1986);
Brackbill, Kothe and Rupple (1988)] particle-in-cell method in computational fluid
dynamics to the computational solid mechanics. The essential idea is to take advan-
tage of both the Eulerian and Lagrangian methods. It discretizes a material domain
by using a collection of material points. The momentum equations are solved on
a predefined regular background grid, so that the grid distortion and entanglement
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are completely avoided. In the past decade, the MPM has evolved into a robust spa-
tial discretization method capable of handling many challenging engineering prob-
lems. It has been applied to large strain problems [Wiechowski (2004); Coetzee,
Vermeer and Basson (2005)], calculations with dynamical energy release rate [Tan
and Nairn (2002)], fracture mechanics [Joris, Rene and Alan Needleman (2005)],
dynamics failure [Chen, Hu, Shen, Xin and Brannon (2002); Chen, Feng, Xin and
Shen (2003)], hyper-velocity impact [Zhang, Sze and Ma (2006)] and explosion
[Ma, Zhang, Lian and Zhou (2009)], thin membranes [York, Sulsky and Schreyer
(1999)], granular materials [Bardenhagen, Brackbill and Sulsky (2000); Cummins
and Brackbill (2002); Bardenhagen and Brackbill (1998); Bardenhagen and Brack-
bill (2000); Bardenhagen and Guilkey (2001)], porous media [Zhang, Wang and
Chen (2009)], just to name a few.

Contact phenomena are widely observed in engineering fields. Because a single-
valued velocity field is used for updating the positions of material points, the no-slip
(or sticking) contact between two different bodies can be handled automatically at
no additional cost using the original MPM, and the contact surface need not to be
detected. Furthermore, Bardenhagen et al. [Bardenhagen and Brackbill (2000);
Bardenhagen and Guilkey (2001)] extended the original MPM to the friction (or
slip) contact between deformable solid bodies, which allows Coulomb friction and
slip at contact nodes. The contact force between bodies is obtained from the rela-
tive nodal velocity at the contact surface. To release the no-slip contact algorithm
in MPM, a global multi-mesh mapping scheme was proposed by Hu and Chen [Hu
and Chen (2003)]. In the multi-mesh mapping scheme, each material lies in an
individual background mesh rather than in the common one. But the algorithm oc-
cupies vast memory if there are a lot of granules. Pan et al. [Pan, Xu, Zhang, Zhang,
Ma and Zhang (2008)] proposed a three-dimensional global multi-mesh contact al-
gorithm based on [Hu and Chen (2003)], in which the contact force between of
bodies is obtained from the normal nodal acceleration continuity requirement at
the contact surface.

There are several alternatives for which nodal velocities to use for the updating
stress. In 1994, Sulsky et al. [Sulsky, Chen and Schreyer (1994)] presented an
approach, referred to as the “Update Stress Last” or USL, in which the nodal ve-
locities is calculated after updating the nodal momenta. The method has serious
stability difficulties. Then, two solutions were proposed to solve it. An approach,
referred to as the “Modified Update Stress Last” or MUSL was given by Sulsky et
al. [Sulsky, Zhou and Schreyer (1995)], in which the particle momenta are extrapo-
lated to the grid twice before updating the nodal velocities. Another fix is to update
strains before updating momentum [Bardenhagen (2002)], referred to as “Update
Stress First” or USF. In many simulations, both of the above give greatly improved
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stability compared to USL. These algorithms were implemented together in one
algorithm by Nairn [Nairn (2003)] for crack calculations.

There are also some other improvement and research on MPM. Artificial noise is
introduced when the material points move across the cell, due to the discontinuity
of the gradient of the interpolation function at the borders of the neighboring cells.
Bardenhagen and Kober [Bardenhagen and Kober (2004)] developed the General-
ized Interpolation Material Point (GIMP) methods to solve the problem. Then, Ma
et al. [Ma, Lu and Komanduri (2006)] presented a refinement scheme for a struc-
tured mesh in GIMP. Steffen et al. [Steffen, Wallstedt, Guilkey, Kirby and Berzins
(2008)] analyze and demonstrate how the smoothing length within GIMP can affect
the error and stability properties, and how various choices of basic functions and
boundary treatments affect the spatial convergence properties of MPM. A silent
boundary scheme is proposed within the framework of the material point method
by Shen and Chen [Shen and Chen (2005)]. An enhancement to the projection
operation is developed by Wallstedt and Guilkey [Wallstedt and Guilkey (2007)],
which makes use of already available velocity gradient information. The enhance-
ment facilitates exact projection of linear functions and reduces the dependence of
projection accuracy on particle location and density for non-linear functions. The
thermo-mechanical model is implemented within the framework of MPM by Chen
et al. [Chen, Gan and Chen (2008)], so that the different gradient and divergence
operators in the governing differential equations could be discretized in a single
computational domain and that continuous remeshing is not required with the evo-
lution of failure.

More and more strength models, equations of state and failure models are incor-
porated into engineering softwares in order to solve multifarious problems. That
resulted in many internal state variables of materials need to be saved and relations
between materials are more complex than before. Different algorithms and material
models need to be incorporated in a single program. However, as the complexity of
MPM programs increase, it is obvious that improving the flexibility, expansibility,
maintainability and reusability of software is important. Procedural codes contain
many complex data structures, which are accessed throughout the program. This
global access decreases the flexibility of the system. It is difficult to modify the
existing codes and to extend the codes to adapt them for new users, models and
solution procedures. The inflexibility is demonstrated in several ways: (1) a high
degree of knowledge of the entire program is required to work on even a minor
portion of the code; (2) reuse of code is difficult; (3) a small change in the data
structures can have a ripple effect throughout the system; (4) the numerous inter-
dependencies between the components of the design are hidden and difficult to
determine; (5) the integrity of the data structures is not assured.
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Due to these facts, the necessity for a suitable MPM computational environment
is evident. The object-oriented programming (OOP) technique has been shown to
significantly improve the extendibility and reusability of software. A carefully de-
signed framework or architecture can significantly reduce the effort required for
maintaining and extending the software. In the past decades, many structural
engineering researchers have pursued objected-oriented design. In 1990, Fenves
[Fenves (1990)] described the advantages of OOP for the development of engineer-
ing software. One of the first detailed applications of the object-oriented paradigm
to finite element method (FEM) was published in 1990 by Forde et al. [Forde,
Foschi and Stiemer (1990)]. The authors abstracted out the essential components
of the FEM (elements, nodes, materials, boundary conditions, and loads) into a
class structure used by most subsequent authors. Since then, complete objected-
oriented FEM architectures is presented [Miller and Rucki (1993); Duboispelerin
and Zimmermann (1993); Baugh and Rehak (1992); Lu, White, Chen and Dun-
smore (1995); Chudoba, Bittnar and Krysl (1995); Archer, Fenves and Thewalt
(1999); Yu and Kumar (2001)]. Recently, Luo et al. [Luo, Cai and Zhang (2000)]
described an objected-oriented meshless Galerkin method. Atluri et al. [Atluri and
Shen (2002); Atluri, Liu and Han (2006)] proposed a general framework for de-
veloping the Meshless Local Petrov-Galerkin (MLPG) approach, which provides
flexibility in choosing the local weak forms, the trial functions, and the indepen-
dent test functions for solving systems of partial differential equations. Zhang and
Subbarayan [Zhang and Subbarayan (2006)] proposed a design-analysis integrated
CAD framework termed jNURBS, developed using the Java language. It enabled
meshless analysis of physical behavior and optimal design.

Efficiency of C++ as an object-oriented language is higher than that of languages
based on virtual machine or common language runtime (such as Java and C#) and
equate to that of traditional languages (such as FORTRAN and C). This paper pre-
sented a new object-oriented MPM computational framework, named MPM3Dpp,
designed for large deformation, high strain rates and complex material behavior,
developed using C++ language. MPM3Dpp evolved from MPM3D [Peng, Zhang,
Ma and Wang (2008)] supporting OpenMP parallelization, developed using FOR-
TRAN, and is redesigned with object-oriented approach. Considering that imple-
mentation efficiency and memory consumed are important for computational pro-
gram, we have taken advantage of object-oriented mechanisms and memory allo-
cation of C++ to optimize them. Besides, some examples were implemented to
demonstrate high efficiency and low memory required of the new framework.
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2 MPM formulation

2.1 Initial Discretization

The MPM procedure begins by discretizing the material domain with a set of ma-
terial points or particles. A weak formulation [Sulsky, Chen and Schreyer (1994);
Sulsky, Zhou and Schreyer (1995)] of the MPM algorithm of solid mechanics is
given and the method is framed in terms of the finite element method. The momen-
tum equation

ρ
dv
dt

= ∇ ·σσσ +ρb (1)

is solved in a Lagrangian frame on a background grid. In Eq.(1), b is the body
force, ρ is the mass density, v is the velocity and σσσ is the stress tensor.

In MPM, the continuum bodies are discretized with Np material particles. Each
material particle carries the information of position, velocity, mass, density, stress,
strain and all other internal state variables necessary for the constitutive model. At
each time step, the mass and velocities of the material particles are mapped onto
the background computational mesh. The mapped nodal mass mi and momentum
pi are obtained through the following equations respectively,

mi =
np

∑
p=1

mpNip (2)

pi =
np

∑
p=1

mpvpNip (3)

where, mp is the particle mass, vp the velocity of the particle, and Nip is the value
of shape function associated with node i evaluated at particle p.

2.2 Time integration with contact algorithm

Constraints on the grain motion are necessary only when grains are approaching.
If the momenta of two bodies are projected on to the same node, the contact may
occur and the contact between bodies r and s is detected by comparing the nodal
velocities vr

i and vs
i [Pan, Xu, Zhang, Zhang, Ma and Zhang (2008)],

(vr
i −vs

i ) ·nr
i > 0 (4)

where nr
i is the unit outward normal of body r at node i along the boundary.

Bardenhagen and Guilkey [Bardenhagen and Guilkey (2001)] proposed a method
to include the normal traction tα

n , which is computed at a contact grid node by
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interpolating individual material point contributions using the surface normals (and
the relation tα

n = nα ·σσσα ·nα ), in the contact logic to more appropriately determine
the free separation criterion.

Both contact detection methods of the above will make contact occur earlier than
the actual time (if the space between two bodies is less than two times cell size,
contact may take place). An improved contact detection method is proposed here
to avoid the earlier contact (see Fig. 1). Assume two bodies may contact at node i
and they are approaching, then distance between them Drs

i can be calculated as

Drs
i = Dr

i +Ds
i (5)

Dg
i =−max(Xg

ip ·n
g
i + lg

p)

Xg
ip = Xg

p−Xi

where Xi is the position of node i, lg
p and Xg

p are the length and position of some
particle of body g at the current time step, respectively. If Drs

i is less than specified
distance D, it means that the contact occurs.

As the normal momentum must be conserved, nodal momenta of contacting bodies
need to be updated [Pan, Xu, Zhang, Zhang, Ma and Zhang (2008)],

p̄r
i = pr

i −
ms

i pr
i −mr

i ps
i

mr
i +ms

i
·nr

i n
r
i (6)

p̄s
i = ps

i +
ms

i pr
i −mr

i ps
i

mr
i +ms

i
·nr

i n
r
i (7)

Grid accelerations can be calculated as

mi
dvi

dt
= fi = fint

i + fext
i (8)

where the internal and external forces at grid nodes can then be calculated as

fint
i =−

Np

∑
p

mp

ρp
σσσ p ·∇Nip (9)

fext
i =

Np

∑
p

Nipbp (10)

Once bodies r and s contact, their acceleration along the normal is equal, so that
their nodal force must be updated [Pan, Xu, Zhang, Zhang, Ma and Zhang (2008)],

f̄r
i = fr

i − f nor
i nr

i − f fric
i sr

i (11)
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f̄s
i = fs

i + f nor
i nr

i + f fric
i sr

i (12)

f nor
i =

ms
i f

r,int
i −mr

i f
s,int
i

mr
i +ms

i
·nr

i (13)

f fric
i = min

(
µ f nor

i , f tan
i

)
(14)

f tan
i =

(
ms

i pr
i −mr

i ps
i +

(
ms

i f
r,int
i −mr

i f
s,int
i

)
∆t

)
· sr

i

(mr
i +ms

i )∆t
(15)

where sr
i is the unit tangential at node i along the boundary, µ is the coefficient of

friction, ∆t is the time step.

An explicit time integrator is used to solve Eq. (7) for the nodal accelerations, with
the time step satisfying the stability condition. The critical time step is the ratio of
the smallest cell size to the sum of wave speed and particle velocity.

Update particle position and velocity [Sulsky, Zhou and Schreyer (1995)], respec-
tively,

x̄p = xp +
ni

∑
i=1

pi

mi
Nip∆t (16)

v̄p = vp +
ni

∑
i=1

fi

mi
Nip∆t (17)

2.3 The calculations of stress and strain

Strain and vorticity increment of a particle are obtained through the following equa-
tions respectively,

∆εpαβ =
1
2

ni

∑
i=1

(
Gipβ viα +Gipαviβ

)
∆t (18)

∆Ωpαβ =
1
2

ni

∑
i=1

(
Gipβ viα −Gipαviβ

)
∆t (19)

where Gip is defined as

Gip = ∇Nip (20)

Input the strain and vorticity increment into a material constitutive law and update
the particle stresses. Any constitutive law may be used.
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Figure 1: Improved contact detection scheme

2.4 Flow chart of MPM3Dpp

MPM3Dpp flow is drawn in Fig. 2 to include contact algorithm for three operations
for updating particle stresses and strains denoted as USF, MUSL, USL.

3 Overall architecture

The key concept for the design of the system architecture is the separation of tasks
into distinct classes of objects. A general overview of main classes of the object
design is given in Fig. 3. UML (Unified modeling language) static model are used
to show the architecture. Class names are shown within boxes, and the reference
associations between the classes are drawn as solid line with solid filled diamond
connecting the boxes.

The top-level class CMPM3DPP is developed to control the overall computational
process and creates the class CSolution, CWriteResult and CDomain to assist itself
in completing the task. This class parses of an input file at the beginning of the
computational process, and then starts solving. CSolution is an expert of the entire
analysis procedure. It performs an analysis on a domain by obtaining the properties
of the CDomain object and outputs the result via CWriteResult object. Solution
time is recorded by the Clock class. The CDomain class is in charge of creation
and initialization of background grid (CGrid class), materials (CMatGeneric class),
bodies (CBody class). The other classes will be demonstrated as follows.
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Figure 2: Sketch of MPM3Dpp algorithm

3.1 Particle structure

MPM particle is described by CParticle class (created by the CBody class, see
Fig. 3), which contains coordinate, velocity, volume, artificial bulk viscosity, mean
stress, failure, internal energy, mass, sound speed and extra properties. For saving
the memory to the largest extent, only needed internal state variables of materials
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Figure 3: General structure of MPM3Dpp code.

and variables related to different schemes are stored in a dynamic allocated array
named ExtraProp (extra properties). New variables can be appended to ExtraProp
in CBody, CDomain and all of material classes.

A namespace named MPM is used to define program version, algorithm types, par-
ticle properties, global settings, etc. Optional types of extra properties ExtraParti-
cleProperty are defined as ENUM data type in the MPM namespace. Subscript
operator overloading is implemented for convenient and fast storage and retrieval
of ExtraProp, namely,

i n l i n e do ub l e & o p e r a t o r [ ] (MPM: : E x t r a P a r t i c l e P r o p e r t y seq ) {
r e t u r n E x t r a P r o p [ E x t r a P a r t i c l e P r o p P o s [ seq ]
}
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where ExtraParticlePropPos is a pointer pointing to an array storing positions of
extra properties defined in CBody, seq is some extra property type.

CMatHighExpBurn

CMatIsotropic

...

CMatIsoElastic

CMatElaPlasticCMatIsoHarden

CMatJohnsonCook

...

...

CEOSGeneric CFailGeneric

1
0..*

1
0..1

#EOS : CEOSGeneric*
#FAILS : CFailGeneric**

CMatGeneric

CEOSJWL

...

CFailBulk

CFailPlaStrain

...

CEOSGruneisen

 

Figure 4: The reference and inheritance associations of material classes.

3.2 Material structure

The reference and inheritance associations between the material classes are shown
in Fig. 4. The class CMatGeneric (strength model), CEOSGeneric (equation of
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state, EOS) and CFailGeneric (failure model) are abstract classes, requiring their
implementation by the specialized derived classes, which compose material defini-
tions. The derived classes are allowed to overload these general implementations
to reflect the specific needs. A material can have one EOS at most and more than
one failure model. A variable named material_id is designated as serial number of
materials in each CBody object. Listing 1 is an outline of the partial definition of
the CMatGeneric class. Internal state variables of some materials will be appended
to Extra properties of particles via ApplyParticleProperties function.

3.3 Local multi-mesh structure

In MPM the grid servers as a scratch pad for the solution of conservation of mo-
mentum, from which particle states are updated. A contact algorithm was presented
by Bardenhagen et al. to simulate the interactions of the grains of granular material
[Bardenhagen, Brackbill and Sulsky (2000)]. To release the contact algorithm in
MPM, a global multi-mesh mapping scheme was proposed by Hu and Chen [Hu
and Chen (2003)]. In the multi-mesh mapping scheme, each grain lies in an indi-
vidual background mesh rather than in the common one, as demonstrated in Fig.
5. For a two-dimensional case, these individual meshes are comprised of the same
types of cells as the common background mesh, which are uniformly distributed
in the computational domain. Much memory is needed and wasted in the method,
especially for cases with many grains. So, local multi-mesh is presented here, i.e.
multi-mesh is only created at overlapped nodes, as illustrated in Fig. 6.

Listing 1: Partial definition of the CMatGeneric class.
p r o t e c t e d :

CEOSGeneric *EOS ;

C F a i l G e n e r i c ** FAILS ;

void A p p l y P a r t i c l e P r o p e r t i e s ( CBody * body ) ;

p u b l i c :

v i r t u a l void U p d a t e S t r e s s ( double (&de ) [ 6 ] ,
double (& v o r t ) [ 6 ] , C P a r t i c l e
*p , double &vold , double &d t ) ;

v i r t u a l double SoundSpeed ( double rho , C P a r t i c l e *p ) ;

For both contact and non-contact cases, connectivities between nodes are defined
in CBrickCell class (Fig. 3, cell_list); CGridNodeForContact and CGridNode-
ForNoContact, inheriting CGridPoint (contains coordinate variable, boundary con-
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Figure 5: The global multi-mesh mapping scheme [Hu and Chen (2003)].

 

Figure 6: The local multi-mesh mapping scheme.
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-ContactProp : CContactProperty*
-GridNodeProp : CNoContactProperty*

CGridNodeForContact

CGridPoint

-NodeProp : TinyMap
CContactProperty CNoContactProperty

-Keys : KeyType*
-Values : ValueType*

TinyMap

KeyType:unsigned short, ValueType:CContactGridNodeProperty

CContactGridNodeProperty

CGridNodeProperty

CGridNodeForNoContact

1 1..*

1

1

1
0..1

1

0..1

 
Figure 7: The reference and inheritance associations of GridNode classes.

dition, abstract functions and basic functions called by derived classes) abstract
class, are created according to contact status of the node, respectively. The de-
rived classes are allowed to overload general implementations to reflect the specific
needs. This allows using the derived class instances on a very abstract level, hiding
the particular implementation details, by using only the general services declared
by the base classes. Listing 2 is an outline of the partial definition of the basic
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grid node class (CGridPoint). The reference and inheritance associations between
the classes are drawn as solid line with a solid filled diamond and a hollow arrow
connecting the boxes in Fig. 7, respectively.

For non-contact case, the CGridNodeForNoContact class inherits both CGridPoint
and CNoContactProperty (contains mass, momentum, internal/external force, etc.)
classes.

For contact case, the CGridNodeForContact class inherit CGridPoint class and con-
tains instances of one of CNoContactProperty and CContactProperty (contains nor-
mal vector, whether contact or not, number of grains, properties of every grain,
etc.) classes. The state of contact or non-contact of a node can switch each other
according to number of grains in a node. If there is only one grain in a node, it
will be stored in a CNoContactProperty instance, otherwise, they will be stored in
TinyMap, which is a container template class like map class in C++ STL. TinyMap
is used for the fast storage and retrieval of a little of data from a collection in which
the each element is a pair that has both a data value and a sort key. It has higher ef-
ficiency and needs less memory than the map class. Though there are a lot of grains
in simulations, MPM3Dpp can solve them effectively and costs tiny memory with
the method.

3.4 Dynamic grid

Usually, particles will hold part of computation region, so that the residual region
will be useless and waste much memory. In order to solve the problem, a dynamic
grid scheme is developed. At the beginning of a new computation, pointer arrays
of nodes and cells will be created and initialized to NULL, while memory of nodes
won’t be allocated immediately, until there are particles around a node or in a cell.
At the beginning of every time step, instances of nodes and cells, around or in
which there are no particles, can be destructed according to specified step interval,
otherwise they will be reseted. If a node isn’t instantiated, it won’t participate in
computation. The method will decrease memory allocated and improve efficiency.

Listing 2: Partial definition of the CGridPoint class.
p r o t e c t e d :

double Xg [ 3 ] ;

void ApplyBounda ryCond i t i ons ( CGridNode *gd ,
unsigned char f i x e d ) ;

void In i t i a t eMomen tum ( CGridNode *gd ) ;

void In tegra teMomentum ( CGridNode *gd ,
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unsigned char f i x e d , double DTx ) ;

p u b l i c :

v i r t u a l boo l C l e a r ( boo l check = f a l s e ) ;

v i r t u a l CGridNode * GetGridNodeByCom ( unsigned s h o r t comid ) ;

v i r t u a l void ApplyBounda ryCond i t i ons ( unsigned char f i x e d ) ;

v i r t u a l void In i t i a t eMomen tum ( ) ;

v i r t u a l void In tegra teMomentum ( unsigned char f i x e d , double DTx ) ;

3.5 Moving grid

With the moving of particles, original grid may not cover the computational region,
so that some particles will be omitted when computing. To solve the problem, a
moving grid is presented here. When the situation occurs, the grid will be moved
and enlarged. The step of the method is listed as follows,

1. Loop over all particles, if there are particle approach boundaries (except for
fixed boundary and symmetrical boundary), record directions (i.e. x, y or z)
and position of grid need be changed.

2. Enlarge grid along the recorded directions.

3. Adjust cell size according to the new grid size.

3.6 Optimized computational flow

MPM3Dpp computational flow is optimized to improve efficiency in this section,
including several alternatives for which nodal velocities to use for the updated pro-
cess. The optimized MPM with the local multi-mesh presented in this paper as
follows,

1. Initialize pointers of all grid nodes and cells to NULL.

2. Initialize the properties of existent grid nodes or destruct instances of un-
used nodes and cells at every specified step interval (default value is 10 in
MPM3Dpp).

3. If there are particles in a cell, create it and its nodes. Form the lumped mass
matrix and nodal momentum; record nodes and cells around or in which there
are particles for contact case.
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4. This task is only for contact case. Loop over the mesh nodes, if a node exists
and contains more than one grain (i.e. size of TinyMap is greater than 1),
create and initialize normal vector arrays for the grains and record the serial
number of the node to an array named ContactNodeList. Loop over the mesh
cells, if there is more than one grain on a cell, mark it in an array named
CellMayContact (i.e. contact may occur on it). Loop over the particles in
cells of potential contact to compute normal vectors of grains. Loop over the
mesh nodes of potential contact, if bodies contact at a node, adjust the nodal
momenta of the contacting bodies.

5. This task is only for USF method. Calculate the rate of the deformation gra-
dient for each particle, compute the increment of strain using an appropriate
strain measure and solve constitutive equations to update the stress.

6. Calculate the nodal internal force of existent nodes.

7. This task is only for contact case. Adjust the nodal force of every contacting
body.

8. Update the nodal momenta of existent nodes.

9. Mapping kinematics variables to particles to update their position and veloc-
ity.

10. This task is only for MUSL method. Extrapolate the new particle velocities to
the grid to get a revised set of nodal momenta. Readjust the nodal momenta
for contact case.

11. This task is for MUSL and USL method. Update the stresses of particles
based on the updated grid nodal velocity at time tn−1/2 (i.e. step v).

12. Define a new mesh, if necessary, and return to step ii to begin a new time
step.

4 Example problems

In the section, we apply MPM3Dpp to a variety of problems to demonstrate the
performance of the framework. The increased flexibility of the object-oriented
software architecture impacts the execution speed and memory required of the pro-
gram. To investigate the extent of the effect, the program was compared to MPM3D
in section 4.1. As MPM3D can deal with only two grains, the other example just
performed by MPM3Dpp.

All simulations are performed on a computer with Intel CPU Q6600 2.4GHz and
4G memory installed, running under Microsoft windows XP operating system.



78 Copyright © 2010 Tech Science Press CMES, vol.55, no.1, pp.61-87, 2010

4.1 Penetration

In order to compare the implementation efficiency and memory consumed, 3-dimension
analyses have been performed on penetration of an ogive-nose 4340 steel projec-
tile with a striking velocity 575m/s against a 6061-T651 aluminum target with an
obliquity of 30o (see Fig. 8) [Piekutowski, Forrestal, Poormon and Warren (1996)].
The projectile is modeled as an elastic material. And the Mie-Gruneisen equation
of state and the John-Cook strength model were applied for target in this study. The
image after impact is shown in Fig. 9. And the residual velocity (441m/s) is agreed
well with experimental data (455m/s).

 

Figure 8: MPM models for simulation of oblique penetration.

 

Figure 9: Configuration after penetration

In order to make results comparable, the use of the same time step and solution al-
gorithm (USF) has been explicitly enforced, and moving grid isn’t enabled. Fig. 10
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shows time history of percentage of used cells during the simulation. And maximal
percentage of used cells in the example is 13.13%. The results have been compared
with those obtained by MPM3D to demonstrate the optimization associated with
object oriented nature of the code (see Table 1). The average time of every step and
maximal memory consumed are reported as well the ratio between MPM3D and
MPM3Dpp. The dramatic memory reduction and performance improvement, com-
pared to MPM3D, is caused by optimized flow and dynamically allocated memory
of mesh and particles, respectively.

 

Pe
rc

en
ta

ge
 

Time(ms)

Figure 10: Time history of percentage of used cells.

Table 1: Computational performance and memory consumed in penetration simu-
lation

Contact Particles/ Cells
Average time (s) Maximal memory(M)

MPM3D MPM3Dpp Ratio MPM3D MPM3Dpp Ratio
Disable

200864/ 170688
0.5455 0.4064 1.342 73.18 54.25 1.349

Enable 0.8146 0.4313 1.888 109.36 55.02 1.988

4.2 Spheres under pressure

In order to demonstrate the capability of simulating contact of numerous grains,
1000 aluminum spheres (10×10×10, distribution of spheres in 3-dimension) are
held in a container covered with a slab under distributed load (see Fig. 11). There
are 810 contact surfaces in this example, and solution algorithm is MUSL.

The results have been compared with non-contact case to further demonstrate the
high efficiency and low memory requirement of the code (see Table 2). The average
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time of every step and maximal memory consumed are reported between contact
case and non-contact case. Additional CPU time and memory caused by contact are
not much, though numerous grains contact. Fig. 12 shows stress wave propagation,
reflection and dissipation through spheres simulated with contact algorithm.

 
Figure 11: Planar sketch of spheres under pressure

Table 2: Computational performance and memory consumed in the simulation of
spheres under pressure

Contact Particles Cells Average time(s) Maximal memory(M)
Disable

652000 137500
1.4263 288.60

Enable 2.2187 305.19

4.3 Shakes of grains

In order to prove the ability to simulate long term loading of MPM3Dpp, 3 big
grains and 207 small grains, under periodic force and gravity, are held in a steady
container. The example is 2-dimension, solution algorithm is MUSL, and contact
algorithm is enabled. Each small and big grain is modeled by 205 and 1821 par-
ticles, while the container by 4832 particles. Near 1,700,000 steps were used in
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0μs 1μs 3μs 

 
5μs 7μs 10μs 

 

Figure 12: 1000 spheres under pressure simulated with contact algorithm.

the simulation. As shown in Fig. 13, the hundreds of grains moved under periodic
force and gravity and the big ones were filtrated.

4.4 Collision of two elastic rings

The example is used to verify the proposed improved contact detection method.
Two elastic rings collide at a relative speed of 60m/s, and then they bounce off.
The inner radius, outer radius and thickness of every ring are 30mm, 40mm and
10mm, respectively, which is modeled by 29760 particles. The simulation results
without and with the improved contact detection method are shown in Fig. 14 and
Fig. 15, respectively. Comparing Fig. 14 and Fig. 15, it can be seen that the method
avoids the gap between two rings when collision.

5 Conclusions

An object-oriented design for a MPM program has been presented. The program is
flexible, extendible, and easily modified for a variety of MPM analysis procedures.
The difficulties inherent in procedural based MPM programs are eliminated by de-
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0s 54s 

90s 206s 
 

Figure 13: Simulation of shakes of grains

 
  

(a) t = 0 ms (b) t = 1 ms (c) t = 2 ms 

  
(d) t = 3 ms (e) t = 4 ms (f) t = 5 ms 

 

Figure 14: Collision simulation of elastic rings without improved contact detection
method

sign. To modify or extend the program, the required knowledge of the components
is restricted to the public interfaces of the classes. The reuse of code is promoted
by the use of inheritance.

An improved contact detection method is proposed to avoid the contact occur ear-
lier than the actual time. High implementation efficiency and low memory con-
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(a) t = 0 ms (b) t = 1 ms (c) t = 2 ms 

  
(d) t = 3 ms (e) t = 4 ms (f) t = 5 ms 

 

Figure 15: Collision simulation of elastic rings with improved contact detection
method

sumed of MPM3Dpp are also achieved. Different operations for updating particle
stresses and strains and contact algorithm are combining in MPM3Dpp. Local
multi-mesh is presented, which is only created at overlapped nodes and needs less
memory than global multi-mesh. Dynamic internal state variables and dynamic
grid are presented instead of static ones to reduce memory consumed. Moving grid
is proposed to prevent particles from flying out of computational region.

The example problems demonstrate the high computational efficiency and lower
memory requirement of the framework whatever contact and non-contact cases.
The advantage of the improved contact detection method is also illustrated by the
collision of two elastic rings case. Successful implementation using C++ language
verifies the designed program structure and provides a robust computational tool
for MPM modeling.
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