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A Scalable Meshless Formulation Based on RBF
Hermitian Interpolation for 3D Nonlinear Heat

Conduction Problems

David Stevens1 and Henry Power1,2

Abstract: Problems involving nonlinear time-dependent heat conduction in ma-
terials which have temperature-dependent thermal properties are solved with a
novel meshless numerical solution technique using multiquadric radial basis func-
tions (RBFs). Unlike traditional RBF collocation methods, the local Hermitian
interpolation (LHI) method examined here can be scaled to arbitrarily large prob-
lems without numerical ill-conditioning or computational cost issues, due to the
presence of small overlapping interpolation systems which grow in number but not
in size as the global dataset grows. The flexibility of the full-domain multiquadric
collocation method to directly interpolate arbitrary boundary conditions is main-
tained, via the local interpolations.
The Kirchhoff transformation is employed to reduce the degree of nonlinearity in
the governing PDE, and a high-resolution interpolation procedure is outlined to
transform the various thermal properties to Kirchhoff-space. The implementation
procedure is validated using a problem with analytical thermal properties and a
known analytical solution. Additionally the procedure is validated against a prob-
lem with pointwise-measured material property data, and an analytical solution
which is imposed via the body-source term. In this second case, the solution qual-
ity is compared with the traditional full-domain multiquadric collocation method.

1 Introduction

This paper considers heat transfer within materials which have temperature-dependent
thermophysical properties (i.e. non-linear heat transfer). This type of problem has
numerous applications within many different branches of science and engineer-
ing, such as; electrical conductors, solar systems, heat exchangers, phase change
problems, and many others. For certain substances, the phase change occurs over
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a relatively wide range of temperatures, with a relatively smooth variation of the
thermophysical properties with temperature as the phase changes. In this case, their
numerical solutions can be easily obtained with standard numerical approaches.
However, in many other materials the phase change takes places with very little
variation of temperature, and the heat capacity exhibits a strong (non-linear) de-
pendence on temperature in this region. In this latter case, numerical difficulties
are encountered when solving this type of problem using standard numerical tech-
niques.

One of the most important characteristics of supercritical fluids is that their ther-
mophysical properties exhibit strong (non-linear) dependence on the temperature,
especially near the pseudocritical point; the temperature at which the specific heat
reaches a peak for a given pressure (for more details see Liao and T.S.Zhao (2002)
and Song, Kim, Kim, and Bae (2008)). An interesting example of the type of non-
linear heat transfer considered in this work is the possibility of modelling phase
change, as can occur during the flow of supercritical CO2. Since there is no the-
ory available for general non-linear partial differential equations, the analysis of
strongly non-linear heat transfer problems, such as those mentioned above, be-
comes difficult, and robust numerical techniques are required. In this work a novel
meshless numerical technique is presented, based on the use of multiquadric radial
basic functions (RBFs) for the solution of strongly non-linear heat transfer prob-
lems.

Radial Basis Functions have traditionally been used to provide a continuous in-
terpolation of scattered data sets. However, this interpolation also allows for the
reconstruction of partial derivatives throughout the solution field, which can then
be used to drive the solution of a partial differential equation. Since the interpo-
lation takes place on a scattered dataset with no local connectivity, the solution is
essentially meshless. RBF-based methods have been successfully used to solve a
wide variety of PDEs in this fashion.

Such full-domain RBF methods are highly flexible and can exhibit spectral con-
vergence rates Madych and Nelson (1990). However, in their traditional imple-
mentation (as described in section 2) the fully-populated matrix systems which
are produced lead to computational complexities of at least order-N2 with datasets
of size N. In addition, they suffer from increasingly poor numerical condition-
ing as the size of the dataset grows, and also with increasingly flat interpolating
functions. This is a consequence of ill-conditioning in the determination of RBF
weighting coefficients (as demonstrated in Driscoll and Fornberg (2002)), and is
described by Robert Schaback Schaback (1995) as the uncertainty relation; better
conditioning is associated with worse accuracy, and worse conditioning is associ-
ated with improved accuracy. Many techniques have been developed to reduce the
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effect of the uncertainty relation in the traditional RBF formulation, such as RBF-
specific preconditioners Brown (2005); Beatson, Cherrie, and Mouat (1999); Ling
and Kansa (2005); Baxter (2002), or adaptive selection of data centres Ling and
Schaback (2004); Ling, Opfer, and Schaback (2006). However, at present the only
reliable methods of controlling numerical ill-conditioning and computational cost
as problem size increases are domain decomposition Hernandez-Rosales and Power
(2007); Zhou, Hon, and Li (2003); Zhang (2007); Wong, Hon, Li, S.L.Chung, and
Kansa (1999), or the use of locally supported basis functions Wu (1995); Wendland
(1995); Schaback (1997); Fasshauer (1999).

Locally supported basis functions offer a straightforward approach to achieving
order-N computational complexity, however multilevel solution techniques are re-
quired in order to achieve convergence in this case Schaback (1997); Fasshauer
(1999). Such multilevel methods require hierarchical datasets to be maintained,
which can be a non-trivial task, particularly when dealing with scattered data. Al-
ternatively, by taking the domain decomposition principle and applying it to very
small and heavily overlapping local systems, a local RBF collocation method can
be formulated. Since the individual RBF systems never grow too large, such meth-
ods can be scaled to arbitrarily large data-sets without numerical conditioning is-
sues, and with order-N computational complexity. In recent years several such local
RBF collocation techniques have been proposed, and applied to a variety of prob-
lems (for example; Lee, Liu, and Fan (2003); Sarler and Vertnik (2006); Divo and
Kassab (2007); Wright and Fornberg (2006)). For a more comprehensive review of
such methods see Stevens, Power, Lees, and Morvan (2009c).

The method implemented in this work is known as the Local Hermitian Interpo-
lation (LHI) method. Unlike most local RBF collocation methods it utilises the
Hermitian RBF collocation formulation (see section 2 for more details), and allows
both the PDE-boundary and PDE-governing operators to be included directly in
the local interpolation. The inclusion of the governing PDE in the basis functions
is shown in Stevens, Power, Lees, and Morvan (2009c) to significantly improve the
accuracy and stability of solutions obtained for linear transport problems. Addi-
tionally, the incorporation of information about the convective velocity field into
the basis functions was shown to have a stabilising effect, similar to traditional
upwinding methods but without the requirement to alter the stencil configuration
based on the local convective field. The LHI method has been successfully applied
to a range of linear and nonlinear transport equations, both steady and transient, us-
ing a variety of explicit and implicit time advancement formulations (see Stevens,
Power, and Morvan (2009); Stevens, Power, Lees, and Morvan (2009b); Stevens
and Power (2009)). Accurate solutions are obtained on a variety of structured and
unstructured datasets in 3D.
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The standard approach to the solution of linear and nonlinear heat conduction prob-
lems is the use of finite difference and finite volume methods with simple polyno-
mial interpolants Holman (2002); Bejan (1993); Kreith and Bohn (2000). Due to
the dominance of diffusion in most cases, central differencing techniques are com-
monly used to compute the heat fluxes. However, limiter methods (such as the
unconditionally stable TVD schemes) may be used for nonlinear heat conduction
problems where the effective convection term, which results from the non-zero
variation of thermal conductivity with temperature, can be expected to approach
the magnitude of the diffusive term (see, for example, Shen and Han (2002)).

In Chantasiriwan (2007) the full-domain Kansa’s RBF collocation method (see sec-
tion 2 for more details) is applied to a 2D heat transfer problem, using the approx-
imated thermal properties of zirconium, tungsten and tantalum over a wide range
of temperatures. The Kansa method is shown to work well with scattered datasets,
and exhibits accuracy comparable to a finite difference approach. However, as with
all full-domain RBF methods, the approach used will suffer severely from compu-
tational cost and numerical conditioning issues as the dataset size is increased.

In recent years there has been an increased interest in the implementation of vari-
ous meshless methods to the numerical solution of direct and inverse heat transfer
problems (for more detail see Sladek, Sladek, Zhang, and Solek (2007); Marin
(2008); Sladek, Sladek, Tan, and Alturi (2008); Bourantas, Skouras, and Niki-
foridis (2009); Kosec and Sarler (2009); Sladek, Sladek, Wen, and Hon (2009)).
The present work aims to introduce a localised RBF formulation which maintains
the accuracy and the meshless flexibility of the method presented in Chantasiriwan
(2007), while being scalable to arbitrarily large 3D problems. The proposed imple-
mentation is validated using a hypothetical 3D problem with known material prop-
erties and a mixture of applied boundary conditions, using both steady-state and
time-dependent formulations (see section 5). The problem examined in Chantasiri-
wan (2007) is also replicated, to ensure that the solution accuracy is comparable to
the full-domain Kansa’s collocation method (section 7).

In addition, the present work utilises RBF collocation methods to allow a high-
resolution transformation of pointwise material data to continuous functions in
Kirchhoff-space, as an alternative to the piecewise linear approximations used in
Chantasiriwan (2007). The interpolation procedure is validated using a hypotheti-
cal substance in which the material properties follow rapidly decaying curves. For
more general scenarios, where the exact solutions are not known, an appropriate
measure of transformation quality is suggested.

For a glossary of terms used to classify the various locations at which data is ma-
nipulated, see Table 1.
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Table 1: List of terms describing locations at which data is manipulated

Test point: Location about which a RBF is centred

Trial point: Location at which a known constraint is applied

Data centre: A location consisting of both a test and a trial point

Solution
centre:

A data centre at which the constraint is the value of the solution
field

Boundary
centre:

A data centre at which the constraint is the value of the PDE
boundary operator (found on boundary surfaces only)

PDE centre: A data centre at which the constraint is the value of the PDE
governing operator

Stencil: A collection of data centres over which a RBF interpolation can
be performed

Local sys-
tem:

A RBF interpolation performed using a particular stencil

Local system
centrepoint:

The location around which a local system is formed (always a
location where a solution centre is present)

2 Basic RBF formulation

A radial basis function depends upon the separation distances of a set of functional
centres, also known as trial points, and exhibits spherical symmetry around these
centres. There are several commonly used radial basis functions (see Wu (1992)),
however in this work the popular multiquadric RBF (equation (1)) will be used
throughout, with m = 1.

Ψ(r) =
(
r2 + c2)m

2 m ∈ 2Z+−1 (1)

The multiquadric RBF is a conditionally positive definite function of order m,
which requires the addition of a polynomial term of order m− 1, together with
a homogeneous constraint condition, in order to obtain an invertible interpolation
matrix. The ‘c’ term is known as a ‘shape parameter’, and describes the relative
width of the RBF functions about their centres. In practice, tuning of this parame-
ter can dramatically affect the quality of the solution obtained. Increasing the value
of c will lead to a flatter RBF. This will, in general, improve the rate of convergence
at the expense of increased numerical ill-conditioning of the resulting linear system
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Schaback (2007).

The use of radial basis functions (RBFs) as a method of scattered data interpolation
was first introduced by Hardy Hardy (1971). Using a series of M functional centres,
ξ j, known as ’trial points’, an RBF approximation to a function f (x) can be formed
via

f (x)≈
M

∑
j=1

λ jΨ
(∥∥x−ξ j

∥∥)+ NP

∑
j=1

λ j+MP j
m−1 (x) x ∈ Rn (2)

where P j
m−1 is the jth term of an order (m−1) polynomial, under the constraint

NP

∑
j=1

λ jPk
m−1 (x j) = 0 k = 1, . . . ,NP (3)

with NP being the total number of terms in the polynomial (determined by the
polynomial order and the number of spatial dimensions). If the value of the function
is known at N locations {xi, f (xi) , i = 1, ...,N}, known as test points, then suitable
values of λ j can be found, provided that N ≥M, via the solution of a linear system[

Ψ
(∥∥xi−ξ j

∥∥) Pm (xi)
PT

m (ξ j) 0

]
λ j =

[
f (xi)

0

]
(4)

In most cases the set of trial points ξ j is chosen to be the same as the set of test
points xi, leading to a fully-determined linear system. This data-interpolation for-
mulation is to be used later (see section 6), to construct continuous functions for
material properties from pointwise experimental data.

The meshless RBF method for solving PDEs, as described by Kansa Kansa (1990a,b),
constructs the continuous solution u(x) of the PDE in much the same way as for
interpolation:

u(x) =
N

∑
j=1

λ jΨ
(∥∥x−ξ j

∥∥)+ NP

∑
j=1

λ j+NP j
m−1 (x) x ∈ Rn (5)

Consider a typical linear boundary value problem

L [u] = f (x) onΩ

B [u] = g(x) on∂Ω (6)

where the operators L [] and B [] are linear partial differential operators on the do-
main Ω and on the contour ∂Ω, describing the governing equation and boundary
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conditions respectively. Collocating the system at N distinct test locations, x j, co-
inciding with the trial points ξ j, leads to a system of equations B [Ψ] B [Pm−1]

L [Ψ] L [Pm−1]
Pm−1 0

λ =

 g
f
0

 (7)

which is fully populated and non-symmetric. This approach, known as Kansa’s
method, or the unsymmetric method, has been applied to a wide range of problems
with great success (see for example Zerroukat, Power, and Chen (1998); Hon and
Mao (1998); Hon, Cheung, X.Z.Mao, and Kansa (1999); Hon and Mao (1999)).
However, for the standard formulation there is no guarantee that the collocation
matrix will be non-singular Ling, Opfer, and Schaback (2006). It can, in fact, be
shown that for some data-centre distributions the collocation matrix will become
singular Hon and Schaback (2001).

An alternative approach proposed by Fasshauer Fasshauer (1997) applies the bound-
ary and PDE operators to the RBFs within the solution construction:

u(x) =
NB

∑
j=1

λ jBξ Ψ
(∥∥x−ξ j

∥∥)+ N

∑
j=NB+1

λ jLξ Ψ
(∥∥x−ξ j

∥∥)+ NP

∑
j=1

λ j+NP j
m−1 (x) (8)

Collocating in a similar way leads to the system of equations BxBξ [Ψ] BxLξ [Ψ] Bx [Pm−1]
LxBξ [Ψ] LxLξ [Ψ] Lx [Pm−1]

Bξ [Pm−1]
T Lξ [Pm−1]

T 0

λ =

 g
f
0

 (9)

In the above matrix equation, the operators with ξ subscript are applied to the trial
points and the operators with x subscript are applied to the test points.

The approach based on the interpolation formula of equation (8) is known as the
Hermitian (or symmetric) method, producing a collocation matrix which is sym-
metric, and was shown by Wu Wu (1992, 1998) to be non-singular provided that
no two collocation points sharing a linearly dependent operator are placed at the
same location. The Hermitian RBF approach has also been applied to a variety of
problems within the literature Hernandez-Rosales and Power (2007); Hernandez,
LaRocca, and Power (2005); LaRocca, H.Power, LaRocca, and Morale (2005),
however Kansa’s method remains the most commonly used method for solving
PDEs with RBF collocation methods, primarily due to its flexibility and ease of
implementation. A comparative analysis of the Kansa and Hermitian methods for
steady convection-diffusion problems is given in Power and Barraco (2002).
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Figure 1: Schematic representation of local systems

Equation (8) will form the foundation of our local Hermitian interpolation (LHI)
method, where for simplicity the L operator will be henceforth referred to as the
PDE operator and B as the boundary operator. The flexibility of the full-domain
Hermitian method to enforce multiple linearly independent boundary operators at
a single location (known as double collocation; see LaRocca and Power (2007)) is
maintained within our LHI approach.

3 The LHI method for linear PDEs

The solution space Ω is covered by a set of (potentially) scattered data centres, as
shown in Figure 1. These data centres represent the locations at which the solu-
tion value will be enforced within the interpolation function. Data centres are also
placed on all boundary surfaces Γ, and at these locations the value of the bound-
ary operator, B, is enforced. In addition, each local system has associated with
it a series of locations at which the PDE governing operator, L, is applied. The
flexibility of the RBF Hermitian method to allow multiple distinct operators to be
applied at a single location can be exploited to allow placement of these PDE cen-
tres at the same location as solution centres, however previous investigations have
indicated that a staggered placement of data centres is preferable in most cases
Stevens, Power, Lees, and Morvan (2009c). In principle, the solution and boundary
centres can be viewed as global objects, whereas the PDE centres can be viewed as
locally defined objects which are associated with one or more local systems.

Each solution centre has associated with it a stencil of other nearby solution centres.
If a stencil is sufficiently close to the boundary then the points at the intersection
between the boundary and the stencil are included (see Figure 1), and where present
the PDE centres are included also. Each stencil is used to perform a local interpola-
tion; referred to henceforth as a local system. Local systems are not formed around
boundary and PDE centres.

The solution field is approximated via a series of Hermitian interpolations on each
of the local systems, using the functional values for solution centres, the source
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term values for PDE-operator centres, and the boundary operator values at bound-
ary centres, in those cases where they are required. As with the full-domain Hermi-
tian method, the various operators are applied to the basis functions at their respec-
tive trial points. A polynomial term is included to complete the underlying vector
space, as with equation (8).

In this way, at each local system the field variable is approximated by

u(k) (x) =
Ns

∑
j=1

α
(k)
j Ψ

(∥∥x−ξ j
∥∥)+ Ns+NB

∑
j=Ns+1

α
(k)
j Bξ

[
Ψ
(∥∥x−ξ j

∥∥)]
+

Ns+NB+NPDE

∑
j=Ns+NB+1

α
(k)
j L̄ξ

[
Ψ
(∥∥x−ξ j

∥∥)]+ NP

∑
j=1

α j+NP j
m−1 (x) (10)

where

k is the local system index

Ns is the number of solution centres in the local system

NB is the number of boundary centres in the local system

NPDE is the number of PDE centres in the local system

NP is the number of terms in a 3D polynomial of degree m−1

Consider a local Hermitian interpolation of a general scalar field, u(x), which satis-
fies a PDE operator L in the domain Ω, and a boundary operator B at the boundary
Γ, with values of the scalar field and operators given at a discrete set of points, as
outlined in Figure 1.

L [u(x)] = S (x) inΩ

u(xi) = fi inΩ

B [u(x)] = g(x) onΓ

(11)

Here, the scalar values fi will correspond to the unknown solution values within the
computational domain Ω. This description can be collocated at each of the points
within the local systems, Ω(k), described by equation (10), applying once again the
B operator at boundary centres and the L operator at the PDE centres. This leads
to a series of small symmetric linear systems which can be solved independently to
interpolate the solution over the domain in a piecewise fashion. Therefore, a series
of local systems

A(k)
α

(k) = d(k) (12)
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are constructed for the interpolation coefficients α(k), where

A(k)=


Ψi j Bξ [Ψi j] Lξ [Ψi j] Pm−1

Bx [Ψi j] BxBξ [Ψi j] BxLξ [Ψi j] Bx [Pm−1]
Lx [Ψi j] LxBξ [Ψi j] LxLξ [Ψi j] Lx [Pm−1]
PT

m−1 Bξ [Pm−1]
T Lξ [Pm−1]

T 0

 and d(k) =


fi

gi

Si

0


(13)

and where Ψi j = Ψ
(∥∥xi−ξ j

∥∥) for points contained in local system k, ordered as
indicated in equation (10).

In this way the value of u close to point k can be written as

u(k) (x) = H (x)(k)
α

(k) (14)

where

H (x)(k) =
[

Ψ(x−ξ j) , Bξ [Ψ(x−ξ j)] , Lξ [Ψ(x−ξ j)] , Pm−1
]

(15)

By inverting the matrix system (13), i.e. α(k) =
[
A(k)
]−1

d(k), it is possible to ex-
press the field variable u at any point within the stencil of local system k in terms
of the data vector d(k), i.e.

u(k) = H (x)(k)
[
A(k)
]−1

d(k) (16)

Similarly, any partial differential operator, Q, can be applied to the reconstruction
vector H(k) in order to reconstruct the partial derivatives of the interpolated func-
tion:

Q
[
u(k) (x)

]
= Q

[
H(k)

]
α

(k)

=
[

Qx [Ψ(x−ξ j)] , QxBξ [Ψ(x−ξ j)] , QxLξ [Ψ(x−ξ j)] , Qx [Pm−1]
]

α
(k)

(17)

As before, by expressing the vector α(k) in terms of the data vector d(k), the value
of the differential operator can be given by

Q
[
u(k) (x)

]
= Q

[
H(k) (x)

]
α

(k)

=
(

Q
[
H(k) (x)

][
A(k)
]−1
)

d(k) (18)

= W (k)
Q (x)d(k)
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where W (k)
Q is a stencil weights vector for the differential operator Q at local system

k. The stencil weights vector W (k)
Q can also be obtained via the solution of a linear

system, avoiding the need to explicitly calculate and store the local matrix inverse:(
Q
[
H(k)

])[
A(k)
]−1

= W (k)
Q

Q
[
H(k)

]
=

[
A(k)
]T

W (k)
Q (19)

= A(k)W (k)
Q (exploiting symmetry)

In most cases LU-factorisation will be the most computationally efficient method
of solution for these small linear systems, as the LU factors can be re-used to obtain
stencil weight vectors for any additional operators, at a cost of o

(
N2
)

floating point
operations.

3.1 Solution of steady problems

For a steady PDE:

L [u(x)] = S (x) inΩ

B [u(x)] = g(x) onΓ
(20)

With A(k) as indicated in equation (13), the data vector becomes

d(k) =


ui

gi

Si

0

 (21)

with fi = ui, representing the unknown values of u(x) at the local solution centres,
and the rest of the data vector composed of known quantities.

By applying the PDE operator L [u] = S (x) to a reconstruction vector at the central
point of the local system, i.e. by setting Q = L in equation (18), a relation can be
obtained linking the values of ui within the local system

S (xcentre) = L
[
u(k) (xcentre)

]
= W (k)

L
(xcentre)d(k) (22)

Applying the above reconstruction to each local system k, a series of N simultane-
ous equations are produced for ui, i = 1, . . . ,N, where N is the global number of
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solution centres. In the resulting global linear system the corresponding boundary
conditions of the problem have already been imposed, at the local interpolation,
in those stencils containing boundary points. This sparse linear system of equa-
tions can be solved efficiently using standard solution techniques for sparse linear
systems.

3.2 Solution of time dependent problems

The method of solution for time dependent problems requires the creation of a
modified PDE-operator via a finite difference approximation of the time derivative.
The procedure is illustrated here using a Θ-weighted Crank-Nicolson approach, but
is easily extensible to any number of finite difference time advancement schemes.

For a general initial-boundary value problem

∂u(x, t)
∂ t

= L [u(x, t)]+S2 (x, t) inΩ

u(x,0) = f (x) inΩ

B [u(x, t)] = g(x, t) onΓ

(23)

a finite difference approximation is made to the time-derivative

un−un−1

∆t
= ΘL [un]+ (1−Θ)L

[
un−1]+S2 (x, tn) (24)

From this approximation, a modified PDE operator is obtained

L [un] = L̂
[
un−1]+S2 (x, tn) (25)

where

L = 1−Θ∆t L

L̂ = 1+(1−Θ)∆t L (26)

The time stepping algorithm implies that the original initial boundary value prob-
lem reduces at each time step to the solution of a boundary value problem de-
fined by the non-homogeneous partial differential equation (25), with the non-
homogeneous term given in terms of the solution of the problem at the previous
time step. At this stage the formulation at a given time step is identical to the for-
mulation for steady problems, assuming that L̂

[
un−1

]
is known from interpolation

at the previous time step. S (x) = L̂
[
un−1

]
+ S2 (x, tn) is taken as the equivalent to

the non-homogeneous term of the PDE in equation (20). As such the solution pro-
cedure at each time step is performed in the same way as for the steady problem,
using the modified operator and the corresponding non-homogeneous term.



A Scalable Meshless Formulation 123

After solution of the global linear system, and using the current interpolation matrix
systems and updated data-vectors, a reconstruction of L̂ [un] at the solution and PDE
centres must be made, ready for the calculation of S (x) at the next time step. This
is done via the creation of further reconstruction arrays

L̂ [un (xi)] = L̂
[
H(k) (xi)

]
α

(k)

= W (k)
L̂

(xi)d(k) (27)

for every xi at which the reconstruction is required, within local system k; i.e. set-
ting Q = L̂ in equation (18).

The initial time step is always performed using the Θ = 1 first-order implicit time
stepping formulation. Were a value of Θ < 1 to be used, L

[
u0
]

would be required
in order to calculate the Si which appear in the local system data vector of equa-
tion (21). This quantity is unknown at the initial configuration, and in order to
be calculated would require an interpolation of the initial solution field, using a
different interpolation system which does not rely on a non-existent previous time
step. At subsequent time steps any value of Θ can be chosen without altering the
interpolation system. For more detail on the LHI formulation for linear problems,
including the performance of different stencil sizes and configurations, and meth-
ods for minimising storage and computational cost, see Stevens, Power, Lees, and
Morvan (2009c). For a procedure to accurately capture discontinuities in governing
PDE properties, for example at material interfaces, see Stevens, Power, Lees, and
Morvan (2009a).

3.3 Shape parameter

It is worth noting that the value of the multiquadric shape parameter, c, has not
been explicitly defined (see equation (1)). The shape parameter represents a local
lengthscale, and as such, with the local interpolation systems of the LHI method it
is more natural to define the non-dimensionalised shape parameter

c∗ =
c

∆max
(28)

where ∆max is the separation from the local system centrepoint to the most distant
point included in the system. This allows variations in ∆max within a dataset to be
accounted for. Determination of an optimal value of c∗ is a nontrivial issue, and
requires further research for local RBF methods.

Certainly, the conditioning of the local system matrices (13) has a significant impact
on the selection of c∗. Larger values of c∗ will produce increasingly ill-conditioned
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local system matrices, and as such the range of allowable c∗ is limited by the nature
of the local matrices; specifically the number, location and type of data centres,
and the precision of the arithmetic used. Many authors examine the condition num-
ber of the local system matrices and adjust the shape parameter to match a target
maximum conditioning value (see for example Cecil, Qian, and Osher (2004)).
However, it can be shown that the optimal value of the shape parameter is also de-
pendent on the nature of the data to be interpolated (see Carlson and Foley (1991)
or Rippa (1999) for analysis with full domain RBF methods, or Stevens, Power,
and Morvan (2009) for an example with the LHI method). The optimal c∗ value is
not always the maximum value allowed by the local matrix conditioning, and may
be required to vary over the solution domain in order to obtain an optimal solution.
In particular, with problems which feature rapid changes in gradient or other near-
discontinuous features within an interpolation system smaller values of c∗ may be
preferable.

In the current work, a suitable value of c∗ is selected for each of the two problems
examined, and is used for all configurations tested within that problem. The value
of c∗ is not optimised to minimise the solution error, as to do so would require
a different value of the shape parameter for each configuration and perhaps each
timestep. In more practical problems where analytical solutions are not available,
it is possible to extract information about local solution quality by examining the
local PDE residual, at locations other than the data centres (at which the governing
PDE is enforced and the residual will necessarily be zero). By varying the shape
parameter it is possible to reduce the value of the residual, which may lead to an
improved solution reconstruction. However, such an optimisation of the shape pa-
rameter is expensive, and there is no guarantee that the value of c∗ which minimises
the residual will also minimise the solution error, particularly with steady problems
(as has been observed experimentally by the authors).

Any further investigation into efficient techniques for data-dependent shape param-
eter optimisation with local RBF methods would be a welcome addition to the field
of research.

4 The LHI method for heat-transfer problems

The conduction of heat in isotropic materials having temperature-dependent ther-
mal properties, with an arbitrary body source, is given by equation (29); see Rohsenow,
Hartnett, and Ganic (1985):

ρ (T )Cp (T )
∂T
∂ t

=
∂

∂xi

(
k (T )

∂T
∂xi

)
+ s(xi, t) (29)
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where

T is the temperature
ρ is the material density
Cp is the specific heat capacity
k is the thermal conductivity

The temperature-dependent variation of density and specific heat capacity can be
combined into the volumetric heat capacity; cv (T ) = ρ (T )Cp (T ).

4.1 Kirchhoff transformation

The Kirchhoff integral transformation is applied, in order to reduce the degree of
nonlinearity in the governing equation (29).

the Kirchhoff transformation is taken as:

ψ (T ) =
ˆ T

T0

k (χ)dχ (30)

By applying the Kirchhoff transformation to the temperature, equation (29) can be
rewritten as:

∂ψ

∂ t
=

k (ψ)
cv (ψ)

(
∂ 2ψ

∂x2
i

+ s(xi, t)
)

(31)

The transformation of the nonlinear diffusion term into Kirchhoff space reduces
the equation from a strongly nonlinear to a weakly nonlinear form, by removing
the multiplication of first derivatives in the diffusive term::

1
cv (T )

∂

∂xi

(
k (T )

∂T
∂xi

)
=

1
cv (T )

[
k

∂ 2T
∂x2

i
+

dk
dT

(
∂T
∂xi

)2
]

Strongly nonlinear

=
1

cv (T )
∂ 2ψ

∂x2
i

Weakly nonlinear

(32)

The ’price’ for this reduction in nonlinearity is the necessity to obtain a closed-form
representation of ψ (T ) and its inverse function T (ψ), as well as for the two func-
tions k (ψ) and cv (ψ). Since the thermal conductivity k (T ) is usually known only
as a series of pointwise measurements, the accurate computation of these functions
can be nontrivial. A variety of interpolation methods can be used, with the two
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most popular methods within the literature being piecewise linear interpolation, or
the use of a global polynomial (see for example Chantasiriwan (2007) and Kim
(2001)). An alternative is the use of RBF interpolation and numerical integration
in order to obtain the required functions ψ (T ), k (ψ), cv (ψ) and T (ψ). The pro-
cedure for obtaining such functions with RBF interpolation is described in section
6.

Boundary conditions must also be transformed to Kirchhoff-space:

Dirichlet: T (x, t) = f (x, t) ⇒ ψ (x, t) = ψ ( f (x, t))

Neumann: ni
∂T
∂xi

= g(x, t) ⇒ ni
∂ψ

∂xi
= k (ψ)g(x, t)

(33)

The transformation takes a linear Neumann condition in temperature-space to a
nonlinear condition in Kirchhoff-space. However, in practice, the direct application
of temperature gradient Neumann conditions is rare; heat-flux boundary conditions
are much more commonly applied. The surface heat flux qs (x, t) is given by (see
Rohsenow, Hartnett, and Ganic (1985)):

qs (x, t) = −ni k (T )
∂T
∂xi

= −ni
∂ψ

∂xi
(34)

In this case the transformation to Kirchhoff space removes the nonlinearity in the
boundary condition; a nonlinear heat-flux condition in temperature-space is re-
duced to a linear Neumann condition in Kirchhoff-space (see equation (34)).

4.2 Solution procedure

The solution to the nonlinear equation (31) cannot be obtained directly, requiring
instead a process of nonlinear iterations. The current solution procedure performs
Picard iterations on the Kirchhoff transform variable and functions thereof, in order
to iteratively approach the solution at each timestep.

An approximation is taken to the Kirchhoff transform variable ψ , written hence-
forth as ψ̃ . From this, the current guess-values of k̃ = k (ψ̃) and c̃v = cv (ψ̃) can be
obtained. Both of these quantities are required at the solution and PDE data centres,
and k̃ is required at the Neumann boundary centres. Within the nonlinear iteration
these quantities are considered constant, leading to the linearised equation:

∂ψ̃

∂ t
=

k̃
c̃v

(
∂ 2ψ̃

∂x2
i

+ s(xi, t)
)

(35)
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Figure 2: Schematic description of the nonlinear solution procedure

This equation can be solved directly, using the procedure outlined in section 3. The
contribution from the effective body source term, k̃

c̃v
s(xi, t), is taken account as an

addition to the right-hand-side of the global matrix system, and also to the local data
vector where the PDE governing operator is applied (i.e. the PDE centres). Con-
vergence is examined by comparing the maximum change in ψ̃ over the nonlinear
iteration against a user specified convergence parameter εNL. Once convergence has
been reached, the L̂ [ψ̃n] quantity (see equation (25)) can be reconstructed ready for
the next time step. This procedure is summarised in Figure 2. The procedure for
steady problems is similar, except for the absence of the time-advancement loop
and the L̂ [ψ̃n] reconstruction.

Note that for steady problems the initial guess variable ψ̃0 is required only at the
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boundaries. For Dirichlet boundary conditions the guess value is the transformation
of the imposed Dirichlet value (see equation (33)). For temperature-gradient Neu-
mann boundaries, a guess value of ψ̃ is needed in order to compute K̃r. For the first
iteration a guess value of ψ̃ = 0 will usually suffice, however on subsequent itera-
tions this value must be reconstructed from the surrounding solution field in order
for the Neumann boundary operator to converge on the correct value. For transient
problems the initial guess value of ψ̃ is required at all solution, PDE and boundary
centres, and is obtained directly from the transformed initial solution field.

5 3D validation case

A nonlinear heat conduction problem is formulated in a hypothetical material with
known thermal properties, using a mixture of Dirichlet and Neumann temperature-
gradient boundary conditions.

Taking

k (T ) = T

cv (T ) = 1 (36)

s(x, t) = −3− (6+λ r)e−λ t −3e−2λ t

with α and λ as arbitrary scalar parameters, the governing equation (29) becomes

∂T
∂ t

=
∂

∂xi

(
T

∂T
∂xi

)
−3− (6+λ r)e−λ t −3e−2λ t (37)

which has an analytical solution given by:

T (x, t) = r
(

1+αe−λ t
)

(38)

At the origin, the value of the thermal conductivity becomes zero, and as such the
solution becomes singular at this location.

The computational domain is considered to be a cuboid, represented by x∈ [xmin, xmax],
y ∈ [ymin, ymax], z ∈ [zmin, zmax]. The analytical solution field (38) is applied at the
xmax, ymax and zmax boundaries as a Dirichlet boundary condition. The gradient of
the analytical temperature field is imposed at the xmin, ymin and zmin boundaries, i.e.

ni
∂T
∂xi

=
ni xi

r

(
1+αe−λ t

)
(39)

where ni represents the surface normal at the boundary. At the locations where
the Neumann boundaries converge, each of the converging temperature gradient
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conditions is imposed simultaneously, taking advantage of the double collocation
property of the RBF Hermitian method. As described in section 4.1, the appli-
cation of (linear) temperature-gradient boundary conditions leads to a nonlinear
boundary condition in the Kirchhoff-transformed governing equation. The use of
temperature-gradient Neumann boundaries in this problem allows the transforma-
tion procedure to be validated. The initial condition is obtained by applying the
analytical solution (38) over the interior of the solution domain, at t = 0.

Two separate domains are examined. The first domain takes xmin = ymin = zmin =
0, and xmax = ymax = zmax = 2. As such, the singularity at the origin is included
within each of the three Neumann boundaries of the problem. However, the normal
gradient of the temperature at each of these three Neumann surfaces is considered
to be zero at the origin, where the singularity lies. This can be considered valid,
since the temperature gradient is analytically zero over each of these three surfaces
in the limit r→ 0. The second domain takes xmin = ymin = zmin = 1, and xmax =
ymax = zmax = 3, leading to a nonsingular solution throughout the domain, and a
non-zero temperature gradient over each of the Neumann boundaries. The two
domains described above will be henceforth referred to as the singular and the
translated domains respectively.

The solution domain is discretised using a uniform distribution of (11×11×11)
solution and boundary centres. Local systems are formed by connecting each of the
solution centres to each solution or boundary centre within a single Cartesian index
of itself, leading to a stencil of 27 solution or boundary centres. PDE centres are
additionally placed at every Cartesian half-index, leading to 8 PDE centres within
each local stencil. A non-dimensionalised shape parameter of value c∗ = 5 is used
throughout. The value of the parameters α and λ are both taken to be 0.5. For the
transient case, local systems are reformed after every timestep. For the steady case
local systems are reformed after every nonlinear iteration. In both cases, the con-
vergence parameter is taken to be εNL = 10−6 in the L∞ norm. For the transient case
a timestep of size ∆t = 0.01 is used, with a variety of time advancement schemes.

Figure 3 shows the variation of the (absolute) L2 solution error with time, for the
singular case, using three different time advancement schemes. In each case the
profile of the error appears similar. The error rises rapidly from the initial condi-
tion, reaching its maximum value at around t = 0.6. From here the error decreases
towards a minimum value at around t = 5, before rising again towards a steady
value. The second-order Θ = 0.5 time advancement scheme offers the best accu-
racy overall, with the first-order Θ = 1 scheme providing the least accurate solution
for most runtimes. The Θ = 0.65 mixed scheme offers accuracy intermediate to the
other two schemes.

Figure 4 shows the equivalent error variations for the translated case. Here the
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Figure 3: Variation of L2 error norm with runtime : Singular case
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Figure 4: Variation of L2 error with runtime : Translated case
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accuracy is significantly improved for each of the time advancement schemes, in
comparison to the singular case. This is most likely a consequence of the singularity
not being present within the solution domain; with the singular case the maximum
error is always found at the solution centre closest to the singularity, whereas with
the translated case the maximum error location may change as the solution pro-
gresses. Once again, the Θ = 0.5 case provides the most accurate solution and the
Θ = 1 scheme the least accurate, with the Θ = 0.65 scheme offering intermedi-
ate accuracy. The error profile appears similar to the singular case, with the main
difference being that the peak error is achieved at a much earlier runtime (around
t = 0.2). In both the singular and translated cases, the solution is replicated to a
high degree of accuracy throughout the time advancement procedure.

When the steady solution is obtained directly, using the steady solution proce-
dure, the L2 error at the solution centres is 1.49× 10−3 for the singular case, and
3.44×10−4 for the translated case. As such, it appears that approaching the steady
solution using any of the transient solution schemes offers a higher degree of ac-
curacy than can be achieved by using the steady solution procedure, when a con-
sistent shape parameter value is used. As is the case with many other problems,
it was informally observed that alteration of the shape parameter value has a more
significant effect on the accuracy of the steady case than it does on the transient
case. However, for consistency a single representative shape parameter is used for
all configurations.

6 Interpolation and transformation of thermal property data

As indicated in section 4.1, the Kirchhoff transformation can be employed to signif-
icantly reduce the degree of nonlinearity in the nonlinear heat equation. However,
this transformation also requires the thermal conductivity and volumetric heat ca-
pacity, k and cv, to be transformed from functions of temperature into functions
of the Kirchhoff variable. In most practical cases these material functions do not
have a closed-form functional representation, and are known only via pointwise
experimental data. As such, the transformation to Kirchhoff space cannot be made
directly. It may be possible to interpolate the material curves k (T ) and cv (T ) by
using global polynomial functions (see for example Kim (2001)). However, in
many cases experimental data can not be approximated well by a low-order poly-
nomial, and as such a polynomial of high order is often required. Such a high-order
polynomial will often exhibit undesirable oscillations; the well known “polynomial
snaking effect”.

In cases where a global polynomial representation is not viable, it is logical to re-
course to piecewise interpolation of the available experimental data. One possibil-
ity is to use a linear or piecewise-constant representation of the material functions.
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Such interpolation leads to at most a quadratic local approximation for the Kirch-
hoff variable, and hence the conversion back to the original variable (temperature)
is relatively simple to obtain analytically. An alternative to such piecewise inter-
polation is to use a global 1D radial basis function interpolation. Since radial ba-
sis function methods can exhibit exponential convergence rates with interpolation
problems Madych and Nelson, 1990, such methods may offer a high resolution
alternative to piecewise polynomial interpolation. The procedure for the transfor-
mation of material properties to Kirchhoff space is outlined here:

The values of k (T ) and cv (T ) are entered at a set number of sample points, Tj,
as determined by the available experimental data. A traditional RBF interpolation
is then performed on the data (see section 2) in order to obtain the interpolation
functions; k (T ) and cv (T ). From the interpolation function k (T ) a numerical in-
tegration can be performed to obtain an estimate of the Kirchhoff transformation,
ψ j, at the original sample points. The procedure currently implemented by the LHI
numerical software samples k (T ) at 5 locations within each sample point interval,
in order to perform a 9th-order Gauss-Legendre integration between each pair of
sample points.

The discrete representation of ψ j can then be used to obtain RBF interpolations for
both the Kirchhoff transform and its inverse; ψ (T ) and T (ψ) respectively. With
the continuous functions for ψ (T ) and T (ψ) now available, the transformed func-
tions k (ψ) and cv (ψ) can be obtained in much the same fashion; by sampling the
available interpolations of k (T ) and cv (T ) at the locations corresponding to the
data centres of ψ (i.e. ψ j as previously defined), and performing an RBF interpo-
lation.

Although it is necessary to form and solve an RBF interpolation system for k (ψ)
and cv (ψ) during the problem setup phase, the computational cost to extract data
for any of the functions is fairly small, requiring only the formation of a recon-
struction array and its multiplication with a stored solution vector. This comes at a
computational cost of o(M) operations for every reconstruction, where M is equal
to the number of data sample points. This cost will be significantly less than the
cost of the solution procedure described in section 4, unless M is much larger than
the size of the local systems.

To give an indication of the level of accuracy which could be expected from a 1D
RBF interpolation procedure, the following simple numerical example is formu-
lated. A hypothetical model for k (T ) and cv (T ) is examined, which has a known
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(a) Thermal conductivity k (T )
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(b) Volumetric heat capacity cv (T )

Figure 5: Material curves used for interpolation. Crosses represent the location of
the data centres in the coarse sample set

Kirchhoff transformation; see equation (40).

Kr =
(

T
100

)−2.0

cv (T ) = 0.1+0.5
(

T
100

)−1.5

(40)
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Table 2: Relative L2 error norms in the reproduction of Kirchhoff-transformed func-
tions

16 sample points
(relativeL2 error)

31 sample points
(relative L2 error)

k (ψ): 4.02×10−3 1.01×10−3

cv (ψ): 4.29×10−3 1.08×10−3

T (ψ (T )) 1.04×10−4 8.22×10−5

The material data is chosen such that it varies relatively rapidly, and as such presents
a reasonable challenge to accurate and stable interpolation. It is expected that most
physical materials will not experience such large changes in magnitude, or such
rapid rates of decay, over typical operational temperature ranges. A temperature
range of 100≤ T ≤ 1000 is studied in this case. The values of k and cv are sampled
with two datasets, utilising 31 and 16 sample points respectively, with the sample
set refined slightly as T = 100 is approached. The sample locations for the 16-
point dataset are marked on Figure 5, and the 31-point dataset places an additional
sample point at the mid-point of each interval.

With the interpolation procedure described above it is possible to choose a rea-
sonable shape parameter by examining the error in transforming to the Kirchhoff
variable and back again; i.e. by examining the value of

[
T
(
ψ
(
T̈i
))
− T̈i

]
at a large

number of reconstruction locations T̈i, and choosing a shape parameter which min-
imises this quantity in some norm. Here the L2-minimising shape parameter is
automatically utilised. Since only two RBF interpolation systems are required dur-
ing problem setup, the cost of analysing even many hundreds of shape parameters
is still negligible for reasonably sized datasets.

Table 2 shows the relative L2 error norms found in the required Kirchhoff functions,
k (ψ) and cv (ψ), as measured at 1001 uniformly spaced reconstruction locations
over the range of ψ . In addition, the relative L2 norm of the quantity

[
T
(
ψ
(
T̈i
))
− T̈i

]
is reported, as measured at 1001 uniformly spaced T̈i over the range of T . The error
in this quantity is very small with both datasets, as can be expected due to its opti-
misation via the shape parameter (see Table 2). The magnitude of the error in the
transformed functions is also reasonably small, and appears to respond well to the
addition of further discretisation points. Considering that these functions have been
subjected to two separate interpolations and, indirectly, a numerical integration pro-
cedure, the observed relative error of between 0.1% and 0.4% can be considered to
be good.
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7 Full-domain RBF comparison case

The following numerical example replicates a test case from the literature (see
Chantasiriwan (2007)), which has been solved using the full-domain Kansa RBF
collocation method (see section 2), with the Kirchhoff transformation applied and
a piecewise-linear interpolation performed to transform the variable to Kirchhoff
space. In Chantasiriwan (2007) the case is solved in 2D on a coarse dataset,
however in the present example an equivalent 3D solution is obtained, with zero
temperature-gradient conditions applied at the z boundaries in order to replicate
a 2D solution. This allows a direct comparison of solution accuracy with the re-
sults using the Kansa RBF method. In addition, a fully 3D numerical example is
presented using a similar formulation. This numerical test case uses real material
properties, with the Kirchhoff functions interpolated from pointwise experimental
measurements using the RBF interpolation procedure.

Table 3: Material properties for zirconium

T (K) k (W m−1K−1) cv (J K−1 m−3)
100 33.2 1.35×106

200 25.2 1.73×106

400 21.6 1.97×106

600 20.7 2.12×106

800 21.6 2.25×106

1000 23.7 2.38×106

1200 26.0 2.26×106

The material properties for zirconium are taken, as measured at 7 temperature val-
ues (see Table 3). From these pointwise data values, the 1D RBF interpolation
procedure is performed in order to obtain representations for cv and k in Kirchhoff
space. Since the variation of the material properties is smooth and the magnitude
does not change dramatically with temperature, an accurate reconstruction of the
continuous material functions can be expected with only a small sample dataset.

For consistency with the example presented in Chantasiriwan (2007), the domain
is taken as x ∈ [0, 0.12m], y ∈ [0, 0.12m], z ∈ [0, 0.12m]. The analytical solution is
imposed as:

T (x,y, t) = [104.43+4.43cos(0.01t)]e10(x+y) (41)

This analytical solution is achieved by adjusting the body source term at each non-
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linear iteration, via:

s(x,y, t) = cv
(
T
) ∂T

∂ t
−
(

∂ 2T
∂x2 +

∂ 2T
∂y2

)
k
(
T
)
−

[(
∂T
∂x

)2

+
(

∂T
∂y

)2
]

∂k
∂T

∣∣∣∣
T=T

(42)

In this way, the source term depends directly on the material property functions
cv (T ) and k (T ). The value of dk

dT at the exact temperature T is obtained by extract-
ing the derivative from the interpolated k (T ) function. It is important to note that
the source term in this problem is highly artificial, and is directly dependent upon
the interpolated value of the material functions k and dk

dT in order to ensure that
the enforced analytical solution is obtained. Hence, a more accurate reconstruction
of the experimental data in Table 3 will not necessarily lead to a more accurate
numerical solution. As such, in this case, the high-resolution 1D RBF interpola-
tion offers no benefit over the piecewise linear reconstruction of the material data
which is used in Chantasiriwan (2007). In true physical examples however, where
the analytical solution is not known and a physical body-source term is utilised, a
more accurate representation of material properties should generally lead to a more
physically representative numerical solution.

The imposed analytical solution T is used to provide the initial condition for the
simulation, as well as the Dirichlet boundary condition imposed at the x = 0.12m,
y = 0 and y = 0.12m boundaries. At the x = 0 boundary, the analytical solution is
used to provide a suitable a heat-flux condition, i.e.

−k (T ) ni
∂T
∂xi

= 10k
(
T
)

T (43)

In order to retain a 2D solution for comparison with the results obtained in Chan-
tasiriwan (2007), a zero temperature-gradient Neumann condition is imposed at the
z = 0 and z = 0.12m boundaries. The solution domain is discretised by placing
solution and boundary data-centres with a uniform separation of ∆ = 0.01m. PDE
centres are placed at every Cartesian half-index, and a stencil configuration of 27
solution or boundary centres and 8 PDE centres is utilised, as with the previous nu-
merical example. A non-dimensionalised shape parameter of value c∗ = 5 is used
throughout.

In this case, a relative L2 error norm is used to quantify the accuracy of the temper-
ature profile in the numerical simulations;

ε =

[
1
N

N

∑
i=1

(
1− T n

i

T n
i

)2
] 1

2

(44)
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Figure 6: Variation of L2 relative error with time: 2D test-case

where the measurements T n
i and T n

i are taken from solution centre i at time step n,
and N is the total number of solution centres.

In Figure 6 the variation of L2 relative error, ε , is shown for the LHI method in
3D, and for the full-domain Kansa method in 2D as implemented in Chantasiri-
wan (2007). In both cases the runtime is taken as 500s, the timestep is taken as
∆t = 0.125s, and a second order Crank-Nicholson time advancement method is
used (Θ = 0.5). It can be seen that the LHI method and the full-domain Kansa
method both provide results of similar accuracy, with the LHI method offering
slightly better accuracy for t . 250s, and the full-domain Kansa method offering
slightly better accuracy for t & 250s. In this case it was observed that the choice of
time advancement scheme has very little effect on the solution quality, and that a
much larger timestep can be used without a significant reduction in accuracy. For
example, by using the first order Θ = 1 scheme with a time step of ∆t = 1.0s, the
maximum difference in ε from the case presented in Figure 6 was observed to be
is less than 5.0× 10−5. This implies that the error in this case is almost entirely a
consequence of the spatial discretisation, and the accuracy of the body-source term
approximation.

This test case is perhaps not the best with which to validate the performance of the
method, given the artificial and solution-dependent nature of the body-source term.
However it is sufficient to indicate that 3D performance of the LHI method is com-
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parable to the 2D performance of the full-domain Kansa RBF collocation method,
when using a coarse dataset. It is important to highlight once again that the LHI
method, as with other local RBF methods, is capable of scaling to arbitrarily large
datasets in 3D without computational cost or numerical conditioning issues. The
full-domain Kansa RBF collocation method used in Chantasiriwan (2007) exhibits,
at best, order-N2 computational complexity, and will suffer from numerical condi-
tioning issues as the dataset size increases.

A fully 3D version of the above example is also formulated. The following analyt-
ical solution is imposed, as a 3D equivalent of equation (41):

T (x,y,zt) = [104.43+4.43cos(0.01t)]e
20
3 (x+y+z) (45)

The solution domain remains the same, and the body-source term is once again
generated via equation (42). The x = 0 heat-flux boundary and the x = 0.12m, y = 0
and y = 0.12m temperature boundaries are imposed in the same way as previously.
However, in this case the the analytical solution T is additionally imposed at the
z = 0 and z = 0.12m boundaries. The L2 relative error profile for the 3D case is
shown in Figure 7, once again using the Θ = 0.5 time advancement scheme with
∆t = 0.125. The error in this 3D case is significantly lower than that obtained
from the 2D case presented in Figure 6. Unlike the 2D case the error profile does
not appear to vary smoothly with time, however it does remain more consistent,
providing an error of around ε = 4.5×10−4 throughout the simulation.

8 Conclusions

A formulation has been proposed to apply a meshless numerical method to heat
conduction problems, where the material properties vary with temperature. The
proposed numerical method, which is based on an Hermitian radial basis function
collocation approach, allows arbitrary boundary operators to be imposed directly
into the solution construction. Unlike traditional radial basis function collocation
methods which use globally-supported interpolation systems, the proposed numeri-
cal technique uses a series of heavily overlapping local interpolation systems. This
leads to order-N computational complexity, and allows scaling of the method to
large datasets without the numerical ill-conditioning or computational complexity
issues experienced by traditional RBF collocation techniques.

The Kirchhoff transformation is applied to the thermal conductivity in order to
significantly reduce the nonlinearity of the governing equation. The functions de-
scribing the variation of the required material properties with temperature can be
reconstructed from pointwise experimental data using a 1D RBF interpolation pro-
cedure. These same interpolation systems can then be used to transform the ma-
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Figure 7: Variation of L2 relative error with time: 3D test-case

terial property functions to the Kirchhoff-transform variable, allowing solution of
the weakly nonlinear transformed equation. The Kirchhoff transformation proce-
dure also transforms the heat-flux boundary operator from a nonlinear operator in
temperature to a linear operator in the Kirchhoff variable.

The proposed formulation is validated using two numerical examples on 3D datasets.
In both cases the variation of the solution error with time is examined, and in both
cases the solution is replicated to a good degree of accuracy. Each numerical exam-
ple is considered in two separate configurations. The first numerical example uses
a hypothetical material with a constant heat capacity and a linearly varying thermal
conductivity, with a mixture of imposed temperature and imposed temperature-
gradient boundary conditions. The analytical solution profile is replicated accu-
rately even when a singularity is present on the temperature-gradient boundary of
the domain, although more accurate results are obtained when the domain is trans-
lated away from the singularity.

The numerical second example uses a real-world material (zirconium), with the
required material properties reconstructed from pointwise experimental data using
the 1D RBF interpolation procedure. An analytical solution is imposed, via the
use of suitable boundary conditions and a suitable body-source term. The LHI
solution is compared against a full-domain Kansa RBF collocation method from the
literature, with the two methods predicting very similar results. The LHI method,
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however, has the benefit of enhanced scalability to large datasets in comparison
to the full-domain Kansa RBF method. As with all full-domain RBF methods, the
Kansa approach will suffer from numerical ill conditioning and high computational
cost as it is scaled to large datasets. A fully 3D version of the same problem is also
performed, using a different imposed analytical solution. This fully 3D problem
provides a significantly more accurate solution than with the pseudo-2D problem.
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work program.
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