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On Adaptive Definition of the Plane Wave Basis for Wave
Boundary Elements in Acoustic Scattering: the 2D Case
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Abstract: The terminology “wave boundary elements” relates to boundary ele-
ments enriched in the Partition of Unity sense by a multiple plane wave basis for the
analysis of the propagation of short wavelength waves. This paper presents a vari-
ant of this approach in which the plane wave basis is selected adaptively according
to an error indicator. The error indicator is residual based, and exhibits useful lo-
cal and global properties. Model improvement in each adaptive iteration is carried
out by the addition of new plane waves with no h-refinement. The convergence
properties of the scheme are demonstrated.
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1 Introduction

This paper deals with the efficient solution of frequency domain boundary value
problems in wave propagation. Finite element and boundary element schemes have,
of course, become well established as tools to carry out such simulations. However,
users of conventional schemes, i.e. those schemes using a polynomial shape func-
tion basis, are well known to be constrained by a heuristic rule that prescribes a
maximum nodal spacing of approximately λ/10, where λ is the wavelength un-
der consideration. Similar restrictions are found in meshless methods, e.g. Soares
(2009). This places a de facto upper bound on the frequency that may be considered
for any given problem given a finite computational resource. For many problems of
practical scientific and engineering interest, e.g. radar scattering by an aircraft, this
limitation presents an obstacle to the effective usage of element-based methods.

Attempts to increase the upper bound on frequency have been the subject of ac-
tive research over the last decade. Fast multipole methods (FMM) (Chew, Jin,
Michielssen, and Song (1997); Darve (2000), for example) present a promising
avenue of research. For a problem containing N nodes, the N2 nodal interactions
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through the Green’s function are expanded in a multipole expansion so that the to-
tal number of computations is greatly reduced, and giving rise to acceleration in
the matrix vector products that are central to the iterative solution of large systems.
Adaptive Cross Approximation (ACA) (Bebendorf (2000)) is an alternative tech-
nique for accelerating boundary element matrices for general applications; this has
been applied to wave problems by Brancati, Aliabadi, and Benedetti (2009). The
matrix is partitioned hierarchically in such a way that each partition may be accu-
rately expressed as a low rank approximation implemented as a convergent series
of vector operations.

Without prejudice against FMM and ACA, both of which are likely to be orthogo-
nal to the methods presented herein, the current paper focuses on a class of meth-
ods in which the wave potential is sought in some wave basis. Abboud, Nédélec,
and Zhou (1995) showed that, for convex scatterers impinged by an incident wave
of sufficiently high frequency, the scattered potential may be efficiently approx-
imated as the product of a slowly varying function and the incident wave itself.
The slowly varying function may then be approximated using a piecewise polyno-
mial finite element or boundary element space. This has been shown to provide
“wavenumber independent” complexity, e.g. Bruno, Geuzaine, Munro, and Reitich
(2004) present results for scatterers of dimension 106λ . Langdon and Chandler-
Wilde (2006) show that the approach is suitable for polygonal scatterers. Anand,
Boubendir, Ecevit, and Reitich (2006) extended the approach to scattering by two
or more objects. Dominguez, Graham, and Smyshlyaev (2007) showed that, for
asymptotically high wave numbers, the number of degrees of freedom needs to
grow only with O(k1/9) to maintain a fixed error bound (the reader is reminded
that wave number k = 2π/λ ). It should be recalled that these methods are limited
to convex scatterers and may not perform well if λ is not very small in comparison
with the scatterer, i.e. for low or medium frequency problems.

The extension of these ideas to consider a basis comprising multiple plane waves
was proposed, without confirming examples, by de la Bourdonnaye (1994) for in-
tegral equation methods in wave simulation. The Partition of Unity Method (PUM)
of Melenk and Babuška (1996) generalised the use of approximation spaces com-
prising sets of functions known to populate the solution space for any differential
equation under consideration. Sets of plane waves were proposed for wave prob-
lems. When applied to finite element and boundary element approximations for
waves, the PUM results in a reformulation of the problem so that we no longer
seek the solution in terms of the nodal values of potential, but instead solve for
the amplitudes of a set of approximating plane waves at each node that may be
linearly combined to recover the potential field. Papers describing the Partition of
Unity Finite Element Method (PU-FEM) for wave problems have appeared in the
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literature, including Laghrouche, Bettess, and Astley (2002); Laghrouche, Bettess,
Perrey-Debain, and Trevelyan (2003); Ortiz and Sanchez (2000), and the approach
is also seen in the discontinuous enrichment method (see, for example, Farhat,
Harari, and Franca (2001); Massimi, Tezaur, and Farhat (2008)), the generalized
finite element method of Strouboulis, Babuška, and Hidajat (2006), the ultraweak
variational formulation of Cessenat and Després (1998) and the Variational Theory
of Complex Rays (VTCR) of Riou, Ladevèze, and Sourcis (2008). Following the
initial proposition by de la Bourdonnaye (1994) of a multiple plane wave basis in
a boundary integral equation, the approach was further developed in a series of pa-
pers by Perrey-Debain, Trevelyan, and Bettess (2002, 2003a,b) and Perrey-Debain,
Laghrouche, Bettess, and Trevelyan (2004), considering Helmholtz problems and
elastic waves. These authors showed that the plane wave expansion reduced the
required number of degrees of freedom to approximately 2.5 per wavelength, a
marked reduction over the 10 per wavelength required with the polynomial basis
while retaining ‘engineering accuracy’, as defined by 1% L2(Γ) norm of the rel-
ative error in comparison with an analytical solution. The inclusion of the PUM
in a boundary element context may be termed PU-BEM, and the elements that are
enriched in this way may be termed wave boundary elements.

Although recent advances have been made in the numerical integration of oscil-
latory functions (Huybrechs and Vandewalle (2006); Trevelyan (2007); Honnor,
Trevelyan, and Huybrechs (2009); Trevelyan and Honnor (2009); Kim, Dominguez,
Graham, and Smyshlyaev (2009)), the run time in the PU-BEM is dominated by the
evaluation of boundary integrals. It becomes important, therefore, to optimise care-
fully the number of plane waves used in the basis at each node to minimise the total
number of boundary integrals required to be considered. For general problems, in
which an analytical solution is not available and the optimal local enrichment varies
over the scatterer boundary, an adaptive scheme appears attractive for definition of
the basis. Some initial experiments were reported at conferences by Trevelyan,
Bettess, and Perrey-Debain (2004) for the PU-BEM and by Ladevèze, Sourcis,
Riou, and Faverjon (2008) for the Variational Theory of Complex Rays (VTCR).
Chandrasekhar and Rao (2008) have presented adaptive edge basis functions for a
Method of Moments solution for acoustic scattering. This paper presents a fuller
exposition of adaptivity in PU-BEM with appropriate error indicators.

Section 2 of this paper presents the PU-BEM for Helmholtz problems, and Sec-
tion 3 presents the adaptive scheme that is the main novel component of the work.
Section 4 contains some more detailed notes on implementation of the algorithms.
Section 5 describes some results for two test cases, and some concluding remarks
are made in Section 6.
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2 Partition of Unity Boundary Element Method for wave propagation

We consider a domain Ω ∈ R2, unbounded in the exterior and bounded internally
by a scatterer of boundary ∂Ω = Γ. Assuming e−iωt time dependence, the wave
equation reduces to the familiar Helmholtz equation form

(∇2 + k2)φ(x) = 0, x ∈Ω (1)

where ∇2 is the Laplacian operator, k is the wavenumber, given by 2π/λ , and we
seek the complex potential field φ(x). This paper is aimed specifically at problems
characterised by medium to large k, such that the frequency is sufficiently high
that conventional FEM and BEM formulations become impractical, but not so high
that asymptotic methods apply. Let the scatterer be impinged by an incident wave
φ I(x) = AIeikψ I ·x, i.e. a plane wave of amplitude AI ∈ C travelling in the direction
described by unit vector ψ I . Transformation of the governing differential equation
into an equivalent boundary integral equation (BIE) form is standard (e.g. Brebbia
and Ciskowski (1991)), arriving at

c(x0)φ(x0)+
∫

Γ

∂G(x,x0)
∂n

φ(x)dΓ(x) =
∫

Γ

G(x,x0)
∂φ(x)

∂n
dΓ(x)+φ

I(x0), x0 ∈ Γ

(2)

where c is a scalar dependent on the boundary geometry at point x0, n is the unit
outward-pointing normal at boundary point x, and G is the Green’s function, which
for the Helmholtz equation is given by

G(x,x0) =
i
4

H0(kr). (3)

Here r := |x− x0| is the usual radial coordinate in boundary element methods, and
H0(·) is a Hankel function of the first kind and of order 0. Considering a general
form of boundary condition to be applied, given by

∂φ(x)
∂n

= α(x)φ(x)+β (x), x ∈ Γ (4)

the BIE may be reformulated as

c(x0)φ(x0)+
∫

Γ

(
∂G(x,x0)

∂n
−G(x,x0)α(x)

)
φ(x)dΓ(x)

=
∫

Γ

G(x,x0)β (x)dΓ(x)+ φ
I(x0) (5)
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Here, for compact presentation we take the case of a perfectly reflecting (“sound-
hard”) scatterer, so α(x) = β (x) = 0,x ∈ Γ, leading to a BIE in only the double
layer potential,

c(x0)φ(x0)+
∫

Γ

∂G(x,x0)
∂n

φ(x)dΓ(x) = φ
I(x0). (6)

However, the approach extends in an identical fashion to sound-soft or impedance
boundary conditions. In the direct collocation BEM, the boundary Γ is discre-
tised and each element of boundary Γe considered in an intrinsic coordinate system
through the usual parameterisation of a finite/boundary element, i.e.

Γe = {γe(ξ ) : ξ ∈ [−1,1]} (7)

where γe : R→ R2. For any element, the mapping between x ∈ Γ and ξ is unique
and bidirectional, and it shall be henceforth assumed that any function f (x) is
equivalent to f (ξ ) as suggested by this mapping. Expressing the potential in a
piecewise polynomial basis over element e,

φ(x) =
J

∑
j=1

N j(x)φ e
j (8)

where J is the number of nodes per element, N j is the Lagrangian shape function
for node j and φ e

j is the unknown nodal potential at node j on element e, we write

c(x0)φ(x0)+
E

∑
e=1

J

∑
j=1

∫ +1

−1

∂G(x,x0)
∂n

N j(ξ )Jn(ξ )dξ φ
e
j = φ

I(x0) (9)

where E is the total number of elements, and Jn is the Jacobian of the mapping (7).
Collocating this discretised statement of the BIE at a sufficient number of points
x0 ∈ Γ yields a system of linear equations that may be solved for the nodal poten-
tials in the conventional fashion. Some method needs to be employed to overcome
the problem posed by the non-uniqueness of the solution to (6) at the eigenfre-
quencies of the associated interior Dirichlet problem (Schenck (1968); Burton and
Miller (1971)); the current authors use the method of Schenck (1968) for reasons
of computational efficiency but modified in a similar fashion to Mohsen and Hes-
ham (2006) to retain a square system. To move from the classical direct collocation
BEM to the PU-BEM, we introduce the plane wave expansion of the potential on
an element e,

φ(x) =
J

∑
j=1

N j(x)
M

∑
m=1

Ae
jmeikψe

jm·x, |ψe
jm|= 1 (10)
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where Ae
jm ∈ C and ψ jm ∈ R2 are, respectively, the amplitudes and directions of

the plane waves in the basis. For nodes that are shared between adjacent elements,
the same plane wave basis is considered for each element, and the amplitudes of
the individual waves are taken to be identical, providing for C0 continuity in po-
tential across element interfaces. M may be chosen such that, for any given mesh,
requirements on the number of degrees of freedom per wavelength, τ , are observed
both globally and locally. We recall that τ ≥ 10 is generally observed for FEM and
BEM approximations; Perrey-Debain, Trevelyan, and Bettess (2003a) have shown
that a considerably coarser discretisation of τ ' 2.5 is sufficient for PU-BEM. In
general, τ may be allowed to reduce further towards 2.0 as the frequency increases.
Substitution of (10), instead of (8), into (6) results in the BIE being reformulated
such that the unknowns become the amplitudes Ae

jm.

c(x0)φ(x0)+
E

∑
e=1

J

∑
j=1

M

∑
m=1

∫ +1

−1

∂G(x,x0)
∂n

N j(ξ )eikψe
jm·xJn(ξ )dξ Ae

jm = φ
I(x0) (11)

There become M degrees of freedom associated with each node, and so collocation
only at the nodes will provide an insufficient number of equations; an auxiliary set
of equations is provided by collocating at a sufficient number of non-nodal points
distributed over the boundary. To accomplish this, the potential at the collocation
point, φ(x0), in (11) needs to be written in the expansion (10),

φ(x0) =
J

∑
j=1

N j(x0)
M

∑
m=1

Aē
jmeikψ ē

jm·x0 (12)

where ē is the element on which x0 lies. This yields a square system of linear
equations

[W +K]{a}= {b} (13)

where the sparse square matrix W results from interpolation of the plane waves
through (12) and square matrix K is fully populated with the boundary integrals
contained in (11). Right hand side vector b contains the incident wave potentials at
the collocation points, and the unknown vector a contains the amplitudes Ae

jm. The
amplitudes may be determined through solution of the system (13), being careful
to use a solver appropriate to the conditioning of [W + K], and the potential field
may quickly be recovered through (10). If required, solutions in the domain Ω (e.g.
for the far-field pattern) may be found by making further use of (11) in the usual
way. In most PU-BEM works in the literature, and cited in this article, the wave
directions ψe

jm have been simply defined to be equally spaced around the unit circle,
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i.e.

ψ
e
jm = (cosθ

e
jm,sinθ

e
jm), θ

e
jm =

2π(m−1)
M

+δθ (14)

In order to represent the physical optics solution for large k, we take the offset
δθ to be the direction of the incident wave. We note that, while the number of
waves, M, is generally much more important than the direction vectors ψe

jm, the
results do exhibit some sensitivity to the basis directions chosen. Selection of a
wave basis that is in some sense optimal for the problem in question is an open
research question (see Bériot, Perrey-Debain, Ben Tahar, and Vayssade (2010)).
In the following section we show how this set of wave directions is augmented
iteratively to enhance the solution.

3 Adaptive scheme

The core elements of most adaptive schemes found in the FE and BE literature
are an error indicator and some strategy, generally h or p, for model improvement.
The current work is no exception. This section presents such a scheme, of the p-
adaptive character, for 2D PU-BEM approximations. In this scheme, the number
of plane waves in the basis at node j of element e, now denoted Me j, varies with j.
Thus the BIE (11) may be presented in the slightly modified form,

c(x0)φ(x0)+
E

∑
e=1

J

∑
j=1

Me j

∑
m=1

∫ +1

−1

∂G(x,x0)
∂n

N j(ξ )eikψe
jm·xJn(ξ )dξ Ae

jm = φ
I(x0) (15)

In successive iterations of the adaptive scheme, the approximation space is progres-
sively enriched by the addition of plane waves by incrementing the value Me j at any
node(s) selected by a local error indicator.

A residual based error indicator R may be defined as,

R(x1) :=
1
|AI|

∣∣∣∣c(x1)φ(x1)+
∫

Γ

∂G(x,x1)
∂n

φ(x)dΓ(x)−φ
I(x1)

∣∣∣∣ , x1 ∈ Γ (16)

where the integral term may be evaluated in the same discrete form as in (15)

∫
Γ

∂G(x,x1)
∂n

φ(x)dΓ(x)≡
E

∑
e=1

J

∑
j=1

Me j

∑
m=1

∫ +1

−1

∂G(x,x1)
∂n

N j(ξ )eikψe
jm·xJn(ξ )dξ Ae

jm

(17)

We note that when Dirichlet and/or impedance boundary conditions are used the
single layer potential term must also be included in the computation of the error
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indicator. Having solved the system for the amplitudes Ae
jm, the potentials φ(x) and

φ(x1) are available by recombination from (10), and the entire right hand side of
(16) may be readily evaluated to give the error indicator at an arbitrary boundary
point x1. R may be expected to be close to zero-valued when evaluated at x1 = x0,
one of the original set of collocation points used in the solution of the problem.
Typical behaviour is illustrated in Figure 1, in which the variation in R is plotted
over one line element containing 13 uniformly distributed collocation points; R can
be seen to be considerably lower at the original set of collocation points than at
other locations on the element. The error indicator reaches a maximum approx-
imately midway between each pair of collocation points x0. It is further noticed
consistently that the peaks in R increase towards the extremities of the element, a
feature we attribute to the fact that the shape functions exhibit only C0 continuity at
the element boundaries. Therefore we consider the behaviour of R over an element
e to be reasonably described by its value at just two points, xe

L and xe
R. These points

are defined by their locations in parametric space, i.e.

ξ (xe
L) =

1
2
(ξ (x0L)+ξ (xL)) (18)

ξ (xe
R) =

1
2
(ξ (x0R)+ξ (xR)) (19)

where xL and xR are the two end node locations, and x0L,x0R are the non-nodal
collocation points on the element that are closest to xL and xR respectively.

Figure 1: Behaviour of error indicator over an element containing 13 collocation
points
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Figure 2: Showing the algorithm for approximating ||R||1

A suitable global error indicator might be based on a norm of R. Since R(x1) ≥
0,∀x1 ∈ Γ, a 1-norm is sufficient, so that we define a global error norm

||R||1 :=
1
P

∮
R(x)dΓ(x) (20)

where P is the perimeter of the boundary Γ. However, since it involves the evalua-
tion of many highly oscillatory boundary integrals, this norm is costly to compute
numerically. Fortunately, for the purpose of using it as a stopping criterion, the
norm (20) is sufficiently well approximated by

||R||1 '
1

6P

E

∑
e=1

Le[R(xe
L)+R(xe

R)] (21)

where Le is the length of element e. This corresponds to the combined area of
the triangles of base equal to one third of the element length and height equal to
R(xe

L) and R(xe
R), as illustrated in Figure 2. Numerical tests suggest that, using the

definition (21), a stopping criterion ||R||1 < 0.004 is generally suitable to obtain
engineering accuracy of 0.01 in ε , the L2(Γ) relative error norm of the approxi-
mation for φ for a perfectly reflecting cylinder, for which the exact solution, φ ex,
is available in Morse and Feshbach (1981). Reducing the threshold value for the
stopping criterion provides for improved accuracy of the converged solution. For
completeness we define ε as

ε =
||φ −φ ex||L2(Γ)

||φ ex||L2(Γ)
(22)



156 Copyright © 2010 Tech Science Press CMES, vol.55, no.2, pp.147-168, 2010

In evaluating ||R||1 using (21) it is important to store the local values of the error
indicator R(xe

L),R(xe
R),e = 1, ...,E found at any of these sampling points, since they

will be used as the local error indicator.

Although it includes a non-local integral operator, the error indicator (16) may
also be viewed as having local properties since it is effectively the use of the BIE
to compute the potential φ(x1), and evaluation of the discrepancy between this
computation and the recovery of φ(x1) from the PU-BEM solution through (10).
We can illustrate the effectiveness of local variation in R as a local error indicator
using the perfectly reflecting cylinder. For a case in which 24 elements are used to
model the cylinder, we computed for each element the values

ε
e =
||φ −φ ex||L2(Γe)

||φ ex||L2(Γe)
(23)

||R||e1 =
Le

6P
[R(xe

L)+R(xe
R)] (24)

These values, normalised by the maxima max(εe,e = 1, ...,24) and max(||R||e1,e =
1, ...,24) are plotted in Figure 3. There is a clear correlation, which we interpret as
a justification to use R as a local error indicator.

Figure 3: Variation of εe and ||R||e1 over a 24 element model

In each adaptive iteration, new waves are added to the approximation space at nodes
suggested by the local variation in the error indicator. New rows and columns are
appended to the system matrix and a new solution is obtained. In the current work,
since the evaluation of the boundary integrals incurs a large majority of the compu-
tational cost of the PU-BEM for typical problems, the complete set of equations is
solved at each adaptive iteration. Further work is justified in incremental solution
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schemes that might be iterative or involve an updated decomposition of the grow-
ing system matrix. Such schemes are likely to require preconditioning. The major
benefit of the scheme is to end up with an approximation space that is optimised for
the problem at hand such that confidence is gained in the solution accuracy while
the number of oscillatory integral evaluations is effectively minimised.

4 Implementation

Different strategies have been tested for the p-adaptive enrichment in response to
the local behaviour of R. It has been noted by Trevelyan, Bettess, and Perrey-
Debain (2004) that the residual error indicator lacks the characteristic smoothness
of Figure 1 when the plane wave basis is non-uniform. We suppose this to be an
artefact of some interference between the waves in the basis at different nodes.
The somewhat enhanced quality of the solution for a uniform basis is exploited in
the final algorithm, in which the following steps are carried out in each adaptive
iteration:

1. determine R(xe
L),R(xe

R),e = 1, ...,E from (16) and, in the same process, as-
semble the global error norm ||R||1 from (21).

2. if ||R||1 < 0.004 the stopping criterion has been satisfied. Recover the poten-
tial solution from (10) and stop.

3. determine the total number of waves, nu, that would be required to be added
in order to reach a uniform basis at all nodes. If the model is already at a
uniform basis, nu takes the value of the total number of nodes, otherwise

nu =
E

∑
e=1

J−1

∑
j=1

Mmax−Me j (25)

where Mmax = max(Me j,e = 1, ...,E, j = 1, ...,J).

4. make a list of all nodes adjacent to sampling points x1 ∈ {xe
L,x

e
R,e = 1, ...,E}

at which R(x1) > Rmax. Here, Rmax is a threshold to be determined by numer-
ical tests. Let there be na such nodes in the list.

5. if na > 0.75nu replace the list of nodes generated in step 4 by a list of
length nu, generated in step 3, that would bring about a uniform basis Me j =
Mmax,e = 1, ...,E, j = 1, ...,J.

6. work down the list of nodes. At each, add a new wave in between two existing
plane waves such that the basis becomes

{
eikψe

jm·x,m = 1, ...,Me j +1
}

, and
increment by 1 the value of Me j.
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7. define new collocation points in the same number as the added degrees of
freedom.

8. evaluate the boundary integrals required to populate the new rows and columns
in K.

9. update required entries in the sparse matrix W to include the contributions of
the newly added waves.

10. solve the enlarged PU-BEM system (13) for all plane wave amplitudes.

11. return to step 1.

The initial plane wave basis at all nodes j on all elements e comprises M1
e j wave

directions uniformly spaced around the unit circle, i.e.

ψ
e
jm = (cosθ

e
jm,sinθ

e
jm), θ

e
jm =

2π(m−1)
M1

e j
+δθ , m = 1, ...,M1

e j (26)

The value of M1
e j is determined to give an appropriate meshing efficiency τ ' 2.1,

where τ is the number of degrees of freedom used to model a portion of boundary Γ

spanning one wavelength. We recall that τ = 10 is the usual heuristic rule for FEM
and BEM approximations to wave problems using a piecewise polynomial basis.

At the start of the analysis, we initialise counting parameters pe j = 1, qe j = 1 for all
nodes. The following algorithm is used in step 6 of subsequent adaptive iterations to
define the direction of a single plane wave direction in between existing directions
at a node.

1. introduce a new plane wave in a direction

θ jm =
pe jπ

qe jM1
e j

+δθ (27)

where m is taken as Me j +1. The associated unit vector ψe
jm is defined as in

(26), and Me j is incremented by 1.

2. modify values of pe j and qe j according to:

(a) if pe j +2 < 2qe jM1
e j, then let pe j = pe j +2 and qe j = qe j

(b) if pe j +2≥ 2qe jM1
e j, then let pe j = 1 and qe j = 2qe j
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Figure 4: Progressive addition of waves (case M1
e j = 3 shown)

This algorithm sequentially adds waves to bisect adjacent pairs of waves and will
continue to find the next bisector at each new addition. This is illustrated in Figure
4 for the first eight iterations for the case M1

e j = 3. Numerical tests have shown that
a moderate asymmetry of the plane wave basis is not detrimental to the solution
obtained.

At each iteration, in step 7 a set of additional collocation points is defined so that
the total number of collocation points is equal to the number of unknowns. We
locate the new points on the elements on which new plane waves are added, but
confine the new points to the interval ξ ∈ (ξ (x0L),ξ (x0R)) in the present study in
order to maintain a consistent definition of the global error norm (21).

4.1 Mesh considerations

It is clear from the presentation of the PU-BEM in Section 2, that the degrees of
freedom in the analysis are represented by the amplitudes of a set of plane wave
directions forming a basis for the approximation space at each node. Simple con-
sideration of the perimeter, P, and of the required number of degrees of freedom per
wavelength, τ , will suggest that a total number of degrees of freedom, Nd , where

Nd =
Pτ

λ
, (28)

should be provided. Let us assume, for simplicity, that every node is provided
with a uniform basis comprising M wave directions, and that there is a total of N
nodes. Nd is then given by MN. Thus we have flexibility to accumulate the re-
quired number of degrees of freedom by various combinations of M and N. Early
developments in the PU-BEM for Helmholtz problems (Perrey-Debain, Trevelyan,
and Bettess (2003a)) showed that the accuracy of the method is influenced by this
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choice, and concluded that convergence is optimised if N is minimised and M max-
imised. Best results were shown for N = 1, i.e. using a single element to model the
entire closed boundary.

With the introduction of adaptivity, we have a conflicting demand, since the algo-
rithm progresses by improving the model in a localised way. For this reason, we
proceed into Section 5 to present examples having a larger N and smaller M than
would be suggested by the 2003 study.

5 Results

The adaptive PU-BEM algorithm is illustrated in this section using two example
problems: scattering of a plane wave by a circular cylinder and by a system of
three cylinders of different diameters. The cylinders are perfectly reflecting as is
assumed for simplicity in the theoretical development earlier in this paper; for more
general cases the algorithm would simply be extended by including the single layer
potential in the residual error indicator (16).

5.1 Scattering by a circular cylinder

Consider a cylindrical scatterer of radius a = 10 impinged by an incident wave of
unit amplitude and wavelength λ = 0.5 (consistent units are assumed) propagating
in direction (1,0). This example provides ka = 125. The cylinder is modelled by
24, 3-noded boundary elements, and the initial model is provided with M1

e j = 6
for all nodes, giving 288 degrees of freedom (τ = 2.29 degrees of freedom per
wavelength). This initial analysis has error norm ||R||1 = 0.00548. The adaptive
algorithm converges in a single further iteration to finish at ||R||1 = 0.00125, which
corresponds to a 0.33% error in the L2(Γ) relative error norm on the potential solu-
tion in comparison with the analytical solution in Morse and Feshbach (1981). In
the converged solution the model has 313 degrees of freedom at τ = 2.49. The total
run time is comparable to the non-adaptive solution using a uniform basis M = 7;
in fact it shows a small reduction of 4% in run time.

The geometry-normalised wavenumber ka = 125 in this example is sufficiently
high that the initial model, exhibiting τ = 2.29, is itself able to produce a reason-
ably accurate solution. The adaptive procedure has fine-tuned the solution with a
more efficient use of resources than simply running again with a larger M applied
uniformly. If we retain the 24-element mesh but double the wavelength to give
a reduced ka = 62.8, the initial model exhibits M1

e j = 3 for all nodes, giving 144
degrees of freedom (τ = 2.29 degrees of freedom per wavelength). Three adaptive
iterations are required in order to achieve convergence. In these three iterations
the global error norm is found to be 0.0124, 0.00401 (just missing the stopping
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criterion) and 0.00210. Again, the run-time shows a small saving of 12.3% over
the most efficient non-adaptive solution that achieves the same accuracy using a
uniform basis. It is to be expected that the run times for adaptive and non-adaptive
solutions are comparable, since the gains that are made by reducing the number of
oscillatory integral evaluations are offset by the requirement to solve the system of
equations multiple times.

Figure 5 shows plots of R over the boundary Γ for the solutions of the three adaptive
iterations. In these graphs the horizontal axis is defined by angle θ taken clockwise
around the scatterer, having θ = 0 at the first point of contact with the incident
wave. The asymmetry of the error indicator about θ = π may be attributed to the
random definition of the Chief points inside the scatterer.

Figure 5: Evolution of error indicator for cylinder problem taking ka = 62.8. (a)
first iteration, (b) second iteration, (c) third and final iteration

It should be noted that the calculation of R over the boundary, enabling the plotting
of Figure 5, is made for illustrative purposes only, and the reader is reminded that in
this scheme the error indicator is required only at two points per element, as shown
in equation (21).

For scattering by a single cylinder the behaviour of the PU-BEM is well understood
so that, using a non-adaptive solution using a uniform basis of M plane waves at
each node, it is possible to select a suitable value of M a priori that experience
suggests will give any desired accuracy. The principal advantage of the adaptive
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scheme is found in more general problems, where the choice of an appropriate
M is not so clear and cannot be deduced from experience as for a single cylinder
problem. We proceed now to present such a case.

5.2 Scattering by three cylinders

Consider a set of cylindrical scatterers in an infinite acoustic medium, being im-
pinged by an incident plane wave of unit amplitude and wavelength λ = 0.25,
propagating in direction (1,0). The geometry and meshing for the scatterers are
defined in Table 1. All elements have three nodes, and the entire boundary to the
problem, Γ, is defined as Γ = Γ1∪Γ2∪Γ3.

Table 1: Geometric definition of the three cylinders

Scatterer Centre Radius No. of elements Boundary
1 (0, 0) 1 8 Γ1
2 (2, 3) 2 16 Γ2
3 (4, -2) 3 24 Γ3

The convergence of the global error norm ||R||1, from ||R||1 = 0.1485 for the
initial analysis (M = 4,τ = 2.54) to achieve convergence in the 4th iteration at
||R||1 = 0.00264, is shown in Figure 6. Convergence is achieved using Nd = 631
at τ = 4.18. Contours of the converged solution Re(φ) are shown in Figure 7, and
show reflection from the illuminated surfaces, a clear shadow region to the right,
diffraction around the sides of the scatterers and a complicated region of multiple
reflections between the three cylinders. This complication is emphasised by plot-
ting |φ | on Γ2, as shown in Figure 8. In Figure 9, we plot over Γ2 a measure, ε2,
of the difference between the converged adaptive solution (plotted in Figure 8) and
the solution φ̄ obtained using a direct collocation BEM approximation using 1520
degrees of freedom at τ = 10.1. This measure is defined by

ε2 =
||φ |− |φ̄ ||
|φ̄ |max

(29)

We can measure the improvement in accuracy as the adaptive scheme progresses
using a relative error, ε3, defined as

ε3 =
||φ − φ̄ ||L2(Γ)

||φ̄ ||L2(Γ)
(30)

The evolution in ε3 with iteration number is shown in Figure 10. The most efficient
non-adaptive solution to achieve this accuracy uses M = 7 and exhibits τ = 4.46. In
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Figure 6: Evolution of global error norm for three cylinder problem

Figure 7: Real part of the potential (converged solution)
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Figure 8: Magnitude of potential on boundary of scatterer 2

Figure 9: Difference measure ε2 on boundary of scatterer 2
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this case the run-time for the adaptive solution is somewhat greater (by 19%) than
this non-adaptive solution, but it must be remembered that the required value of M
for non-adaptive solutions is not known in advance and that multiple runs may be
required to confirm convergence.

Figure 10: Evolution of ε3 for three cylinder problem

6 Conclusions

An adaptive form of the Partition of Unity Boundary Element Method (PU-BEM)
has been presented for the solution of wave scattering problems. The approach
involves a residual based error indicator that has both global and local properties,
allowing it to be used as a stopping criterion and also as an indicator of areas of a
model in which further enrichment is required. The residual is normalised by the
amplitude of the incident wave in scattering problems, allowing a single threshold
to be used for general scattering problems. An efficient approximation to the global
error norm is presented, requiring evaluation at only two points on each element.

The adaptive scheme is of the p-adaptive character; the mesh remains unaltered but
the approximation space is enriched in each iteration, in regions suggested by the
local variation in the error indicator, by the addition of an extra plane wave to the
basis. An algorithm is presented for the iterative addition of new waves in between
existing wave directions.

Illustrative examples demonstrate the convergence of the algorithm to solutions
that exhibit at least engineering accuracy. More accuracy may be obtained simply
by modifying the threshold value for the global error norm that is used as a stop-
ping criterion. Run times for the adaptive solution are comparable to those of the
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most efficient non-adaptive solution that achieves the same accuracy using a uni-
form basis. The adaptive scheme is beneficial in that it removes the requirement to
estimate in advance the required number of plane waves with which to enrich the
approximation space; such an estimate is not always straightforward.

Further work is required to extend the algorithm to scattering problems in 3D,
where greater benefits are expected.
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