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Error Reduction in Gauss-Jacobi-Nyström Quadrature
for Fredholm Integral Equations of the Second Kind

M. A. Kelmanson1 and M. C. Tenwick1

Abstract: A method is presented for improving the accuracy of the widely used
Gauss-Legendre Nyström method for determining approximate solutions of Fred-
holm integral equations of the second kind on finite intervals. The authors’ re-
cent continuous-kernel approach is generalised in order to accommodate kernels
that are either singular or of limited continuous differentiability at a finite num-
ber of points within the interval of integration. This is achieved by developing a
Gauss-Jacobi Nyström method that moreover includes a mean-value estimate of
the truncation error of the Hermite interpolation on which the quadrature rule is
based, making it particularly accurate at low orders. A theoretical framework of
the new technique is developed, implemented and validated on test problems with
known exact solutions, and degenerate cases of the new Gauss-Jacobi scheme are
corroborated against standard Gauss-Legendre and first- and second-kind Gauss-
Chebyshev methods (i.e. using tabulated weights and abscissae). Significant error
reductions over standard methods are observed, and all results are explained in the
context of the new theory.

Keywords: Fredholm integral equations, Nyström method, numerical quadra-
ture, Gauss-Jacobi polynomials, error analysis.

1 Introduction

This paper extends the authors’ recent method (Kelmanson and Tenwick (2009)) for
improving the accuracy of the well-known Gauss-Legendre Nyström method (Nys-
tröm (1930)) for determining approximate solutions of Fredholm integral equa-
tions of the second kind (FIE2s) on finite intervals, in the case when the kernel of
the FIE2 is infinitely continuously differentiable. If, however, the kernel is either
singular or of limited continuous differentiability within the interval of integra-
tion, a more general approach—one based upon Gauss-Jacobi quadrature, of which
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Gauss-Legendre is a special case—is necessary. Development of such an approach
constitutes the present work.

We consider the FIE2 for the unknown function U(T ) on the finite interval [a,b],
with kernel K̃(T,S) and source term F(T ),

U(T )−Λ

∫ b

a
K̃(T,S)U(S)dS = F(T ) ; T ∈ [a,b] , (1)

in which Λ is a real constant. Without loss of generality we assume that K̃(T,S) is
infinitely continuously differentiable with respect to S for all interior S ∈ (a,b); if
K̃(T,S) is either singular or finitely continuously differentiable at a finite number,
m say, of points {Si}m

i=1 ∈ (a,b), a modification of the theory and implementation in
this paper should be applied over the union of sub-intervals ∪m−1

i=1 [Si,Si+1]∪ [a,S1]∪
[Sm,b].
To admit the possibility that K̃(T,S) has either end-point singularities or limited
end-point differentiability, the kernel in Eq. 1 is factorised as

U(T )−Λ

∫ b

a
(b−S)µ (S−a)ν K(T,S)U(S)dS = F(T ) T ∈ [a,b] , (2)

in which K(T,S) is infinitely differentiable with respect to S, and µ and ν are
parameters with µ,ν > −1, so that Eq. 2 may be singular but not hypersingular.
Via the linear transformation

(T,S) =
b−a

2
(t,s)+

b+a
2

(1,1) , (3)

Eq. 2 transforms into the canonical form

u(t)−λ

∫ 1

−1
(1− s)µ (1+ s)ν k(t,s)u(s)ds = f (t) , t ∈ [−1,1] , (4)

in which lower-case functions and variables on [−1,1] correspond to their upper-
case counterparts on [a,b] in Eq. 2 and λ = Λ[(b− a)/2]µ+ν+1. We assume that
λ is a regular value of Eq. 4, to which a unique solution u(t) exists for t ∈ [−1,1].
Defining the integral operator K (whose dependence on µ and ν is notationally
suppressed for convenience) by

(K u)(t)≡
∫ 1

−1
(1− s)µ(1+ s)ν k(t,s)u(s)ds , (5)

Eq. 4 may be written in symbolic form as

u−λ K u = f , (6)
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with unique solution given by

u = (I −λ K )−1 f , (7)

in which I is the identity operator and, from which, by implication,

||(I −λ K )−1||< ∞ . (8)

Despite the symbolic implication of Eq. 7, an explicit closed-form continuous solu-
tion u(t) of Eq. 4 cannot in general be obtained for an arbitrary kernel factor k(t,s),
and many numerical quadrature and projection schemes for determining approxi-
mate solutions un(t), either piecewise or globally interpolated through n ∈ N dis-
crete nodal values in [−1,1], are thoroughly addressed in, e.g., Atkinson (1997);
Baker (1977); Delves and Mohamed (1985); Hackbusch (1989); Kress (1999);
Mason and Handscomb (2003). Of all such methods, we presently focus on the
(global) Nyström method (Nyström (1930)), which continues to be the subject of
new developments and applications on diverse fronts (e.g. Benko, Biles, Robinson,
and Spraker (2008); Dick, Kritzer, Kuo, and Sloan (2007); Kang, Koltracht, and
Rawitscher (2002); Mastroianni and Monegato (2003)). In the notation of Eq. 6,
the symbolic form of the Nyström method for finding the approximation un to u is

un−λ Kn un = f , (9)

in which specification of the explicit form of the quadrature rule Kn un is deferred
until §2, and in which the occurrence of f , rather than an approximation fn, on
the right-hand side reflects the quadrature, rather than projection, nature of the
approximation. From Eq. 6 and Eq. 9, the Nyström error satisfies

u−un = λ (I −λ Kn)−1 (K −Kn)u , (10)

in which the inverse operator exists and, by Eq. 8 and Theorem 4.1.2 in Atkinson
(1997), is bounded according to

||(I −λ Kn)−1|| ≤ 1+ |λ | ||(I −λ K )−1|| ||Kn||
1−λ 2||(I −λ K )−1|| ||(K −Kn)Kn||

,

provided that

||(K −Kn)Kn||<
1

λ 2 ||(I −λ K )−1|| : (11)

by Eq. 4.1.19 in Atkinson (1997), this is true for sufficiently large n. Taking bounds
in Eq. 10, the Nyström error therefore satisfies

||u−un ||∞ ≤ ξn ||(K −Kn)u ||∞ (12)
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for some finite positive constant ξn and sufficiently large n. Hence the Nyström
error converges to zero with n at the same rate as that of the error of the quadrature
implicit in Eq. 9 so, by using rules based on suitable orthogonal polynomials, one
may obtain spectral convergence of ||u−un ||∞ with n uniformly throughout [−1,1].
For example, and notwithstanding the recent observations in Trefethen (2008), it
can be shown (see derivation of Eq. 55) that, if Gauss-Jacobi quadrature is used
in Eq. 4 to compute Kn un in Eq. 9, the large-n asymptotic estimate of the Gauss-
Jacobi Nyström error bound1 is

||u−un ||∞ ≤
π

22n+µ+ν(2n)!
||∂2n[k(t,s)u(s) ] ||∞ , n→ ∞ , (13)

in which ∂m denotes m-fold differentiation with respect to s. Hence, since the kernel
factor k(t,s) in Eq. 2 is by construction infinitely continuously differentiable with
respect to s, Eq. 13 reveals that ||u−un ||∞ converges to zero exponentially with n
when ∂2nu(s) is bounded.

Effective methods (for solving Eq. 4) based on Chebyshev-polynomial interpola-
tion of u(t) are presented in Brutman (1993) and Mason and Handscomb (2003),
the former of which is similar to the forced-oscillation near-minimax approxima-
tion of p.232 et seq. in Atkinson (1989); such methods enjoy the property of yield-
ing accurate estimates of approximation errors ||u−un ||∞ that are moreover, by the
Chebyshev equioscillation theorem, near-uniform throughout the interval [−1,1].
The aim of this paper is to modify the standard orthogonal-polynomial Nyström
method in order to reduce ||u− un ||∞ for a given low value of n. In §2 the gen-
eral theoretical framework underlying the modified method is presented and, in
§3, the details of its finite-dimensional implementation are given. Finally, in §4
the new method is applied to several examples using Gauss-Jacobi quadrature, of
which Gauss-Legendre and Gauss-Chebyshev (first and second kind) quadratures
are special cases; all results are interpreted in the context of the theory of §2.

2 Theory

Since the Jacobi polynomials P(µ,ν)
n (s) are orthogonal on s ∈ [−1,1] with respect

to the weight function in the integral in Eq. 4,

∫ 1

−1
(1− s)µ (1+ s)ν P(µ,ν)

i (s)P(µ,ν)
j (s)ds = δi j , i, j ∈ N , (14)

1 When µ = ν = 0, Gauss-Jacobi quadrature reduces to Gauss-Legendre quadrature, whence Eq. 13
agrees with the asymptotic estimate of Eq. 5.3.37 in Atkinson (1989).
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the explicit form of the orthogonal-polynomial quadrature approximation of K u
in Eq. 10 is

(Kn u)(t)≡∑
j

c j,n k(t,σ j)u(σ j) , t ∈ [−1,1] , (15)

in which the quadrature weights are given by (see, e.g., Gautschi (2004))

c j,n =− An+1 γn

An P(µ,ν)
n+1 (σ j) ∂1P(µ,ν)

n (σ j)
, (16)

where

An =
(2n+ µ +ν)!

2n n! (n+ µ +ν)!
(17)

is the coefficient of sn in P(µ,ν)
n (s), the nodes (abscissae) σ j are the n distinct roots

of P(µ,ν)
n (s) = 0, and γn is given by

γn =
∫ 1

−1
(1− s)µ (1+ s)ν

[
P(µ,ν)

n (s)
]2 ds , (18)

evaluation of which (Abramowitz and Stegun (1972), §22.1) yields the quadrature
weights of Eq. 16 in the explicit computable form

c j,n =
2µ+ν (2n+ µ +ν +2) Γ(n+ µ +1) Γ(n+ν +1)

Γ(n+2)Γ(n+ µ +ν +2) P(µ,ν)
n+1 (σ j) ∂1P(µ,ν)

n (σ j)
. (19)

If u is sufficiently differentiable (see Eq. 56), the quadrature error defined by

(En u)(t)≡ ((K −Kn)u)(t) (20)

is pointwise convergent,

(En u)(t)→ 0 , n→ ∞ , t ∈ [−1,1] , (21)

but not norm convergent (Hackbusch (1989), Lemma 4.7.6),

||En|| ≥ ||K || , ∀n ∈ N . (22)

However, if Ẽn u is an approximation of the true quadrature error En u, the error
discrepancy defined by

(∆Ẽn u)(t)≡ ((Ẽn−En)u)(t) , (23)
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must, by construction, satisfy

||∆Ẽn|| → 0 , n→ ∞ (24)

from which, additionally (Atkinson (1997), Eq. 4.1.19),

||Ẽn Kn|| → 0 , n→ ∞. (25)

The modified Nyström method, with solution un, is based upon augmenting the
standard Nyström method of Eq. 9 with the approximation Ẽn un of the true quadra-
ture error En un,

un−λ (Kn un + Ẽn un) = f , (26)

equivalently

(I −λ Kn−λ Ẽn)un = f , (27)

which, by Eq. 20 and Eq. 23, is moreover equivalent to

(I −λ K −λ ∆Ẽn)un = f . (28)

Hence the modified Nyström operator I − λ Kn− λ Ẽn in Eq. 27 is invertible if
and only if I −λ K −λ ∆Ẽn in Eq. 28 is invertible. To prove this, consider the
identity

(I −λ K −λ ∆Ẽn)−1 =
[
I −λ (I −λ K )−1

∆Ẽn
]−1(I −λ K )−1 , (29)

in which, by Eq. 8, the second inverse on the right-hand side is bounded. Hence,
defining

An ≡ λ (I −λ K )−1
∆Ẽn , (30)

the limit in Eq. 24 reveals that there exists an N ∈ N such that

||An||= |λ | ||(I −λ K )−1|| ||∆Ẽn||< 1 , n≥ N ,

whence the geometric series theorem gives both the bound

||(I −An)−1|| ≤ 1
1−||An||

(31)

and the explicit form of the inverse as the Neumann series

(I −An)−1 =
∞

∑
j=0

A j
n . (32)
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Thus, when condition Eq. 24 is satisfied, the modified Nyström operator in Eq. 27
has a bounded inverse by Eq. 29–Eq. 32, whence a unique solution un can be ob-
tained.

Via Eq. 20, the standard Nyström error of Eq. 10 satisfies

(I −λ Kn)(u−un) = λ En u , (33)

whereas Eq. 27 can be used to show that the modified Nyström error satisfies

(I −λ Kn−λ Ẽn)(u−un) = λ ∆Ẽn u . (34)

Accordingly, Eq. 34 and Eq. 31 yield the error bound

||u−un ||∞ ≤ ζn ||∆Ẽn u ||∞ , (35)

for some finite positive constant ζn and sufficiently large n. However, using Eq. 20
to rewrite Eq. 12 as

||u−un ||∞ ≤ ξn || Ẽn u ||∞ , (36)

it is evident that the standard and modified Nyström error bounds are respectively
proportional to an error and an error discrepancy, whence the essence of the new
method is expressed as

||u−un ||∞� ||u−un ||∞ . (37)

As shown in §3, Ẽn is a differential operator, direct action of which on the numerical
solution un in Eq. 26 necessitates high-order differentiation (at an accuracy consis-
tent with that of Nyström integration) of irregularly spaced nodal values, which
spacing moreover varies with n. To avert this potentially complex numerical differ-
entiation, Eq. 26 is written as an implicit equation for un,

un = f +λ (Kn un + Ẽn un) , (38)

which can be used recursively to replace un wherever it occurs as the direct operand
of (a positive integer power of) Ẽn. Applying M≥ 1 such recursive iterations, Eq. 38
yields

un =
M

∑
m=0

(λ Ẽn)m f +λ

M

∑
m=0

(λ Ẽn)m Kn un +(λ Ẽn)M+1 un . (39)

Defining the linear operator Ẽ (λ ,M)
n by

Ẽ (λ ,M)
n ≡

M

∑
m=1

(λ Ẽn)m (40)
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then, without error, Eq. 39 may be rewritten as

(I −λ Kn−λ Ẽ (λ ,M)
n Kn−λ

M+1 Ẽ M+1
n )u(M)

n = f + Ẽ (λ ,M)
n f , (41)

in which un has been replaced by u(M)
n to highlight the dependence upon M of its

solution. In order to implement Eq. 41, the term λ M+1 Ẽ M+1
n must be neglected,

which requires

||λ M+1 Ẽ M+1
n || � ||I −λ Kn−λ Ẽ (λ ,M)

n Kn|| ≤ ||I −λ Kn||+ |λ | || Ẽ (λ ,M)
n Kn||

so that, by Eq. 25 and Eq. 40, the truncation condition is

||Ẽ M+1
n || � ||I −λ Kn||

|λ |M+1 , n→ ∞ , (42)

from which it is clear that the bound becomes more stringent with increasing M
when |λ | > 1. When condition Eq. 42 holds, Eq. 41 can be approximated by the
truncated equation that forms the theoretical basis of the new method,

(I −λ Kn−λ Ẽ (λ ,M)
n Kn)u(M)

n = f + Ẽ (λ ,M)
n f , (43)

in which all terms can be computed because all powers (Ẽn)m in Ẽ (λ ,M)
n act upon the

quadrature Kn u(M)
n rather than u(M)

n directly; their action upon f is similarly com-
putable. If we further define u(0)

n ≡ un and Ẽ (λ ,0)
n ≡ 0, the standard Nyström method

of Eq. 9 is recovered by setting M = 0 in Eq. 43.

3 Implementation

The conditions are now determined under which the finite-dimensional representa-
tion of Eq. 43 is solvable. Recall that nodal values of un in the standard Nyström
method are obtained by collocating a finite-dimensional approximation of Eq. 9 at
each zero t = σi of the Legendre polynomial Pn(t), thereby generating a system of
n linear equations for the components un(σj) of the n-vector uuunnn,

(III−λ KKK)uuunnn = fff , (44)

in which III is the n×n identity matrix and the components of KKK and fff are respec-
tively Ki, j = c j,n k(σi,σ j) and fi = f (σi). By Eq. 4.1.53 in Atkinson (1997), the
system matrix in Eq. 44 satisfies

||(III−λ KKK)−1 ||∞ ≤ ||(I −λ Kn)−1|| , (45)

the right-hand side of which is bounded by Eq. 8. Hence the matrix III− λ KKK in
Eq. 44 is invertible. By analogy with Eq. 44, the nodes in the new modified method
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are the zeros of the Jacobi polynomial P(µ,ν)
n (t), and the vector uuu(MMM)

nnn of nodal values
of u(M)

n in the modified Nyström method of Eq. 43 satisfies the linear system

(III−λ KKK−λ Ẽ (λ ,M)
n KKK)uuu(MMM)

nnn = fff + Ẽ (λ ,M)
n fff , (46)

in which detailed discussion of the components (Ẽ (λ ,M)
n KKK)i j and (Ẽ (λ ,M)

n fff )i is by ne-
cessity deferred until an explicit form is given to Ẽn, which must display pointwise
convergence,

(Ẽn u)(t)→ 0 , n→ ∞ , t ∈ [−1,1] , (47)

in keeping with Eq. 21. Then, the linear operator Ẽ (λ ,M)
n acting on the arbitrary

matrix AAA = Ai, j yields a matrix with elements

M

∑
m=1

λ
m Ẽ m

n Ai, j

which, by Eq. 47, satisfies Ẽ (λ ,M)
n AAA→ 000 as n→ ∞, so that

|| Ẽ (λ ,M)
n AAA ||∞→ 0 , n→ ∞ (48)

for all AAA (with sufficiently differentiable elements). Since III − λ KKK in Eq. 44 is
invertible by Eq. 45, so is the matrix in Eq. 46 provided that (Golub and van Loan
(1989), Theorem 2.3.4)

||λ (III−λ KKK)−1 Ẽ (λ ,M)
n KKK ||∞ < 1 . (49)

Hence, by standard norm inequalities and Eq. 49, we require

|λ | ||(III−λ KKK)−1 ||∞ || Ẽ (λ ,M)
n KKK ||∞ < 1 , (50)

from which inversion of Eq. 46 is guaranteed by Eq. 48 for sufficiently large n
(cf. Groh and Kelmanson (2008), Eq. (30)) . Thus, when the original Nyström
system in Eq. 44 has a unique solution, so does the perturbed system in Eq. 46 for
sufficiently large n.

The implementation is concluded by finding a computable error estimate Ẽn. The
explicit form of (En u)(t) associated with the orthogonal-polynomial quadrature
rule is

(E ∗n u)(t,s∗) = βn δ
∗
n (u; t,s∗) , (51)

in which, by a natural extension of standard results (see, e.g., Gautschi (2004)),

βn =
γn

A2
n (2n)!

and δ
∗
n (u; t,s∗) = {∂2n[k(t,s)u(s) ]}s=s∗ , (52)
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where s∗ ∈ [−1,1] is an unspecified parameter born of the mean-value form of
the error of the Hermite interpolating polynomial from which Eq. 15–Eq. 19 are
derived. From Eq. 17, Eq. 18 and Eq. 52 we compute, without error,

βn =
2µ+ν+1√π Γ(n+ µ +1) Γ(n+ν +1) Γ(n+ µ +ν +1)

Γ
(
n+ 1

2

)
Γ(2n+ µ +ν +1) Γ(2n+ µ +ν +2)

, (53)

which readily yields the asymptotic ratio

βn+1

βn
∼ 1

16n2 −
3

32n3 +
4−µ2−ν2

32n4 +O(n−5) , n→ ∞ , (54)

so that βn converges to zero exponentially with n independently of µ,ν > −1;
this property is used in explaining features of the results in §4. A rather more
complicated manipulation of Eq. 53 yields the asymptotic formula

βn ∼
π

22n+µ+ν (2n)!

(
1+

2µ2 +2ν2−1
4n

+O(n−2)
)

, n→ ∞ (55)

which, irrespective of µ,ν > −1, is unexpectedly accurate for low values of n.
For example, for µ = ν = 0 (when P(µ,ν)

n (s) = Pn(s), the Legendre polynomial
of the first kind), the two-term asymptotic series for βn in Eq. 55 is in error from
the true value in Eq. 53 by only 3.36%, 1.57% and 0.91% for n as low as 2, 3
and 4 respectively. Moreover, for both µ = ν = −1

2 (when P(µ,ν)
n (s) = Tn(s), the

Chebyshev polynomial of the first kind) and µ = ν = 1
2 (when P(µ,ν)

n (s) = Un(s),
the Chebyshev polynomial of the second kind), the coefficient of every inverse
power of n in the parenthetical series in Eq. 55 vanishes so that, without error,

βn =
π

22n±1 (2n)!
, µ = ν =±1

2
, all n ∈ N .

Finally, the dependence in Eq. 51 of δ ∗n (u; t,s∗) upon the unknown s∗ is circum-
vented by approximating it, with error ε∗n , by its mean-value, integrated over all
s∗ ∈ [−1,1],

δ n(u; t) =
1
2

{
∂2n−1

[
k(t,s)u(s)

]}s=1

s=−1
+ ε
∗
n , (56)

from which we require u(s) to be (2n− 1)-times continuously differentiable with
respect to s because, by construction (see Eq. 4), k(t,s) is infinitely so. Ignoring
second-order terms of order O(βn ε∗n ), we define a mean predicted error by

(E n u)(t) = βn δ n(u; t) , (57)

and also the further error discrepancies

∆E ∗n u≡ (En−E ∗n )u and ∆E n u≡ (En−E n)u . (58)
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4 Test problems, results and discussion

With a prespecified solution u(s), kernel factor k(t,s) and parameters µ and ν ,
both the source function f (t) of Eq. 4 and the quadrature rule Kn of Eq. 15 can
be generated in order to test the theory of §2, because the error discrepancies in
Eq. 58 may be computed explicitly using Eq. 51 and Eq. 57. The theory is tested
on an example with kernel K(T,S) = e−T 2S and known solution U(S) = eS cosS,
using n = 2,4,6,8 in Eq. 58, with parameters a =−3

5 , b = 2
3 , µ = 1

2 and ν = 1
3 . In

this and all subsequent examples, the source function F(T ) of Eq. 2 was obtained
exactly using an algebraic manipulator, but its explicit form is omitted because it is
both cumbersome and unenlightening.

Results of this test problem are presented in figure 1. First, in this (Gauss-Jacobi-
quadrature) example, note that ∆E n is, by design, uniformly considerably smaller
than ∆E ∗n ; the same qualitative behaviour is evident for numerous other examples.
On this basis, and because of its unambiguous computability, we use E n u(t) as the
error estimate Ẽn u(t) in the modified Nyström method proposed in Eq. 43. Second,
figure 1 corroborates the required global norm convergence to zero (see Eq. 24) of
∆E n with increasing n. Third, the deviation of ∆E n from the plane ∆En = 0 quan-
tifies the magnitude of the second-order terms, of order O(βn ε∗n ), neglected in the
approximation of Eq. 57. Figure 2 shows this deviation as a discrepancy between
the actual computed error En u(t) and the mean-value predicted error E n u(t) for the
test problem of figure 1. It is clear that this deviation imposes a restriction on the
number M of recursions that can meaningfully be incorporated in Eq. 43.

With Ẽn approximated by the specific functional form of E n in Eq. 57, the deferred
discussion of the components (Ẽ (λ ,M)

n KKK)i j and (Ẽ (λ ,M)
n fff )i of the matrices in Eq. 46

can be resumed. Defining the notation

Dn,r[F(sr)]≡
λ βn

2
∂ 2n−1

∂ s2n−1
r

[
F(sr)

]∣∣∣∣sr=1

sr=−1
, (59)

we may deduce by direct computation, using Eq. 15 and Eq. 40, that

(Ẽ (λ ,M)
n KKK)i j = c j,n

(
Dn,1[k(σi,s1)k(s1,σj)]

+ Dn,1
[
k(σi,s1)Dn,2[k(s1,s2)k(s2,σj)]

]
+ . . .

)
(60)

and

(Ẽ (λ ,M)
n fff )i = Dn,1[k(σi,s1) f (s1)]+Dn,1

[
k(σi,s1)Dn,2[k(s1,s2) f (s2)]

]
+ . . . , (61)

in which the sums terminate with the term in Dn,M. Although the right-hand sides of
Eq. 60 and Eq. 61 can be re-expressed more efficiently in terms of nested operation,
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we refrain from doing so because, by Eq. 59, they are series in increasing powers
of βn in which, by Eq. 54, each term is an exponentially small perturbation of the
sum of all previous terms. Because of both this and the aforementioned limitations
imposed by the omission of terms of order O(βn ε∗n ), only the first few terms in the
sum in Eq. 40 will therefore need to be computed in practice, a maximum of M = 3
sufficing in the numerical experiments below.

The new method defined by Eq. 46, Eq. 60 and Eq. 61 has been implemented and
validated on a number of test problems with known solutions. For the results in
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Figure 1: Error discrepancies ∆E ∗n u(t,s∗) (dark) and ∆E n u(t) (light) for n =
2,4,6,8 in Eq. 58, computed using a = −3

5 , b = 2
3 , µ = 1

2 , ν = 1
3 and K(T,S) =

e−T 2S with the test solution U(S) = eS cosS in the integral in Eq. 2 (so that k(t,s)
and u(s) are obtained from Eq. 3). The estimate ∆E n u(t) is both smaller in mod-
ulus and more uniform than the standard error term ∆E ∗n u(t,s∗); the (light) plane
∆En ≡ 0 would indicate Eq. 57 to be the exact global error estimate for the Gauss-
Jacobi quadrature of Eq. 15.
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Figure 2: Actual error En u(t) (solid line) and predicted error E n u(t) (circles) for
n = 2,4,6,8 in Eq. 58, computed using the Gauss-Jacobi quadrature of Eq. 15 for
the example defined in the caption of figure 1. The discrepancy between the curves
clearly scales with βn, and reflects the omission of second- and higher-order terms
in Eq. 57.

figure 3, we use the parameters µ = ν = 0, and find that all results obtained are
identical (to machine precision) to those generated independently using standard
(tabulated) Gauss-Legendre quadrature. Figure 3 shows the modified Nyström error
on [−1,1], defined by

e(λ ,M)
n u(t)≡ ||u−u(M)

n ||∞ , M ≥ 0 , (62)

for the lowest possible order of quadrature, n = 2 (in keeping with our aim); each
separate sub-figure is for a fixed value of λ , and separate curves on each sub-figure
are for different values of M. The method is computationally efficient: on a desktop
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PC with a 1.6GHz CPU, the times required to obtain solutions for M = 0, 1, 2 and
3 were respectively 0.015, 0.109, 0.437 and 1.248 seconds.
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Figure 3: Modified Nyström errors e(λ ,M)
n u(t) of Eq. 62 for fixed n = 2 and different

values of λ computed using the Gauss-Jacobi quadrature of Eq. 15 for the test
problem described in the caption of figure 1, but with the new parameters µ = ν =
0. Successive modifications of the standard Nyström error, M = 0, (——) are shown
by M = 1 (�), M = 2 (◦) and M = 3 (+). Validating computations using standard
Gauss-Legendre quadrature yield results indistinguishable from those presented.

By Eq. 59, the mth correction to the standard Nyström error is of order O(λ m β m
n ),

hence corrections converge rapidly to zero with m when |λ | � 1. Although this
explains the negligible effect of the M = 3 correction in figure 3(a), we note the
impressive error reduction due to the first correction, i.e. M = 1; we recall that
this is from only two quadrature nodes, i.e. a potential hand calculation. As |λ |
is increased to order O(1) as in figure 3(b), the aforementioned convergence is
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Figure 4: Modified Nyström errors e(λ ,M)
n u(t) of Eq. 62 for fixed n = 2 and different

values of λ computed using the Gauss-Jacobi quadrature of Eq. 15 for the test
problem described in the caption of figure 1, but with the new parameters µ =
ν =−1

2 . Successive modifications of the standard Nyström error, M = 0, (——) are
shown by M = 1 (�), M = 2 (◦) and M = 3 (+). Validating computations using
standard Gauss-(first-kind-)Chebyshev quadrature yield results indistinguishable
from those presented.

tempered; again, the M = 2 and M = 3 corrections are indistinguishable. As |λ |
is increased further to |λ | � 1, the truncation condition in Eq. 42 becomes more
difficult to satisfy, upon which the solutions of the truncated Eq. 43 and the full
Eq. 41 are expected to diverge.

Such divergence is apparent in figures 3(c) and 3(d); although |λ | � 1 in the latter
of these, the performance of the modified method in 3(d) is comparable to that in
3(c) because the larger value of λ in Eq. 11 has similarly adversely affected the
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Figure 5: Modified Nyström errors e(λ ,M)
n u(t) of Eq. 62 for fixed n = 2 and differ-

ent values of λ computed using the Gauss-Jacobi quadrature of Eq. 15 for the
test problem described in the caption of figure 1, but with the new parameters
µ = ν = 1

2 . Successive modifications of the standard Nyström error, M = 0, (—
—) are shown by M = 1 (�), M = 2 (◦) and M = 3 (+). Validating computations
using Gauss-(second-kind-)Chebyshev quadrature yield results indistinguishable
from those presented.

performance of the standard method (M = 0). Note also from figures 3(c) and 3(d)
that the M = 2 and M = 3 corrections are somewhat less uniform on [−1,1] than
the M = 1 correction; again, this is a manifestation of the approach to the violation
of the condition in Eq. 42. The trends seen in figure 3 reoccur in figures 4 and 5, in
which µ = ν =−1

2 and µ = ν = 1
2 respectively; in these cases, all results obtained

are identical (to machine precision) to those generated independently using Gauss-
Chebyshev quadrature of, respectively, the first and second kind.
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Figure 6: Modified Nyström errors e(λ ,M)
n u(t) of Eq. 62 for fixed n = 2 and different

values of λ computed using the Gauss-Jacobi quadrature of Eq. 15 for the test
problem described in the caption of figure 1, but with the new (singular) parameters
µ = −4

5 and ν = − 9
10 . Successive modifications of the standard Nyström error,

M = 0, (——) are shown by M = 1 (�), M = 2 (◦) and M = 3 (+).

Figures 6 and 7 show results , for n = 2 and n = 3 respectively, for a challenging
(more singular) example in which µ =−4

5 and ν =− 9
10 : the variation in n reveals

two new features. First, figure 6(d) now demonstrates violation of the condition in
Eq. 42, because for |λ | � 1 the errors for M = 3 are seen to be larger than those for
M = 2; as figure 7(d) demonstrates, the condition in Eq. 42 can be recovered simply
by increasing n from 2 to 3. Second, figure 7 reveals that there is no advantage to
be gained by taking M > 1 when n = 3; the rapid convergence of βn (see Eq. 54)
means that the omitted error ε∗n of Eq. 56 is the determining factor on the accuracy
threshold that can be achieved. Further tests revealed that, when either µ or ν were
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Figure 7: Modified Nyström errors e(λ ,M)
n u(t) of Eq. 62 for fixed n = 3 and different

values of λ computed using the Gauss-Jacobi quadrature of Eq. 15 for the test
problem described in the caption of figure 1, but with the new (singular) parameters
µ = −4

5 and ν = − 9
10 . Successive modifications of the standard Nyström error,

M = 0, (——) are shown by M = 1 (�), M = 2 (◦) and M = 3 (+).

closer to the limiting value of −1 (the case ν = 0.999999 was considered), results
for M > 1 were indistinguishable from those for M = 1, irrespective of n.

We note that, since λ = Λ[(b− a)/2]µ+ν+1, increasing the length of the interval
[a,b] in the original FIE2 of Eq. 2 also acts to violate the condition in Eq. 42 for
which the new method works. However, this is simply consistent with the corre-
sponding degradation of the standard Nyström method for which, under such cir-
cumstances, composite rules (Ralston and Rabinowitz (2001), §4.9) can be used to
recover the required order of accuracy; we can similarly amend our technique ac-
cordingly. Refinement of the present method requires improved estimates of En u(t)
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in order to shed light on the nature of the second- and higher-order terms neglected
in Eq. 57; in particular, of a functional form of the error term ε∗n . Further investiga-
tions are motivated on combining the new approach with product Nyström methods
for kernels that are singular and/or non-infinitely differentiable, but not of a form
described by Eq. 2. Finally, extension of the ideas in this paper to integral equa-
tions for higher-dimensional singular boundary value problems (e.g. Liu (2007a)
and Liu (2007b)) should present no conceptual difficulty, although it is anticipated
that the algebraic complexity in deriving the matrix and vector entries in Eq. 60 and
Eq. 61 would increase considerably.
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