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Size Effects and Mesh Independence in Dynamic Fracture
Analysis of Brittle Materials
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Abstract: Numerical predictions of the failure load of large structures, account-
ing for size effects, require the adoption of appropriate constitutive relations. These
relations depend on the size of the elements and on the correlation lengths of the
random fields that describe material properties. The authors proposed earlier ex-
pressions for the tensile stress-strain relation of concrete, whose parameters are
related to standard properties of the material, such as Young’s modulus or specific
fracture energy and to size. Simulations conducted for a typical concrete showed
that as size increases, the effective stress-strain diagram becomes increasingly lin-
ear, with a sudden rupture, while at the same time the coefficients of variation (CV)
of the relevant parameters decrease to negligible values, situation that renders Lin-
ear Elastic Fracture Mechanics (LEFM) applicable. However, it was later observed
that a hitherto unknown problem arises in the analysis of non-homogeneous ma-
terials, leading to lack of mesh objectivity: the need to know a priori the degree
of fracturing. This should affect not only the truss-like Discrete Element Method
(DEM) employed herein, but also finite element analysis, requiring a careful eval-
uation of the energy dissipated by fracture or other mechanisms in the course of
the loading process. In the paper a tentative criterion is proposed to account for the
effect in non-linear dynamic fracture analysis.

Keywords: Scale Effect, Mesh Objectivity, Fracture, Brittle Materials, Discrete
Element Method.

1 Introduction

The authors determined numerically the response of geometrically similar rein-
forced concrete beams built in four different sizes, tested to rupture by Leonhart
and Walter (1961) and later reproduced by Ramallo et al. (1995), to quantify size
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effects in reinforced concrete beams. For such purpose the so-called truss-like Dis-
crete Element Method (DEM) was employed, modeling inhomogeneneities in con-
crete and steel by assuming that their stiffness and specific fracture energies are ran-
dom fields in 3D-space. The constitutive criteria was based on Hillerborg’s model
(1971) and presented improvements in the consideration of the spatial correlation
of the random fields. The discrete numerical model was also used to reproduce
experimental results due to van Vliet and van Mier (2000) concerning the influence
of sample size on the tensile strength of concrete and rock samples as well as the
theoretical strength of large rock dowels subjected to shear (Miguel et al., 2008).
In all cases, in order to represent the stress-strain relation for concrete in tension,
a triangular diagram was employed, which proves adequate when the size of the
elements is sufficiently small and the inhomogeneous properties of the material
are properly accounted for. These conditions require large DEM or FEM models,
which cannot be usually employed in engineering practice due to cost-effectiveness
considerations. In a previous paper Riera and Iturrioz (2007) contend that predic-
tions of the failure load of concrete structures, accounting for size effects, can be
made using larger elements and therefore reduced computational costs, if the ap-
propriate stress-strain relations are adopted. These relations depend both on the
size of the element and on the correlation lengths of the random fields that describe
the relevant material properties.

In response determinations of structures with initial cracks or high stress gradi-
ents, which result in fracture localization, well established procedures lead to re-
sults that are mesh independent. However, in elements subjected to approximately
uniform stress fields, a hitherto scarcely noticed problem arises in the analysis of
non-homogeneous materials: the need to know a priori the degree of fracturing of
the element (Iturrioz et al., 2009). This should also affect finite element analysis
in cases in which there is no clear fracture localization, requiring a careful evalua-
tion of the energy dissipated by fracture or other mechanisms in the course of the
loading process (van Mier, 2003). In the paper, a tentative criterion is proposed to
account for this effect in non-linear dynamic fracture analysis of large structural
systems.

2 The discrete element method in fracture problems

The truss-like Discrete Element Method employed in this paper is based on the
representation of a solid by means of an arrangement of one dimensional elements
able to carry only axial loads. The equivalence between an orthotropic elastic con-
tinuum and the cubic arrangement of uni-axial elements consisting of a cubic cell
with eight nodes at its corners plus a central node was shown by Nayfeh and Hefzy
(1978). The discrete elements representation of the orthotropic continuum was
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adopted by the authors to solve structural dynamics problems by means of explicit
direct numerical integration of the equations of motion, assuming the mass lumped
at the nodes. Each node has three degrees of freedom, corresponding to the nodal
displacements in the three orthogonal coordinate directions.

The equivalence between the orthotropic elastic solid with orthotropic axes oriented
in the direction parallel to the longitudinal elements of the discrete elements model
was extensively verified in previous contributions of the authors. The equations
that relate the properties of the elements with the elastic constants of an isotropic
medium are:

δ =
9ν

4−8ν
, EAn = EL2

0
(9+8δ )

2(9+12δ )
, EAd =

2
√

3
3

An (1)

in which E and ν denote Young’s modulus and Poisson’s ratio, respectively, while
An and Ad represent the areas of normal and diagonal elements.

The resulting equations of motion may be written in the well-known form:

M~̈x+C~̇x+~Fr (t)−~P(t) =~0 (2)

in which~x represents the vector of generalized nodal displacements, M the diago-
nal mass matrix, C the damping matrix, also assumed diagonal, ~Fr (t) the vector of
internal forces acting on the nodal masses and ~P(t) the vector of external forces.
Obviously, if M and C are diagonal, Equations (2) are not coupled. Then the ex-
plicit central finite differences scheme may be used to integrate Equation (2) in the
time domain. Since the nodal coordinates are updated at every time step, large dis-
placements can be accounted for in a natural and efficient manner. In this paper,
the relation between tensile stress and strain in the material was assumed triangu-
lar (Figure 1). The limit strain εr is determined to satisfy the condition that, upon
rupture of the element, once the strain reaches the value εr, a fracture energy Uelem
is dissipated, according to Equation (3):

Uelem =
A f G f

L0
(3)

in which A f is the fractured area of the discrete element, L0 is its length and G f

is the specific fracture energy that characterized the material toughness. Note that
the fracture energy, i.e., the energy dissipated by the total rupture of one element,
depends on the numerator of Equation (3), which is the product of the fractured
area within the element times the specific fracture energy of the material.

In previous papers (Riera and Iturrioz, 1998; Miguel et al., 2008), it was assumed
that A f equals the area L2

0 of a cubic brick of the truss-like model. On that basis,
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 Figure 1: Triangular constitutive law for brittle materials.

the fracture area of an individual element is given by:

A f = caL2
0 (4)

in which the coefficient ca was obtained as follows: if a single crack splits the
cube shown in Figure 2 in two parts, the contribution of individual members to the
fracture energy G f L2

0 is given by the right-hand side of Equation (5):

G f L2
0 = G f

[
4×0.25× caL2

0 + caL2
0 +4ca (1.15L0)

2
]

(5)

Which leads to ca = 0.1385.

The coefficients indicated above are applicable as long as there is a strong local-
ization effect, leading to a rupture configuration characterized by a single crack
traversing each cubic cell of sides with length L0. One such example is fracture
of a rock dowel (Miguel et al., 2008), which occurs in most cases in the form of a
crack that, starting near the intersection of the dowel wall and the base, propagates
through the dowel.

Another important feature of the approach is the assumption that G f is not constant
throughout the structure. In this paper, a Weibull distribution with coefficient of
variation (CV) of 100% was adopted. This value resulted from a limited number
of simulations with CV in the range (20, 120), but certainly deserves additional
research for each specific material. It should be underlined again that fracture lo-
calization weakens as the non-homogeneous nature of the material becomes more
pronounced, i.e., as the coefficients of variation of the fields that describe the ma-
terial properties increase.



Size Effects and Mesh Independence 5

 

Lo 

0.25 ca Lo
2 

ca (1.15Lo)2 

ca Lo
2 

 

Figure 2: Detail of the cubic array showing the areas of individual members.

Applications of the DEM in studies involving non-homogeneous materials sub-
jected to fracture in which the single crack assumption through each element is
valid, may be found in Iturrioz (1995), Riera and Iturrioz (1998), Dalguer et al.
(2001), Rios and Riera (2004) and Miguel et al. (2008). Additionally, Dalguer et
al. (2003), Riera et al. (2005), Miguel (2005), Miguel et al. (2006) and Miguel and
Riera (2007), contributed to demonstrate the reliability of the approach by compar-
ing DEM predictions with experimental results or other numerical techniques. It is
also pertinent to stress that the problem is not a difficulty of the DEM approach, but
a basic issue of numerical predictions in Fracture Mechanics (van Mier, 2003). In-
teresting efforts to predict fracture and fragmentation in solids using finite elements
adopting the cohesive interface approach were reported by Needleman (1997) and
more recently by Maiti and Geubelle (2004).

Several studies that employ the Meshless Method (MM) to simulate fracture prop-
agation may be cited. Li et al. (2008) predict the onset of macroscopic crack-
ing in structures undergoing gross plastic deformations under static loading. Shen
(2009) employs the technique to simulate glass fragmentation. Sageresan and
Drathi (2008) apply a version of the MM to simulate fracture propagation in con-
crete, predicting complete load-deformation curves for deformation-controlled tests.
Wang and Wang (2008) simulate dynamic crack propagation with branching, while
Selvadurai (2009) applied a different version of DEM to analyze impact of ice
against a rigid target structure.
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3 Size effect in fracture analysis of non-homogeneous cubic samples

3.1 Uniform displacement

Concrete cubic samples fixed at the lower face and subjected to a monotonically
increasing uniformly distributed normal displacement on the upper face were an-
alyzed first. The response of each sample up to failure was determined through
numerical simulation. The size of the samples ranges from 0.12m to 0.96m. Sam-
ple dimensions and the DEM mesh employed in the analysis are indicated in Table
1. The material properties of the material (concrete) are given in Table 2. In the
ensuing simulations, only the specific fracture energy was assumed to vary as a 3D
random field, while E, ρ and ν were considered constants.

Table 1: Basic dimensions of the concrete samples.

Sample size (m) DEM mesh L0 (m)
0.12 6×6×6 0.02
0.24 12×12×12 0.02
0.48 24×24×24 0.02
0.72 36×36×36 0.02
0.96 48×48×48 0.02

Table 2: Concrete properties.

Property Value
E (Young’s modulus) 3.5E10N/m2

ρ (mass density) 2400kg/m3

ν (Poisson’s ratio) 0.25
E(G f ) (expected value of specific fracture energy) 100N/m

ε p (critical strain) 6.3E-5
CV(G f ) (coefficient of variation of G f ) 100%

Nodal points on the upper face of the specimens were subjected to a controlled uni-
form displacement that increases smoothly in time, inducing a nominally uniform
tension in the specimen. Six simulations were performed for each size. The result-
ing stress-strain curves for all simulations of the 0.12m cube are shown in Figure
3(a) and in Figure 3(b) for all simulations of the 0.96m cube. Note that the fracture
energy of the material is regarded as a random field with the properties indicated in
Table 2 and Weibull (Minimum Type III) probability distribution function, so each
simulated test leads to a different stress-strain curve. As expected, the variability
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of the predicted response decreases when the cube size grows. The mean curve for
all simulations is also shown in Figure 3, while the mean curves for all sizes are
shown in Figure 4.
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Figure 3: Normal stress on the lower face vs. mean strain for all simulations and
resulting mean curve (thick black line), (a) 0.12m cube and (b) 0.96m cube.
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Figure 4: Normal stress on the lower face vs. mean strain for the mean curve of all
tested sizes (uniformly distributed upper boundary displacements).

Typical crack patterns are shown in Figure 5. Undamaged, damaged and totally
broken elements are represented in cyan, orange and red, respectively. The graphs
show both a typical fracture pattern, as well as the damage distribution in the cube.
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Table 3 presents the average tensile strength and the corresponding strain of the
cubes, which are not sensitive to size within the simulation range.

L = 0.48m                   L = 0.72m                  L = 0.96m 

 Figure 5: Rupture configuration of concrete cubes subjected to uniformly dis-
tributed prescribed displacements on upper surface. Note that only central slices
of the cubes are shown.

Table 3: Mean peak tensile stress and corresponding strain for uniform imposed
displacements.

Sample size (m) Stress σr (MPa) Strain εr

0.12 2.45 1.47E-4
0.24 2.48 1.41E-4
0.48 2.52 1.50E-4
0.72 2.53 1.50E-4
0.96 2.52 1.46E-4

3.2 Triangular displacement

Next, the concrete simulated samples, fixed at the lower face, were subjected to
triangularly distributed displacements with constant strain rate on their upper face
and analyzed up to failure through numerical simulation. Again, the size of the
cubes ranges from 0.12m to 0.96m and cube dimensions and DEM mesh employed
in the analysis are indicated in Table 1. The material properties were given in Table
2.

Six simulations were performed for each size. The resulting stress-strain curves for
all simulations of the 0.12m cube are shown in Figure 6(a) and for the 0.96m cube



Size Effects and Mesh Independence 9

in Figure 6(b), which also presents the mean curve. Direct observation shows that
the variability of the predicted response also diminishes when the cube size grows.
Figure 7 shows the mean curves for all simulated sample sizes.
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Figure 6: Normal stress on the lower face vs. mean strain for all simulations and
resulting mean curve (thick black line), (a) 0.12m cube and (b) 0.96m cube.
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Figure 7: Normal stress on the lower face vs. mean strain for the mean curve of all
tested sizes (triangular distribution of upper boundary displacements).

Typical crack patterns are shown in Figure 8. Undamaged, damaged and totally
broken elements are represented in cyan, orange and red, respectively. The graphs
show both a typical fracture pattern, as well as the damage distribution in the cube.
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Table 4 presents the average tensile strength and ultimate strain of the cubes, which
tend to decrease as the size of the cube increases.

 

 L = 0.48m                 L = 0.72m                   L = 0.96m 

 

 

Figure 8: Rupture configuration of concrete cubes subjected to triangularly dis-
tributed prescribed displacements on upper surface. Note that only central slices of
the cubes are shown.

Table 4: Mean peak tensile stress and corresponding strain for triangular imposed
displacements.

Sample size (m) Stress σr (MPa) Strain εr

0.12 1.94 2.20E-4
0.24 1.88 1.84E-4
0.48 1.84 1.78E-4
0.72 1.81 1.68E-4
0.96 1.77 1.60E-4

In Figures 5 and 8 it may be seen that damage localization is more pronounced in
presence of a stress gradient (triangularly distributed imposed displacements). Both
damage, indicated by the orange-tainted regions, as well as crack surfaces, are more
widely distributed in case of uniform imposed displacements (Figure 5). Although
no experimental results for this size range are known to the authors, the effects
unquestionably exist. Therefore, both features of the non-linear problem should
be taken into consideration if larger DEM or FEM elements must be resorted to in
order to reduce computational costs.
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4 Influence of damping in the numerical simulations

The evolution of the fracture process in concrete samples subjected to static tensile
loading is determined by explicit numerical integration of the non-linear equations
of motion of the system assuming, for such purpose, that in addition to the energy
dissipated by fracture, there is also energy dissipated by mass-proportional internal
viscous-type damping within the material. It was verified that the response com-
puted with realistic values of the material damping coefficient, estimated so the free
vibrations in the fundamental mode of a cubic sample, with no fracture occurring,
would be characterized by critical damping ratios in the range between 1 and 2%,
differs from the response computed with above critical damping ratios only after
the peak load is reached.

Figure 9(a) shows normal stress on the lower face of the samples versus mean strain
curves determined by numerical simulation for 0.96m samples, for uniformly dis-
tributed imposed displacements, assuming a low, realistic damping coefficient and
a very high damping coefficient. Figure 9(b) present similar results for triangularly
distributed imposed displacements. It may be seen that the maximum stress and
corresponding strain are not affected by the viscous damping coefficient, in spite of
the large difference in damping between the samples.

It was thus concluded that internal viscous damping was not an important factor in
the assessment of size effects in samples subjected to tensile loading.

    (a)                          (b) 
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Figure 9: Comparison between responses computed assuming low and high damp-
ing coefficients, for uniformly distributed imposed displacements (Fig.9a) and for
triangularly distributed imposed displacements (Fig.9b).
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5 Size dependence of fracture energy

Table 5 presents data on the variation of the fracture energy needed to split the
specimen in two parts as its size increases. The second column indicates the theo-
retical minimum energy Umin, while the third column shows the energy determined
by simulation for nominal uniform stress (or strain) distributions. It was also ob-
served that for triangularly distributed boundary displacements, the fracture energy
approaches the theoretical minimum, indicating a strong localization effect.

Figure 10(a) shows the normalized fracture energy versus strain during the fracture
process for nominal uniform stress, while Figure 10(b) presents similar information
for triangularly distributed imposed displacements. It may be clearly seen that
as size increases, the failure strain decreases, i.e., larger specimens of the same
material are more fragile. Van Mier (2003) also emphasizes the influence of stress
gradients on size effects, which can be explained by the more pronounced damage
localization in the presence of stress gradients. Moreover, in a nominally uniform
initial stress field, the ratio between the work needed to split the specimen and the
theoretical minimum energy (corresponding to an ideal full damage localization)
increases with size.

Table 5: Fracture energy needed to split the specimen in two parts in a nominally
uniform strain field.

Size (m) Umin (Nm) E[Unum] (Nm) E [Unum/Umin] CV[Unum/Umin] (%)
0.12 1.44 1.68 1.17 19.0
0.24 5.76 6.85 1.19 17.3
0.48 23.04 34.33 1.49 7.0
0.72 51.84 85.43 1.65 7.9
0.96 92.16 173.72 1.88 15.8

Simulated samples attain the final value of the fracture energy for very large strains,
while Figures 10(a) and (b) show only the initial part of the corresponding curves.
For the uniform strain field, the final values of the normalized energies are indicated
in Table 5. The results in Table 5 and in Figure 10(a) imply that if larger DEM
elements are employed in fracture studies, in addition to the stress-strain diagram
associated to the element size, the correct ca coefficient must be used, which is
obtained by multiplying the value 0.1385, calculated on the assumption of a single
crack across the element, by the coefficient in the fourth column of Table 5. This
correction would allow considering the occurrence of additional damage, beyond
the failure surface, as shown by Figure 5.

Carpinteri and Chiaia (2002) consider this effect by introducing the notion of frac-
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Figure 10: Expected value of the normalized fracture energy vs. strain during the
fracture process, for uniform imposed displacements (Fig.10a) and for triangular
imposed displacements (Fig.10b).

tal dimension, linked to fractured area as defined in this study, when the fractal
dimension is higher than 2. Figure 11 shows a comparison between the relation
for a dimension (d = 2.3) as proposed by Carpinteri and Chiaia (2002) and DEM
simulations reported herein, for uniform imposed displacements. A fit of the equa-
tion proposed by Carpinteri and Chiaia (2002) to simulated values obtained with
DEM models led to a mean fractal dimension d = 2.29, which is a surprisingly
close correlation, since present results should be dependent on the assumed mate-
rial properties. The corresponding curve is also shown in Figure 11. Note that the
0.12m cube was adopted for this comparison as the smallest representative sample
of the material. It is also clear that both curves in Figure 11 constitute a limit case,
applicable in the absence of strong stress gradients. In fact, as pointed out by van
Mier (2003), the strain softening branch of the nominal stress-strain relation is not
really a material property, since it is affected by the applied loading.

6 Conclusions

It was confirmed in this examination of the tensile fracture behavior of concrete cu-
bic samples that predictions of fracture of non-homogeneous materials using DEM
models are feasible and yield results that are consistent with the experimental ev-
idence so far available. The use of large elements, in which extensive cracking
within the elements of the model may be expected, requires the consideration of
the increase with size of the fractured area, in addition to the effective stress-strain
curve for the element. This is a basic requirement in order to achieve mesh objec-
tivity. Note that the degree of damage localization must be known a priori, which is
a still unresolved difficulty of the non-linear fracture analysis of non-homogeneous
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mated fractal dimension d = 2.29).

large structures.

Acknowledgement: The authors acknowledge the support of CNPq and CAPES
(Brazil).

References

Carpinteri, L., Chiaia, B. (2002): Embrittlement and decrease of apparent strength
of large-sized concrete structures. Sadhana, Vol. 27, Part 4, 425-448, India.

Dalguer, L. A., Irikura, K., Riera, J. D., Chiu, H. C., (2001): The importance
of the dynamic source effects on strong ground motion during the 1999 Chi-Chi,
Taiwan, earthquake: brief interpretation of the damage distribution on buildings.
Bull. Seismol. Soc. Am., 91, 1112-1127.

Dalguer, L. A., Irikura, K., Riera, J. D. (2003): Simulation of tensile crack gen-
eration by three-dimensional dynamic shear rupture propagation during an earth-
quake. J. Geophys. Res., 108(B3), 2144.

Hillerborg, A. (1971): A model for fracture analysis, Cod. LUTVDG/TVBM 300-
51-8.



Size Effects and Mesh Independence 15

Iturrioz, I. (1995): Aplicação do método dos elementos discretos ao estudo de
estruturas laminares de concreto armado. Ph.D. thesis, CPGEC, Universidade Fed-
eral do Rio Grande do Sul, Porto Alegre, Brazil.

Iturrioz, I., Miguel, L. F. F., Riera, J. D. (2009): Dynamic fracture analysis of
concrete or rock plates by means of the Discrete Element Method. Latin American
Journal of Solids and Structures, Vol. 6, pp. 229-245.

Leonhart, F., Walker, R. (1961): The Stuttgart shear tests, Translation No. 11,
C&CA, London. Beton und Stahlbetonbau, Vol. 65, no. 12, 1961, Vol. 57, No. 2,
3, 7, 8.

Li, L., Liu, S., Wang, H. (2008): Meshless Analysis of Ductile Failure. CMES:
Computer Modeling in Engineering and Sciences, Vol. 36, no 2, pp. 173-191.

Maiti, S., Geubelle, P. H. (2004): Mesoscale modeling of dynamic fracture of
ceramic materials. CMES: Computer Modeling in Engineering ans Sciences, Vol.5,
no. 2, pp.91-101.

Miguel, L. F. F. (2005): Critério constitutivo para o deslizamento com atrito ao
longo da falha sísmica. Ph.D. thesis, 229 pp., PPGEC, Escola de Engenharia, Uni-
versidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Miguel, L. F. F., Riera, J. D., Dalguer, L. A. (2006): Macro constitutive law
for rupture dynamics derived from micro constitutive law measured in laboratory.
Geophys. Res. Lett., 33, L03302, doi: 10.1029/2005GL024912.

Miguel, L. F. F., Riera, J. D. (2007): A constitutive criterion for the fault: mod-
ified velocity-weakening law. Bull. Seismol. Soc. Am., 97(3), 915-925, doi:
10.1785/0120060107.

Miguel, L. F. F., Riera, J. D., Iturrioz, I. (2008): Influence of size on the consti-
tutive equations of concrete or rock dowels. International Journal for Numerical
and Analytical Methods in Geomechanics, Vol. 32, No. 15, pp. 1857-188. doi:
10.1002/nag.699.

Nayfeh, A. H., Hefzy, M. S. (1978): Continuum modeling of three-dimensional
truss-like space structures. AIAA Journal, 16(8), 779-787.

Needleman, A. (1997): Numerical modeling of crack growth under dynamic load-
ing conditions. Comp. Mech., Vol. 19, no 6, 463-469.

Ramallo, J. C., Kotsovos, M. D., Danesi, R. D. (1995): Unintended out-of-plane
actions in size effects tests of structural concrete. Proceedings, 13th International
Conference on Structural Mechanics in Reactor Technology (SMiRT 13), Porto Ale-
gre, Brazil, Vol. 3, 351-357.

Riera, J. D., Iturrioz, I. (1998): Discrete elements model for evaluating impact
and impulsive response of reinforced concrete plates and shells subjected to impul-



16 Copyright © 2010 Tech Science Press CMES, vol.56, no.1, pp.1-16, 2010

sive loading. Nuclear Engineering and Design, 179, 135-144.

Riera, J. D., Iturrioz, I. (2007): Size effects in the analysis of concrete or rock
structures. 19th International Conference on Structural Mechanics in Reactor
Technology (SMiRT 19).

Riera, J. D., Miguel, L. F. F., Dalguer, L. A. (2005): On the constitutive criteria
for the fault: Influence of size and tensile cracks generation during rupture. 18th
International Conference on Structural Mechanics in Reactor Technology (SMiRT
18), Beijing, China.

Rios, R. D., Riera, J. D. (2004): Size effects in the analysis of reinforced concrete
structures. Engineering Structures, Vol 26, Issue 8, 1115-1125.

Sageresan, N., Drathi, R. (2008): Crack Propagation in Concrete Using Meshless
Method. CMES: Computer Modeling in Engineering and Sciences, Vol. 32, no 2,
pp. 103-112.

Selvadurai, A. P. S. (2009): Fragmentation of Ice Sheets during Impact. CMES:
Computer Modeling in Engineering and Sciences, Vol. 52, no 3, pp. 259-277.

Shen, L. (2009): A rate Dependent Damage/Decohesion Model for Simulating
Glass Fragmentation under the Material Point Method. CMES: Computer Model-
ing in Engineering and Sciences, Vol. 49, no 1, pp. 23-45.

Van Mier, J. G. M. (2003): Fracture processes in concrete connecting various
length scales, Recent developments in he modeling of Recent developments in he
modeling of rupture in solids, Proceedings of the International Symposium, Foz do
Iguazú, Brazil, Editors Benallal, A. and Proença, S.P.B., p. 31-36 (ISBN: 2-11-
094072-7):

Van Vliet, M. R. A., Van Mier, J. G. M. (2000): Size effects of concrete and
sandstone, Heron, Vol 45, No.2, 91-108.

Wang, H. X., Wang, S. X. (2008): Analysis of Dynamics Fracture with Cohesive
Crack Segment Method. CMES: Computer Modeling in Engineering and Sciences,
Vol. 35, no 3, pp. 253-274.


