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Modelling Elasto-Plasticity Using the Hybrid MLPG
Method

Claire Heaney1,2, Charles Augarde2 and Andrew Deeks2

Abstract: Meshless methods continue to generate strong interest as alternatives
to conventional finite element methods. One major area of application as yet rel-
atively unexplored with meshless methods is elasto-plasticity. In this paper we
extend a novel numerical method, based on the Meshless Local Petrov-Galerkin
(MLPG) method, to the modelling of elasto-plastic materials. The extended method
is particularly suitable for problems in geomechanics, as it permits inclusion of in-
finite boundaries, and is demonstrated here on footing problems. The current usage
of meshless methods for problems involving plasticity is reviewed and guidance is
provided in the choice of various modelling parameters.
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1 Introduction

Problems requiring modelling with elasto–plasticity routinely arise in many areas
of engineering, two prominent examples being metal–forming and geotechnical en-
gineering. In the former the boundary conditions are often prescribed and the quan-
tity of interest is the work required to complete a given manufacturing operation.
In the latter predictions of movements or of instability are required for domains
which are generally kinematically less–constrained, and where initial stresses due
to self–weight must sometimes be considered. There is also a considerable body
of literature on micromechanical material modelling using numerical methods to
study crystal plasticity requiring similar models. In all of the above robust finite el-
ement (FE) modelling is now well–tested and available in a number of commercial
packages. Where finite elements currently struggle are with challenging problems
that are beginning to be of interest to practising engineers. In particular there is
an increasing desire to model in 3D, which leads to a disproportionate overhead in
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meshing. There are also problems for which finite deformation must be modelled
and remeshing is required during an analysis to ensure accuracy. In geotechnical
engineering 3D models are required to accurately predict movements due to tun-
nelling operations (e.g. Kasper and Meschke (2004)) whilst finite deformation is
needed to model penetration problems found in site investigation Sheng, Nazem,
and Carter (2009). Many examples exist of 3D finite deformation modelling for
micromechanics of crystalline materials, a recent example being Wang, Daniewicz,
Horstemeyer, Sintay, and Rollett (2009). To avoid the difficulties of using finite el-
ements, some researchers have begun to focus on “meshless" or “meshfree" meth-
ods which discretise a problem without requiring a mesh. Adaptive refinement
of a meshless domain is a matter of adding nodes, a far simpler operation than
remeshing with elements, especially for 3D. While there are currently drawbacks
to their use, which will be discussed below, it remains possible that in the future
these methods will challenge finite elements for demanding problems of the types
mentioned above.

Meshless methods for solid mechanics were originally derived from work in the
1980s on smoothed–particle hydrodynamics (SPH) by Monaghan and co–workers
Monaghan (1988) which has been shown to be viable for dynamic simulations but
less so for statics due to boundary problems. The meshless methods most widely
used in solid mechanics today are the Element–Free Galerkin (EFG) method Be-
lytschko, Lu, and Gu (1994) and the Meshless Local Petrov–Galerkin (MLPG)
method Atluri and Zhu (1998). These methods have their origins in the work by
Nayroles, Touzot, and Villon (1992) which introduced the idea of discretisation of
a problem domain by a nodal distribution and a boundary definition alone, where
the field variable is represented by approximants to nodal values. Construction of
these approximants requires only nodes and no mesh of elements, and is based on
a “moving least squares" (MLS) approach in which nodes influence zones of “sup-
port" around their locations. These approximants had already been suggested by
Lancaster and Salkauskas (1981) for use in other applications such as surface re-
construction. A major advantage of these meshless methods is that the solutions
and their derivatives are smooth thus no post–processing is required to obtain a
smooth stress field unlike in conventional FE approaches. The difference between
the EFG and MLPG methods is that the former requires the generation of back-
ground integration cells. The latter does not as integrations (to provide terms in
the stiffness matrix for instance) are carried out over local domains around each
node. It can be said therefore that the MLPG method is truly meshless Atluri and
Zhu (1998) and that is the meshless technique used here. Over the last decade
a bewildering array of variations on EFG and MLPG, as well as other meshless
methods, have been proposed for use in solid mechanics e.g. Atluri, Liu, and Han
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(2006). General surveys of methods can be found in Fries and Matthies (2004)
and, most recently, in Nguyen, Rabczuk, Bordas, and Duflot (2008). Recent pub-
lications show considerable interest in development of the MLPG method for a
range of problems and physics in analysis of solids such as fracture Feng, Han, and
Li (2009); Sladek, Sladek, Solek, and Pan (2008), plates Jarak and Soric (2008);
Sladek, Sladek, Krivacek, Wen, and Zhang (2007), finite deformation Batra and
Porfiri (2008); Han, Rajendran, and Atluri (2005), vibrations Andreaus, Batra, and
Porfiri (2005), intelligent materials Sladek, Sladek, Solek, and Atluri (2008) and
poroelasticity Bergamaschi, Martinez, and Pini (2009). While many publications
are confined to 2D models the MLPG method is straightforward to extend to 3D as
demonstrated in a number of references Han and Atluri (2004); Pini, Mazzia, and
Sartoretto (2008); Sladek, Sladek, and Solek (2009); Sladek, Sladek, Solek, Tan,
and Zhang (2009) However, development of the MLPG method, and indeed the
EFG method, for problems with material nonlinearity (e.g. elasto-plasticity) has to
date been limited.

The majority of papers in which meshless methods are applied to problems of
elasto–plasticity use the EFG method and are confined to continuum modelling
problems rather than micromechanics. Barry and Saigal (1999) describe the for-
mulation for incremental elasto–plasticity in detail, demonstrating it not to differ
markedly from the FE approach. They then give examples of use for elastic prob-
lems and two elasto–plastic problems. Their conclusions, as in most other papers,
indicate that the choice of nodal support to be of prime importance for the robust-
ness of a meshless elasto–plastic formulation. The same point is made in other pa-
pers concerning elasto–plastic continua Kargarnovin, Toussi, and Fariborz (2004);
Hazama, Okuda, and Wakatsuchi (2001) and plates Belinha and Dinis (2006) but
few details are provided. Askes and co–workers have produced a number of papers
in this area linking the issue of nodal support to locking seen in perfect plasticity
Askes, de Borst, and Heeres (1999), implementation of constraints Pannachet and
Askes (2000) and in gradient plasticity formulations Pamin, Askes, and de Borst
(2003). A rare example of the use of an alternative to the EFG method is given in
Wu, Chen, Chi, and Huck (2001), where the Reproducing Kernel Particle method
Liu, Jun, Li, Adee, and Belytschko (1995) is used to model elasto–plastic problems.
A search of the published literature reveals only three papers that discuss modelling
elasto–plasticity with the MLPG method. Xiong, Long, Liu, and Li (2006) give re-
sults for a cantilever beam using a uniform nodal arrangement and compare their
results with FEM simulations. Long, Liu, and Li (2008) model elasto–plastic frac-
ture problems using an MLPG method with a Heaviside test function and compare
their results with predictions of linear elastic fracture mechanics and also ANSYS.
However neither of these provide insight or guidance in the use of MLPG with
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material nonlinearity. Soares, Sladek, and Sladek (2009) presents recent work on
analysis of dynamic problems including one example with elasto-plasticity.

As well as the concentration on the EFG method, in most of the references cited
above, uniform distributions of nodes are used which make the conclusions drawn
thus far of reduced use for unstructured nodal arrangements, perhaps derived from
an adaptive procedure. The purpose of this paper is to introduce an extension to
an MLPG-based method to model elasto-plastic materials highlighting some issues
that arise relating mainly to nodal distributions and choice of support rules, which
will help those wishing to employ this exciting method for elasto–plastic modelling.

The paper is organized as follows. In §2 the shape functions for moving least–
squares based meshless methods are derived and then used in a weighted residual
approach for elasto–plastic solids. This yields a linear system in which the dis-
placements are unknowns, highlighting the similarities to this derivation and that
arising from the FE method. In §3 we introduce a recently developed hybrid MLPG
method that deals with infinite domains commonly found in geotechnics and de-
velop it to model elasto-plasticity. Some implementation issues related to the hy-
brid method are discussed and guidance is then giving on choices of modelling
parameters to achieve good results.

2 Meshless methods based on moving least–squares

2.1 Shape functions

The EFG and MLPG methods are meshless in the sense that no elements are
needed. However elements are replaced in these methods by the concept of zones
of “support" around each node. As with FE methods, shape functions can be de-
rived from each node in the domain and, in these methods, are arrived at via a
moving least squares (MLS) approach which is now described. Each node’s sup-
port is the subdomain in which that node influences the approximation (usually in a
symmetrically weighted sense). Typical weight functions used are truncated splines
and exponentials, which are smooth and continuous, meaning that the MLS–based
shape functions are also smooth and continuous to a higher order than standard FE
functions.

The MLS approximation to a set of n nodal data points U = {uI,xI} , I = 1,2, . . . ,n
can be constructed as

uh(x) =
n
∑

I=1
φI(x)uI = Φ

T (x)u (1)

where uh(x) denotes the approximate value of u(x), n is the number of nodes in
support at x and φI(x) is the shape function of node I at x. Φ

T (x) is a 1×n matrix
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collecting together the shape functions φI and u is a vector containing the fictitious
nodal values. As in the FE method if u(x) is approximated as a polynomial then

uh(x) =
m
∑
j=1

p j(x)a j(x) = pT (x)a(x) (2)

where m is the number of monomials in the basis matrix p(x), e.g. m = 3 for a linear
basis in 2D or a quadratic basis in 1D, and a(x) is a vector of coefficients. In the
MLS approximation, the shape functions are obtained by minimizing a weighted
residual J to determine the coefficients a(x) where

J(x) =
n
∑

I=1
wI(x)

[
pT (xI)a(x)−uI

]2
(3)

where wI(x) ≡ w(x− xI) is the weight function for node I evaluated at point x.
Minimizing J leads to the following

A(x)a(x) = B(x)u (4)

where the elements of matrix A(x)m×m are given by

A jk =
n
∑

I=1
wI(x)p j(xI)pk(xI) j,k = 1, . . . ,m (5)

and the elements of matrix B(x)m×n by

B jI = wI(x)p j(xI) j = 1, . . . ,m, I = 1, . . . ,n. (6)

The coefficients a(x) can be found from (4) by inverting A(x)

a(x) = A−1(x)B(x)u,

so (2) becomes

uh(x) = p(x)T A−1(x)B(x)u (7)

and the shape functions are found, by comparison with Eqn (1), as

Φ = pT A−1B (8)

where the dependence on x for all terms has been removed for clarity. The deriva-
tives of the shape functions can be found as

Φ,k = pT
,kA−1B+pT

(
A−1

,k B+A−1B,k

)
(9)
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where k denotes the coordinate index and

A−1
,k =−A−1A,kA−1. (10)

A and B can be written in matrix form as

A = PT WP (11a)

B = PT W (11b)

where P is an n×m matrix defined by

P =


p(x1)
p(x2)

...
p(xn)

 (12)

and W is an n×n diagonal matrix

W = [ diag(w1(x), . . . ,wn(x)) ]n×n . (13)

The MLS procedure leads to an approximation uh rather than an interpolation. The
shape functions therefore do not possess the delta property of conventional finite
element functions.

2.2 Formation of the stiffness matrix

Having obtained the shape functions, the procedure to obtain the stiffness matrix
for the problem is similar to that for the FEM. Dealing with the elastic behaviour
first, assuming a domain Ω with boundary Γ and writing in matrix–vector format,
the strong form of equilibrium (in the absence of body forces) is

LT
σ = 0 (14)

where L is the differential operator and σ the components of the stress tensor in
Voigt notation. Essential boundary conditions are defined as

uh = ū on Γu. (15)

The weak form is obtained by multiplying by a test function v as follows∫
Ω

vT (LT
σ
)

dΩ = 0. (16)
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Using the Green–Gauss theorem Eqn (16) can be converted to∫
Ω

(Lv)T
σ dΩ−

∫
Γt

vT t̄ dΓ = 0. (17)

where t̄ are the surface tractions and the domain boundary Γ = Γu∪Γt . Since the
shape functions do not possess the delta property, essential boundary conditions
cannot be imposed directly. Instead indirect imposition is necessary by penalty
approach, Lagrange multipliers, Nitsche’s method or via coupling to finite elements
on the boundary Fernández-Méndez and Huerta (2004). In this study we use the
first of these methods and the weak form including imposition of essential boundary
conditions becomes∫

Ω

(Lv)T
σ dΩ−

∫
Γt

vT t̄ dΓ+α

∫
Γu

vT
(

uh− ū
)

dΓ = 0 (18)

where α is a user–defined penalty parameter. Discretisation of Eqn (18) leads to
the linear system

Ku = f (19)

where

K =
∫

Ω

BT
v DB dΩ+α

∫
Γu

vT
Φ dΓ (20)

f = α

∫
Γu

vT ū dΓ+
∫

Γt

vT t̄ dΓ (21)

in which Bv and B are matrices of derivatives of the test and shape functions respec-
tively, D is the elastic constitutive matrix and f is the force vector formed from the
penalty terms at essential boundaries and the tractions t̄ at natural boundaries. The
choice of test function can be identical to the shape function, i.e. Bv = B, yielding
the Element Free Galerkin (EFG) method Belytschko, Lu, and Gu (1994), or be
taken from another space entirely, yielding the MLPG method, i.e. Bv 6= B Atluri
and Zhu (1998); Fries and Matthies (2004). In the MLPG method the integrations
in Eqns (19) and (20) are carried out over test domains and their boundaries local
to each node.

2.3 Choice of nodal arrangement and size of zones

One of the most important issues in the MLPG method is choice of nodal arrange-
ment and support and test zones. We will later show this to be of major significance
in modelling elasto-plasticity. Uniform nodal arrangements are the most attractive
to modellers and the choice of nodal arrangement is strongly linked to the rule for
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determining the support zones and test zones around each node. The former is set
by the nature of the weighting function wI , which in this study was a quartic spline
function

wI(x) =

{
1−6

(
dI

rsupp

)2
+8
(

dI
rsupp

)3
−3
(

dI
rsupp

)4
0 6 dI < rsupp

0 dI > rsupp

(22)

This function has a value of unity at node I and then decays smoothly to zero a
radius rsupp from the node. (dI ≡ |x− xI| is the distance of the point x to node I).
The test function determines the local zone around each node in which the weak
form is satisfied and, as in previous work, the test function used here is identical
to wI above with rsupp replaced by a smaller test radius rtest . In Atluri and Shen
(2002) both are set to be proportional to the distance from the node in question to
its nearest neighbour (dmin):

rsupp = admin rtest = bdmin , (23)

where a and b are chosen by the user and are usually within the range [0.5, 5.0]. The
choice of a is governed by the nodal arrangement, the dimension of the problem
and the order of the monomial basis, whereas the choice of b depends only on the
nodal arrangement. The range for a is large, and choice of an optimal value is
problem dependent. There is little firm guidance in the literature on suitable values
since they depend on the given problem and the nodal distribution. Therefore it is
necessary to experiment with a range of values for each problem (in the same way
that a range of meshes should be used in the FEM).

The test radius must be large enough so that the domain is completely covered by
the union of all the test domains (in this case circles of radius rtest). This ensures
that the weak form of the governing equations is satisfied throughout the domain.
For uniform arrangements of nodes the minimum value of rtest can be calculated
in advance and will be the same for all nodes (rtest > dmin/

√
2). For non–uniform

grids the minimum value of rtest is not known a priori. The authors have found
that setting rtest to be larger than the minimum value gives better results. This is
discussed further in §3.2.

As stated in §2.1 the support radius determines the area over which a node influ-
ences the solution. Increasing the support radius means that a node will affect the
solution over a larger area, and also leads to more couplings between the nodes in
the stiffness matrix. As with the test radius, there is a minimum value for the sup-
port radius, based on the requirement that there must be at least m nodes in support
of each (integration) point. If this is not satisfied the inverse of matrix A cannot be
calculated (see (8)). However the support radius should also be small enough so
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that it can model the local behaviour of the solution. Some previous studies take a
different approach, which is, to determine the radius of support for each node from
a pre–defined, ‘ideal’ number of supporting nodes for each point in the domain.
In Barry and Saigal (1999) the support radii were based on observations that for
a quadratic basis a minimum of 27 nodes should be in support of any integration
point in the domain, while in more recent work Sterk and Trobec (2008) carry out
an extensive study of support radii rules based on this idea and to find which give
accurate results for certain example problems. General advice relating to the MLS
approximation itself can be found in Nie, Atluri, and Zuo (2006) and Zhuang and
Augarde (2010).

3 An elasto–plastic hybrid MLPG method

Deeks and Augarde (2007) describes a novel hybrid MLPG method in which the
near field of a problem is modelled with the MLPG method and the far-field with
a meshless scaled boundary method, originally described in Deeks and Augarde
(2005). This arrangement permits correct modelling of an infinite elastic far-field
thus removing the need to decide on location of boundaries. It is particularly use-
ful for geomechanical analyses, such as for foundations, tunnels and slopes, where
serious errors can result from inadequately located boundaries. Deeks and Au-
garde (2007) describes the means by which correct coupling is achieved between
the MLPG near field and the scaled boundary far field, which will not be revis-
ited here. As an example of how the hybrid method works Figure 1 shows the
arrangement of the two subdomains for the classic 2D plane strain footing problem
(closely related to Prandtl’s problem) which will be used later in the paper. In the
original description of the hybrid MLPG method both subdomains were limited to
elastic behaviour only. Here we present results to show the behaviour of a new hy-
brid MLPG formulation in which elasto-plasticity is incorporated into the MLPG
near field (as outlined in the previous section) while the meshless scaled boundary
subdomain remains elastic.

Beginning from the elastic formulation of (20) and (21) plasticity can be imple-
mented with an incremental-iterative scheme in the MLPG in the same way as for
the FEM and as described in many texts. In the following we use dot notation to
indicate infinitesimal or rate quantities. For associated flow and perfect plasticity,
the classical theory of plasticity is based on the following assumptions:

(i) additive decomposition of total strain into elastic and plastic parts
ε̇ = ε̇e + ε̇ p ;

(ii) a hypoelastic law
σ̇ = Deε̇e ;
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Figure 1: The hybrid meshless scaled boundary method for the footing problem

(iii) the associated flow rule (with plastic multiplier λ̇ )

ε̇ p = λ̇
∂ f
∂σ

;

(iv) the Karush-Kuhn-Tucker loading conditions
f 6 0, λ̇ > 0, λ̇ f = 0 ;

(v) the consistency condition
λ̇ ḟ = 0 (applied if f = 0) .

Throughout this study we use the Prandtl–Reuss constitutive model, which com-
prises a von Mises yield function with perfect plasticity and associated flow. The
von Mises yield function has the form

f =
√

J2− cu ,

where J2 is the second invariant of the deviatoric stress tensor and cu is the undrained
shear strength of the material. To solve equations (i)–(v) the Closest Point Projec-
tion (CPP) method is used, which is widely adopted within elasto-plasticity Simo
and Hughes (1998). For this particular constitutive model the CPP reduces to the
radial return method. Linearising the CPP algorithm leads to the so–called algorith-
mic or consistent tangent Dalg. When forming the stiffness matrix, the use of this



Modelling Elasto-Plasticity Using the Hybrid MLPG Method 163

tangent allows asymptotic quadratic convergence of the global Newton Raphson
algorithm.

3.1 Results for elasto-plasticity with uniform nodal arrangements

The effects of using a uniform nodal arrangement for elasto-plastic modelling us-
ing the hybrid MLPG method is investigated using a large number of analyses of
the footing problem. One half of the problem is modelled due to symmetry (see
Figure 1(b)) and load–control used throughout (i.e. a flexible footing). The ma-
terial properties adopted for the uniform material are Young’s modulus E = 1000,
Poisson’s ratio ν = 0.25 and undrained shear strength cu = 0.3 in compatible units.
(The radius of the von Mises cylinder is

√
2cu.) The size of the MLPG domain in

all cases is 3×3 units. The results are compared to the analytical solution of a limit
load of (π +2)cu for the related problem of a rigid footing. Referring to the work of
Prandtl and Hencky, Hill (1950) develops this solution in regard to an indentation
problem for a perfectly plastic–rigid material. This solution therefore acts only as a
guide, since, in our examples, we model a flexible footing impinging on an elasto–
perfectly–plastic material. Limit load (π +2)cu applies to a von Mises material of
radius

√
2cu (“inner von Mises cylinder”). Analytical solutions for footing prob-

lems with different materials and boundary conditions can be found in a number
of references, e.g. Seyrafian, Gatmiri, and Noorzad (2007). Load–displacement
plots for the footing problem (using load–control) for a uniform nodal arrangement
are shown in Figure 2(a). The limit load for this problem is taken to be close to the
normalised analytical solution for the rigid footing problem of (π +2) given above.
It is clear that for this arrangement it is impossible to get very close to the expected
solution. For a nodal support rule where more nodes contribute to the approxima-
tion at a point (a = 4.0) convergence is poorer than for a rule with a more local
approximation (a = 3.0). The errors seen with the uniform grid can be explained
with reference to the manner in which the nodal supports combine. Points near the
domain boundaries will have fewer nodes in support than points in the centre of
the domain, and consequently the approximation in the centre will be richer than
that near the boundaries. This mismatch then leads to errors in stress updates at the
boundaries which accumulate until the problem cannot converge.

3.2 A hierarchical nodal arrangement and support rule

In the arrangement described above a set rule for the nodal support is used through-
out the domain. Here we show that varying the rule for support radius depending
on proximity to a boundary has a major effect on the performance of this meshless
method for elasto–plasticity, whilst still allowing a degree of structure to the nodal
layout. We term this arrangement “hierarchical" and it is constructed in a man-
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Figure 2: Load displacement curves for uniform nodal arrangement.
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Figure 3: The hierarchical nodal arrangement, for 233 nodes (266 nodes in total).
For a spacing of h in the centre of the domain, the support radius for ‘◦’ nodes is ah,
for ‘x’ nodes is ah/2 , and for ‘•’ nodes is ah/4, where a is the factor in Eqn (23).

ner reminiscent of h–adaptivity in the FEM. A uniform nodal arrangement is first
generated with a spacing h. Extra nodes are then added around the boundaries with
spacings h/2 and h/4 (see Figure 3). Adding extra nodes would ordinarily decrease
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the support radius for some of the h–spaced nodes by a straightforward application
of the rule in Eqn (23). Instead these nodes retain the support radius associated
with the larger spacing. For example, in Figure 3, without the extra nodes, node A
would have a support radius of ah. Due to the extra nodes, node B in particular,
the support radius of node A would be given by ah/2 according to Eqn (23). We
ignore this, and leave node A with a support radius of ah. Therefore a structured
nodal arrangement is combined with a variable rule for nodal support. This has im-
plications for adaptive re–gridding in meshless methods which will be highlighted
later.

Table 1: The residual force for several load steps.

normalised residual force
iteration load step number
number 26 27 28 29

1 2.7540E-01 3.9499E-01 5.3573E-01 5.6752E-01
2 7.5770E-02 6.7376E-02 6.2604E-02 1.4941E-01
3 6.9034E-03 2.2317E-03 6.5026E-03 1.0072E-02
4 6.9047E-06 7.9570E-07 1.4430E-06 3.0972E-05
5 1.4239E-11 4.2575E-11 1.3345E-11

Table 2: Parameters used in the numerical simulations
Material Parameters E = 1000, ν = 0.25, cu = 0.3

von Mises yield surfaces
MLPG parameters domain size [0,∞)× (−∞,3]

2D meshless domain [0,3]× [0,3]
dmin calculated by the code;

the distance between a node and
its nearest neighbour

rsupp rsupp ∈ [2dmin,4dmin]
rtest dmin or 1.5dmin

nodes (meshless) 181, 485, 980
nodes (in total) 198, 518, 1031

order of basis quadratic
weight function a quartic spline, given in Equa-

tion (22)
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Figure 4: Load displacement curves for the hierarchical arrangement using 181
nodes and the test radius given by Eqn (23) with b = 1.5.

The performance of this scheme is demonstrated using the same (flexible) footing
problem as above. The parameters used are summarized in Table 2. Figures 4, 5
and 6 show the normalised load–displacement response using the hierarchical ar-
rangement for 181, 485 and 980 nodes in the meshless near field. We see that for
certain values of the nodal support parameter a convergence to the limit load is
not possible. However generally the ability of the meshless formulation to reach
the limit load is much improved over the uniform arrangements. The results sug-
gest that with the nodal arrangement specified (i.e. subdivisions by one–half and
one quarter at the domain corners), the optimum value for the nodal support pa-
rameter is a = 2.5− 3.0. This is in contrast to the much larger upper limit on this
parameter suggested by other authors and mentioned above. Figure 7 shows the
progress of convergence for an example analysis in this series. Figure 7(a) shows
the out-of-balance (or residual) load at each iteration step showing the increasing
values until a failure to converge, while Figure 7(b), on a semilog plot shows the
expected quadratic convergence of the Newton Raphson solver for each out-of-
balance force vector. From Table 1 we can see that during a load step the residual
force at a particular iteration is approximately equal to the square of the residual
force at the previous iteration. This demonstrates the quadratic convergence of the
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global Newton–Raphson scheme. Figure 8 shows the surface displacement for an
example analysis for a sequence of load steps. The ability to model the movements
of a flexible footing at the surface is clear in this plot. The progressive expansion
of the plastic region under the footing is modelled accurately by this method as
demonstrated in Figure 9. Points that have just reached the yield surface are shown
in orange, while those that reached it in a previous load step are red. The plot
shows the development of the usual “bulb" of yielded material beneath the footing
and its expansion as the load increases. To guarantee coverage, rtest > dmin/

√
2, or

b > 1/
√

2. Two values of b have been tested, b = 1 and b = 1.5. For b = 1 Fig-
ure 10 (upper plot) shows that on varying the support radius, the load displacement
curve varies significantly. However, for the larger test radius of b = 1.5, Figure 10
(lower plot) shows that changing the support radius has almost no impact on the
profile of the load displacement curve.

For comparison on these plots we also show the load–displacement response using
finite elements. The finite element parameters are as follows: the domain measures
12× 5. At the truncated edges boundary conditions are applied that fix both the
horizontal and vertical displacements. The footing half–width is 2 and the domain
is covered by 32 quadratic quadrilateral elements. An arc–length method was used
in order to obtain the limit load. The material parameters used are the same as
those used in the meshless simulations and are given in Table 2. The response of
the finite element model is always stiffer than the meshless results however this is
due to the coarseness of the finite element mesh used here.

To demonstrate that the elasto-plastic MLPG region could be used on its own, the
same code is used to solve the governing equations for the finite region (“MLPG
zone” in Figure 1(b)) alone with essential boundary conditions applied along the
boundary between the MLPG and scaled boundary zones (the latter being removed
entirely). In Figure 11 FE results are compared with results from the meshless code
solving the problem on the MLPG zone and also with the results from the hybrid
MLPG method (i.e. including the scaled boundary zone). It can be seen that the
meshless results from the finite domain have a steeper elastic response than the
results from the hybrid code on the semi–infinite domain, as might be expected
given the imposition of essential boundaries a finite distance from the loading in
the former. The responses of the meshless models are still not as stiff as the FE
results however due to the coarseness of the FE grid.

These results provide sufficient evidence that elasto–plasticity can be accurately
modelled using the hybrid MLPG method but also demonstrate the need for a care-
ful choice of nodal arrangement and support radius rules. The implications for
adaptive refinement in meshless methods are that merely inserting nodes without
changing the nodal support radius rule could actually make the solution less opti-
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Figure 8: Plots of surface vertical displacement for several load steps.

mal rather than improving it, unless the nodal support rules are also varied. The
hierarchical approach is necessary here due to the proximity of the boundaries; at
a corner there are two boundaries and therefore the nodal arrangement needs to
be more refined but also the nodal support rules have to be changed. If we were
to refine the mesh based on some measure of error estimation, this would be an
additional consideration and it will be interesting to see if the two requirements
compete or are complementary.

4 Conclusions

Meshless methods remove the need for a mesh to be generated in order to solve
problems in elasto–plasticity, thereby having strong potential for their future use in
very large 3D simulations and in problems for which successive remeshing would
be necessary, as in those involving large deformations. Before we can get to that
point however, these methods need to be proved on problems that are well–within
the capabilities of the conventional finite element method. In this study we have
shown that the MLPG method is sensitive to a number of user–defined features of
a simulation. Firstly the distribution of nodes has been shown to be very important
for the accurate determination of stresses and for the success of an incremental
scheme. Secondly the choice of nodal support rule has a major effect both on
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accuracy and robustness using elasto–plasticity. Both of these points should not
unnecessarily deter modellers from using these methods, for the potential future
advantages mentioned above. However, the results of this study indicate that care
is necessary at all stages.
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