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MLPG Method Based on Rankine Source Solution for
Modelling 3D Breaking Waves

J.T. Zhou1 and Q.W. Ma1,2

Abstract: In this paper, the Meshless Local Petrov-Galerkin method based on
Rankine source solution (MLPG_R) is further developed to model 3D breaking
waves. For this purpose, the technique for identifying free surface particles called
Mixed Particle Number Density and Auxiliary Function Method (MPAM) and the
semi-analytical technique for estimating the domain integrals for 2D cases are ex-
tended to 3D cases. In addition, a new semi-analytical technique is developed to
deal with the local spherical surface integrals. The numerical results obtained by
the newly developed method will be compared with experimental data available in
literature and satisfactory agreement will be shown.

Keywords: MLPG_R method, MPAM, 3D breaking wave, wave impact, semi-
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1 Introduction

Wave breaking is the phenomenon that can be seen in ocean every day. During
storms or natural disasters such as tsunami, breaking waves can be formed and be
very dangerous. As a result, this phenomenon has been of a great concern when
designing marine structures, for instance, breakwaters, offshore wind energy struc-
tures, offshore oil and gas exploitation platforms and transport vehicles. In order
to design the structures that can withstand the severe action of breaking waves,
one needs to quite accurately estimate the forces on them due to the waves, which
requires a good understanding of the interaction between the breaking waves and
structures. In reality, these interactions are three dimensional (3D). Wave breaking
and its interaction with structures have been an important topic of research in the
coastal/offshore engineering and environmental communities for many years. Nev-
ertheless, it still remains a great challenge due to its high nonlinearity and com-
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plexities, particularly under 3D case scenarios.

As reviewed in Ma & Zhou (2009), some investigations have been carried out
by the laboratory experiments or field observations [Bonmarin, (1989); Rapp and
Melville, (1990); Li and Raichlen, (2003)] and produced very useful and reliable
results for some cases but are generally very expensive. Many studies on break-
ing waves have also been attempted by using numerical analysis, for which various
numerical methods have been developed. The numerical methods can be grouped
into mesh-based methods and meshless methods. The mesh-based methods for
steep and/or breaking waves mainly include the finite difference method [e.g, Miy-
ata, (1986); Lin and Liu, (1998)]; finite element method [e.g, Ma and Yan, (2006),
Ma and Yan (2009), Yan, and Ma, (2009)], boundary element method [e.g, Grilli,
Guyenne and Dias, (2001)] and finite volume method [e.g, Greaves (2009); Kless-
fsman, Fekken, Veldman, Iwanowski, Buchner (2005); Devrard, Marcer, Grilli,
Fraunie and Rey, (2005), Ingram, Gao, Causon, Mingham and Troch, (2009), Qian,
Causon, Mingham, and Ingram, (2006), Qian, Causon, Ingram, and Mingham,
(2003), Yang, Causon, and Ingram (2000), Lv, Zou & Reeve (2009)]. They all
produced many impressive results. However, a limitation of mesh-based methods
is that a computational mesh/grid is required and needs to be managed. Depending
on whether using Lagrangian or Eulerian formulation, the mesh/grid may need to
be updated repeatedly or to be refined to follow the motion of the free surface and
need to be maintained to have good quality. This is often a difficult task, particu-
larly in the cases with 3D breaking waves.

Alternatives are meshless methods. In these methods, the fluid domain is dis-
cretised as nodes or particles, instead of a computational mesh/grid. Therefore,
the limitation associated with mesh does not exist. So far, a number of meshless
methods have been developed and reported in literatures, such as the Moving Par-
ticle Semi-implicit method (MPS) [e.g, Koshizuka and Oka, (1996); Gotoh and
Sakai (2006); Khayyer and Gotoh (2008); Zhang, Morita, Kenji and Shirakawa
(2006)], the Smooth Particle Hydrodynamic method (SPH) [e.g, Monaghan (1994);
Khayyer, Gotoh and Shao (2008)], the finite point method [e.g, Onate, Idelsohn,
Zienkiewicz, Taylor and Sacco (1996)], the element free Galerkin method [e.g, Be-
lytschko, Lu and Gu (1994)], the diffusion element method [e.g, Nayroles, Touzot
and Vilon (1992)], the method of fundamental solution [e.g, Wu, Tsay, Young
(2006)] and so on. Among them, the MPS and SPH have been used to simulate
breaking wave problems. For example, Monaghan (1994) modelled waves propa-
gating over beaches; Lo and Shao (2002) and Koshizuka and Oka (1996) simulated
the collapse of a water column; and Gotoh and Sakai (2006) investigated the break-
ing waves and the wave-body interaction problems. Khayyer, Gotoh and Shao
(2008) simulated the breaking and post-breaking of solitary waves on a slope using
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the SPH method. Issa, Violeau, Lee and Flament (2010) made a review on how
to deal with turbulent models in the SPH method. Most of them dealt with 2D
problems due to prohibitive computational request of 3D cases.

In addition to the meshless methods mentioned above, another meshless method,
called Meshless Local Petrove-Galerkin (MLPG) method, has been invented by
Atluri and Zhu (1998) and Atluri and Shen (2002) and has been developed into
many forms as summarized in Atluri, Liu and Han (2006) and reviewed by Ma
(2010) and Ma and Zhou (2009). This is a true meshless method without need of
any background mesh. It is based on a local weak form over local sub-domains
(circles for two dimensional problems and spheres for three dimensional ones).
The success of the MLPG method has been reported in solving fracture mechan-
ics problems [Batra and Ching (2002)], beam and plate bending problems [Atluri
and Zhu (2000)], three dimensional elasto-static and -dynamic problems [Han and
Atluri (2004a,b)] and some fluid dynamic problems, such as steady flow around
a cylinder [Atluri and Zhu (1998)], steady convection and diffusion flow [Lin and
Atluri (2000)] in one and two dimensions and lid-driven cavity flow in a two di-
mensional box [Lin and Atluri (2001)] and some unsteady problems without free
surface [Avila and Atluri (2009)]. Over the past couple of years, the method has
been extended to deal with more advanced problems. Li and Atluri (2008) and
Zheng, Long, Xiong, and Li, (2009) applied the MLPG method to analyze ma-
terial orientation and to perform topology optimization of anisotropic solids and
structures. Sladek, Sladek, Tan and Atluri (2008) studied transient heat conduc-
tion in 3D anisotropic solids. Sellountos, Sequeira and Polyzos (2009) performed
elastic transient analysis using the MLPG(LBIE) method. Sladek, Sladek, Wün-
sche and Zhang (2009) solved the interface crack problem between two dissimilar
anisotropic elastic solids using the MLPG method. Bergamaschi, Martinez and
Pini (2009) developed the efficient parallel code based on the method to tackle the
axi-symmetric elastic problems.

In addition to its various applications to solid and general fluid problems, Ma
(2005a) extended the MLPG method to simulating nonlinear water waves and pro-
duced some encouraging results. In that paper, the simple Heaviside step function
was adopted as the test function to formulate the weak form over local sub-domains,
resulting in one in terms of pressure gradient.

In Ma (2005b), the MLPG method was further developed into a new form called
the MLPG_R method, better suitable for modeling nonlinear water waves. In the
MLPG_R method, the solution for Rankine sources rather than the Heaviside step
function was taken as the test function. Based on this test function, a weak form of
governing equations was derived, which does not contain any gradients of unknown
functions and therefore made numerical discretisation of the governing equation



182 Copyright © 2010 Tech Science Press CMES, vol.56, no.2, pp.179-210, 2010

relatively easier and more efficient. A semi-analytical technique was also devel-
oped to evaluate the domain integrals involved in this method, which dramatically
reduce the CPU time spent on the numerical evaluation of the integrals.

Ma (2008) made another step forward in the development of the MLPG_R method
for water waves. In that paper, a new meshless interpolation was suggested, which
is as accurate as the moving least square method but much more efficient, particu-
larly for computation of the gradient of unknown functions.

The MLPG_R method has been applied to model various nonlinear water waves,
including the waves generated by a wavemaker, sloshing waves and freak waves
[Ma, (2007)].

More recently, the method has been developed to be able to deal with 2D breaking
wave problems by Ma & Zhou (2009). To tackle the challenges associated with
breaking waves, some new techniques were proposed. Specifically, the pressure
governing equation was modified, which included not only the velocity divergence
term but also the fluid density term. Numerical tests showed that this form of
the governing equation is more suitable for simulating breaking waves than the
one used in Ma (2005b). In addition, a new technique for identifying free surface
particles, called Mixed Particle Density and Auxiliary Function Method (MPAM)
was suggested, which proved to be able to robustly identify free surface particles.
This method has been applied to successfully model various 2D breaking wave
problems.

In this paper, the MLPG_R method will be further extended to deal with 3D break-
ing waves. The new techniques described in the previous paper (Ma and Zhou,
2009) will be extended to 3D cases. In addition, the new semi-analytical technique
for estimating the spherical surface integrals in discretised pressure equations will
be proposed to accelerate the computation. This newly extended method will be
employed to simulate a couple of the 3D problems. The results obtained will be
compared with experimental data available in the public domain to show its accu-
racy.

2 Governing equations and numerical method

The incompressible Navier-Stokes equation (referred as NS equation) and conti-
nuity equation together with proper boundary conditions are applied. In the fluid
domain,

∇ ·~u = 0, (1)

D~u
Dt

=− 1
ρ

∇p+~g+υ∇
2~u, (2)
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where ~g is the gravitational acceleration;~u is the fluid velocity; ρand υare the den-
sity and the kinematical viscosity of fluid, respectively; andp is the pressure. On a
rigid boundary, the velocity and pressure satisfy,

~n ·~u =~n ·~U , (3a)

~n ·∇p = ρ

(
~n ·~g−~n · ~̇U +υ~n ·∇2~u

)
, (3b)

where~n is the unit normal vector of the rigid boundary and ~U is its velocity and ~̇U
is its acceleration. Eq. (3b) can be easily derived by multiplying~n· on both the side
of Eq. (2). On the free surface, the condition is specified by

p = 0. (4)

The mathematical model formed by Eqs (1) to (4) is solved using a time marching
procedure. For the details of procedure, readers are referred to Ma (2005a) and Ma
& Zhou (2009). Only a summary is given below.

Suppose the velocity, pressure and the location at nth time step (t=tn) are known,
one can use the following procedure to find them at (n+1)th time step.

1. Calculate the intermediate velocity (~u∗) and position(~r∗) of particles using

~u∗ =~un +~g∆t +υ∇
2~un

∆t, (5)

~r∗ =~rn +~u∗∆t, (6)

where~r is the position vector of particles, the superscript n represents n-th
time step; ∆t is the increment of time step.

2. Evaluate the pressure pn+1 using

∇
2 pn+1 = α

ρn+1−ρ∗

∆t2 +(1−α)
ρ

∆t
∇ ·~u∗, (7)

where α is a coefficient between 0 and 1. ρn+1 and ρ∗ are the fluid densities
at (n+1) time step and intermediate fluid density, respectively. Based on our
previous numerical tests (Ma & Zhou, 2009), α=0.1 can yield satisfactory
numerical results for violent breaking cases.

3. Calculate the fluid velocity and therefore update the position of the particles
using

~u∗∗ =−∆t
ρ

∇pn+1, (8a)
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~un+1 = u∗+~u∗∗ =~u∗− ∆t
ρ

∇pn+1, (8b)

~rn+1 =~rn +~un+1
∆t. (9)

4. Go to (1) for the next time step.

As indicated in Ma and Zhou (2009), one must compute the term ∇2~u when ap-
plying the boundary condition in Eq. (3b) for solving the pressure. This needs to
estimate the second order derivative at the rigid boundary. Although there is no
much difficulty to do so theoretically, the error associated with it is not easy to be
suppressed in computational practice as the fluid particles located only on one side
of the boundary. Therefore, it is better to avoid the computation of the second order
derivative when possible. For this reason, Eqs. (3a) and (8b) are combined to give
an alternative equation for the boundary condition as follows:

~n ·∇pn+1 =
ρ

∆t
~n · (~u∗−~Un+1). (10)

3 MLPG_R formulation and new numerical techniques

As can be seen, the key task in the above procedure is to solve Eq. (7) together with
Eq. (4) and Eq. (10) in order to evaluate the pressure and its gradient at (n + 1)
time step. For solving the equation, the MLPG_R method is used.

In the MLPG_R method, the whole computational domain is discretized by par-
ticles. The particles are separated into three groups: those located on the rigid
boundary (referred as wall particles), those on the free surface (referred as free
surface particles) and others (referred as inner particles). At each inner particle, a
sub-domain is specified, which is a sphere in 3D cases. In the MLPG_R formu-
lation, Eq. (7) is first changed into another form by a weighted integration. The
details about how to do so are very similar to those for 2D cases given in Ma &
Zhou (2009). Therefore, details will not be described in this paper. Only the final
equation is given as follows:∫

∂ΩI

~n · (p∇ϕ)dS−RI p =α
ρ

∆t2
n0−n∗I

n0

R3
I

6
+(1−α)

∫
ΩI

ρ

∆t
~u∗ ·∇ϕdΩ, (11)

where ϕ is a test function, RI is the radius of the local domain ΩI , which is a sphere
in 3D cases, and the ∂ΩI is the spherical surface of the local domain. n∗I in Eq. (11)
is the intermediate particle number density defined by n∗I = ∑

j=1, j 6=I
W (|r∗j − r∗I |),

where W (|r∗j−r∗I |) , chosen as the spline function [Ma, 2005b], is a weight function
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in terms of the distance between Particle I and Particle j, which becomes zero when
the distance is larger than a certain value. n0 is the initial value of the particle
number density. In the MLPG_R method, the solution of Rankine source is taken
as the test function. i.e., the function ϕ satisfies ∇2ϕ = 0, in ΩI except for the
center and ϕ = 0, on ∂ΩI . The expression of the solution for Rankine source is

ϕ =
1

4π
(1−RI/r) for 3D cases, (12)

where r is the distance between the concerned point and the center of ΩI .

The method to discretize Eq. (11) is very similar to 2D cases and therefore only
brief description will be given in the following section for completeness.

3.1 Discretization of the governing equation for pressure

The unknown function p is approximated by a set of discretized variables. Gener-
ally, the approximation may be written as

p(~x)≈
N

∑
j=1

Φ j (~x) p̂ j, (13)

where N is the number of nodes that affect the pressure at point ~x; p̂ j are nodal
variables but not necessarily equal to the nodal values of p(~x); and Φ j (~x) the shape
function which is formed by using the moving least square method as described in
Ma (2005a, b) and Ma (2007).

Inserting Eq. (13) into Eq. (11), it follows that:

K · P̂ = F, (14)

where P̂ is the vector formed by the nodal value of pressure p̂ j and the elements of
Matrixes K and F are given by

KIJ =
∫

∂ΩI

ΦJ(~x)~n ·∇ϕdS−RIΦJ(~x), (15a)

FI = α
ρ

∆t2
n0−n∗

n0
R3

I
6

+(1−α)
∫
ΩI

ρ

∆t
~u(∗) ·∇ϕdΩ, (15b)

where Particle I is an inner water particle; and Particle J are those influencing
Particle I, determined by the weight function. Using Eq. (12), the surface integral
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over the spherical surface of the local domain in Eq. (15a) can be rewritten as:

∫
∂ΩI

ΦJ(~x)~n ·∇ϕdS =
RI

4π

2π∫
0

π∫
0

ΦJ(~x)sinθdθdγ. (16)

The domain integral over the sphere in Eq. (15b) can be simplified as:

∫
ΩI

ρ

∆t
(~u(∗) ·∇ϕ)dΩ =

ρRI

4π∆t

RI∫
0

2π∫
0

π∫
0

u(∗)
r sinθdrdθdγ, (17)

where u(∗)
r is the radial component of ~u(∗); θ and γ are defined in Fig. 1.
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Figure 1: Illustration of division of an integration domain

3.2 Numerical technique for evaluating domain integrals

The domain integral related to velocity in Eq. (17) must be numerically evaluated,
perhaps by using the Gaussian quadrature, in which the local sphere domain may
be split into 8 quadrants for 3D cases. For the whole local domain, one may need
8M3 Gaussian points, where M is the number of the Gaussian point corresponding
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to each variable of the integral in one quadrant. M must be larger or equal to 2
and so at least 64 Gaussian points for 3D cases are required to obtain satisfactory
results, at which intermediate velocities are estimated. Evaluation of the velocities
at so many points is time-consuming, especially in 3D cases with a huge number of
particles. In order to make the method more efficient, the following semi-analytical
technique has been suggested:

• Dividing an integration domain into several sub-domains;

• Assuming intermediate velocity to linearly vary over each sub-domain;

• Performing the integration over each sub-domain analytically.

In our previous papers (Ma, 2005a, b, Ma & Zhou, 2009), this semi-analytical
technique has been applied to 2D problems and proved to be accurate and efficient.
This technique will be extended to 3D cases here. For this purpose, let us consider
a spherical domain with a radius of RI , which is centred at (x0,y0,z0) (Fig. 1) and
divided into 8 sub-domains. Over each sub-domain, e.g. 0-1-2-5, the intermediate
velocity components are assumed to be linear with respect to coordinates and given
by

u(∗) = u(∗)
0 +Cux

x− x0

RI
+Cuy

y− y0

RI
+Cuz

z− z0

RI
, (18a)

v(∗) = v(∗)
0 +Cvx

x− x0

RI
+Cvy

y− y0

RI
+Cvz

z− z0

RI
, (18b)

w(∗) = w(∗)
0 +Cwx

x− x0

RI
+Cwy

y− y0

RI
+Cwz

z− z0

RI
, (18c)

where (u(∗),v(∗),w(∗)) are the intermediate velocity components at a point (x,y,z)
within the sub-domain 0-1-2-5; and (u(∗)

0 ,v(∗)
0 ,w(∗)

0 ) are those at its centre. Cux,Cuy,Cuz,
Cvx,Cvy,Cvz and Cwx,Cwy,Cwz are constants, which are determined in such a way that
the velocity components equal to those at Point 1, 2 and 5. Taking the x-component
as an example, one should have

Cux(x1− x0)+Cuy(y1− y0)+Cuz(z1− z0) = (u(∗)
1 −u(∗)

0 )RI

Cux(x2− x0)+Cuy(y2− y0)+Cuz(z2− z0) = (u(∗)
2 −u(∗)

0 )RI

Cux(x5− x0)+Cuy(y5− y0)+Cuz(z5− z0) = (u(∗)
5 −u(∗)

0 )RI

(19a)

which yields

Cux = u(∗)
1 −u(∗)

0 ,
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Cuy = u(∗)
2 −u(∗)

0 , (19b)

Cuz = u(∗)
5 −u(∗)

0 .

Cvx,Cvy,Cvz and Cwx,Cwy,Cwz can be found similarly or obtained by replacing u
with v or w in Eq. (19). Thus the velocities (u(∗),v(∗),w(∗)) in this sub-domain are
given by inserting Eq. (19) into Eq. (18). The velocities in other sub domains can
also be estimated in this way. The only difference is that they may be related to
the velocities at Points 3, 4 and 6, depending on which sub-domain is concerned
with. Consequently, the velocities at any point in the spherical local domain are
determined by those at only 7 points (0, 1, 2, 3, 4, 5 and 6). The relationship
between u(∗)

r and (u(∗),v(∗),w(∗)) is:

u(∗)
r = u(∗) sinθ cosγ + v(∗) sinθ sinγ +w(∗) cosθ . (20)

Based on this, the integral in Eq. (17) is rewritten as:

RI∫
0

2π∫
0

π∫
0

u(∗)
r sinθdrdθdγ =

2

∑
j=1

4

∑
i=1

θ j+1∫
θ j

γi+1∫
γi

RI∫
0

u(∗)
r sinθdrdθdγ, (21)

which includes 8 integrals on the right hand side, one for each sub-domain. Insert-
ing Eqs. (18) to (20) into the integral for the sub-domain 0-1-2-5 in Eq. (21), it
follows that

RI∫
0

π/2∫
0

π/2∫
0

u(∗)
r sinθdrdθdγ =

π

4
RI(u

(∗)
0 + v(∗)

0 +w(∗)
0 )+

π

12
RI(Cux +Cvy +Cwz)

+
1
6

RI(Cuy +Cuz +Cvx +Cvz +Cwx +Cwy). (22)

Similarly the domain integral over other 7 sub-domains can be obtained in this way.
Added all the results together, the integral over the whole local domain in Eq. (21)
is given by

RI∫
0

2π∫
0

π∫
0

u(∗)
r sinθdrdθdγ =

π

3
RI(u

(∗)
1 + v(∗)

2 +w(∗)
5 −u(∗)

3 − v(∗)
4 −w(∗)

6 ). (23)

It can be seen that the integral over each local spherical domain is determined by
the velocities only at six points rather than at least at 64 Gaussian points if the
Gaussian quadrature would be employed.
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3.3 Numerical technique for evaluating surface integrals

The integral of Eq. (16) regarding the shape function is an integral over a curve in
2D cases, which was estimated by using Gaussian quadrature in our previous publi-
cations for 2D problems. For 3D cases, if we do the same, it will need 8M2Gaussian
points assuming the spherical surface is divided into 8 quadrants, where M is the
number of Gaussian points corresponding to each variable of the integral in one
quadrant. Later, we will demonstrate that Mneeds to be at least 3, indicating that at
least 72 Gaussian points over the whole spherical surface of the local domain are
required, which would be very time consuming if the Gaussian quadrature is still
used. Therefore, a new numerical technique is developed to evaluate the spherical
surface integral in Eq. (16), which is similar to that for evaluating the domain in-
tegral described above but based on a different approximate function. To introduce
the technique, the integral in Eq. (16) is rewritten as

2π∫
0

π∫
0

Φsinθdθdγ =
4

∑
i=1

2

∑
j=1

θ j+1∫
θ j

γi+1∫
γi

Φsinθdθdγ, (24)

where the subscript of Φ is dropped without affecting its meaning. That is, the
integration is first performed over each of 8 quadrants and then the results are added
together, similar to what have been done for obtaining Eq. (23).

 

γ

θ  Φ  

0 2/π  π 2/3π  π2

2
π

 

π  

Figure 2: Illustration of integration domain in θ -γ plane

The shape function Φin the integrand in Eq. (24) is the function of θ -γ and thus it
may be transformed to the θ -γplane that may be split into 8 patches as illustrated
in Fig. 2. It is noted, however, that the shape function Φ is the same for any values
of γ when θ = 0 or θ = π because it corresponds to a single point 5 or 6 in Fig. 1.
Consider the shape function Φ in the quadrant 1-2-5 in Fig. 1 or the patch near the
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origin in Fig. 2, we may approximate it by using

Φ = A+Bθ +Cγ +Dθγ, (25)

where A,B, C and D are constants. They can be determined by using the fact that
the shape function should be equal to Φ5 at θ = 0 and γ = 0 orγ = π/2; equal to
Φ1 at θ = π/2 and γ = 0; and equal to Φ2 at θ = π/2 and γ = π/2, where the
subscripts of Φ refer to the number in Fig. 1, that is

Φ5 = A, (26a)

Φ5 = A+Cπ/2, (26b)

Φ1 = A+Bπ/2, (26c)

Φ2 = A+Bπ/2+Cπ/2+D(π/2)2 . (26d)

It follows that

A = Φ5, (27a)

C = 0, (27b)

B =
2
π

(Φ1−Φ5), (27c)

D =
4

π2 (Φ2−Φ1) , (27d)

Inserting Eq. (27) into Eq. (25) yields

Φ = Φ5 +
2
π

(Φ1−Φ5)θ +
4

π2 (Φ2−Φ1)γθ , (28)

which is the approximate expression of the shape function in the first sub-domain
1-2-5.

The integral of Eq. (24) over the sub-domain 1-2-5 is then given by

π/2∫
0

π/2∫
0

Φsinθdθdγ =
1
2

Φ1 +
1
2

Φ2 +(
π

2
−1)Φ5. (29a)

The integrals over other sub-domains can be obtained in the similar way and the
sum of these results give the expression of the integral over the whole spherical
surface domain:
2π∫
0

π∫
0

Φsinθdθdγ = 2(Φ1 +Φ2 +Φ3 +Φ4)+(2π−4)(Φ5 +Φ6). (29b)
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It is noted that the integral in Eq. (29b) is only related to the shape function at six
points, compared with at least 72 points if the Gaussian quadrature is employed.
Therefore, the CPU time spent on evaluation of the integral will be dramatically
reduced, which will be demonstrated in the later section of the paper.

3.4 Identification of free surface particles in 3D cases

When solving the governing equation for the pressure, all the particles on bound-
aries should be known, including the solid wall boundary and the free surface. The
particles on rigid walls always remain on them. However, the same does not hold
for those on the free surface when simulating breaking wave cases. In these cases,
the free surface particles can immerge into the inner fluid domain and the inner
water particle can also emerge to become free surface particles. Consequently, it is
necessary to identify which particle is on the free surface at each time step when
modelling breaking waves.

Identification of free surface particles remains to be a big challenge in meshless
particle modeling, particularly for those of true meshless models without any back-
ground mesh, like the MLPG_R method. In the SPH method, the free surface
particles are identified by the density; i.e., if the ratio of the density of a particle to
the fluid density is less than a specified value, such as 1%, it is then identified as
a free surface particle [e.g., Lo and Shao, (2002)]. The computation of the density
in the SPH requires a background mesh, which is not available in the MLPG_R
method. Another technique is based on the particle number density suggested for
the MPS method by Koshizuka and Oka (1996) and also used by Gotoh and Sakai
(2006). This technique uses the following parameter:

βI = n∗I /n0, (30)

where n∗I is the particle number density at Particle I , as defined above, which is
computed by using the particle configuration after the motion corresponding to the
intermediate velocity. If βI < β , Particle I is considered as a free surface particle.
Currently, there is no common agreement about how to specify the value of β . It is
problem-dependent. Different researchers use different values. For example, it was
0.97 in Koshizuka and Oka (1996) and Gotoh and Sakai (2006) while it was 0.99
in Shao and Lo (2003). Results look to be promising in all the papers even with
different values for β . According to our numerical tests, the simple technique is
not very robust. There are always many particles that are incorrectly identified (i.e.,
free surface particles are identified as inner particles or vise versa). The incorrect
identification could not be rectified by simply choosing a different value for β .
Similar observation has also been described by Lee and Park (2007).
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A new numerical technique to identify the free surface particles has been presented
and applied to 2D cases in Ma & Zhou (2009), which called Mixed Particle Number
Density and Auxiliary Function Method (MPAM). The basic idea of this technique
is based not only on how many neighbour particles (denoted by Eq. (30)) there are
but also on how they are distributed. This technique will be extended to deal with
3D cases for violent breaking waves in this paper.

In 3D cases, the auxiliary functions involved in the MPAM method are defined in a
3D local domain as shown in Fig. 3. The details are as follows:
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Figure 3: Local domain at Node I for the definition of auxiliary function (the in-
ner sphere denotes integration domain of the particle; the outer sphere denotes the
influence domain; the 6 coloured cylinders have the same diameter as the inner
sphere)

The first auxiliary function is defined by

f sp_a(I) =

{
1, NumA≥ 1
0, NumA = 0

, (31)

where NumA represents the number of the free surface particles existing in the in-
fluence domain (D f ) of Node I in previous time step. The second auxiliary function
is

f sp_b(I) =

{
1, NumB = 8
0, NumB≤ 7

, (32)

where NumB represents the number of quadrants occupied by the neighbor particles
of Node I as shown in Fig. 3.
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The third auxiliary function is given by

f sp_c(I) =

{
1, NumC = 6
0, NumC ≤ 5

, (33)

where NumC represents the number of colored cylinders in Fig. 3 in which there is
at least one fluid particle.

If one of following conditions is met when they are checked sequentially, Node I is
identified as a free surface particle.

(a) no inner particle in D f except for I;

(b) βI < β and f sp_a(I) = 1;

(c) βI ≥ β , f sp_a(I) = 1 and f sp_b(I) = 0;

(d) βI ≥ β , f sp_a(I) = 1 and f sp_c(I) = 0.

Satisfying the condition (a) indicates that the particle concerned is in the group of
particles which belong to the part of splashing fluid. The condition (b) identifies
those free surface particles with at least one neighbour particle on the free surface.
The condition (c) and (d) picks up those free surface particles with sufficient large
number of neighbour particles but with no particle in a sufficient large part of its
influence domain. In 2D cases, β is taken as 0.97; but in 3D cases, the value of β

is slightly adjusted to 0.9, based on numerical tests for 3D cases.

4 Validation and discussions

In the above sections, the semi-analytical technique for evaluating the domain inte-
grals and the method for identifying the free surface developed for 2D simulation
are extended to 3D cases. A new semi-analytical technique for evaluating the sur-
face integrals is developed to accelerate the discretization of the governing equation
for pressure. In the sections below, it will be shown that the new technique works
effectively and the MLPG_R method as a whole can yield results that have accept-
able agreement with experimental data in the cases considered.

In the following cases, water will be used as the fluid and the standard value of
water density and viscosity are chosen. In addition, the parameters with a length
scale are nondimensionalised by the initial water depth d, the time by

√
d/g and

the pressure by ρgd, unless mentioned otherwise.
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4.1 Effectiveness of the semi-analytical technique for surface integrals

As pointed above, our main aim of developing this semi-analytical technique for
evaluating the surface integral given in Eq. (29) is to reduce the computational
time while maintaining the same or similar accuracy of results. This will be demon-
strated in this section by modelling two examples by using the Gaussian quadrature
and the semi-analytical technique for estimating the surface integral with all others
being the same. In the first example, we consider a static case in which the solution
for pressure is just the hydrostatic pressure. To this end, a tank with the height,
length and width being 1, 3 and 1, respectively, is used. A schematic view of the
tank is shown in Fig. 4, where grey particles and blue particles represent wall par-
ticles and water particles, respectively. To make it clearer, only those of boundary
particles on the right wall, the left wall and the bottom are plotted in the Fig. 4.
The particles are uniformly distributed initially in all the directions. The number
of particles along z-direction is represented by Nz. Nz is equal to 10 in this case.
The total water particles are 2900 excluding the particles on boundaries and 5260
including those on the boundaries.

 

Figure 4: Schematic view of the tank and initial distribution of particles

Figs. 5a, b and c present the pressure distribution along a vertical line in the middle
of the tank after running 200, 400 and 600 time steps, respectively. As can be
seen, Fig. 5a is the results obtained by using the semi-analytical technique (Eq.
29b), Figs. 5b and 5c are those by using the Gaussian quadrature but different
Gaussian points. It can be seen from these figures that the results are almost the
same, which indicates that the semi-analytical technique produces the same results
as the Gaussian quadrature. The CPU time required for forming Matrix K and F
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     (a)           (b)             (c) 

 
Figure 5: Comparison of static pressure obtained by using the Gaussian quadrature
and the semi-analytical technique for estimating the surface integrals

Table 1: Comparison of CPU time required by using different methods to evaluate
the surface integrals (GQ: Gaussian quadrature) for a static case

Method Semi-analytical 32 Gauss points (GQ) 72 Gauss points (GQ)
Average
CPU time
in one time
step

1 5.67 11.17

in Eq. (14) in the cases shown in Fig. 5 is summarised in Table. 1, where the
CPU time required by the Gaussian quadrature is divided by the CPU time required
by the semi-analytical technique. This table shows that the CPU time required by
the Gaussian quadrature is at least 5 times longer than that required by the semi-
analytical technique.

In the second example, the propagation of a solitary wave is modelled, again by us-
ing the semi-analytical technique and Gaussian quadrature with 32 (M = 2) and 72
(M = 3) Gaussian points, respectively. The solitary wave is generated by a piston-
type wavemaker according to the theory given by Goring (1978), in which the mo-
tion of the wavemaker is defined in dimensionless form by xp(τ) = h

k [tanh χ(τ)+
tanhkλ ], where h is the wave height, k =

√
3h/4, χ(τ) = k [cτ− xp(τ)−λ ] and
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Figure 6: Comparison of wave profiles at different instants obtained by using the
semi-analytical technique and the Gaussian quadrature with 32 and 72 Gaussian
points, respectively.

the dimensionless celerity c =
√

(1+h). The numerical water tank and coordinate
system are shown in Fig. 7 and the wave height targeted is h =0.45. For this case,
the particle number along z-axis, i.e., Nz, is 20, which yields 89,492 particles to-
tally. These cases are run up to 500 time steps with the length of 0.02 each step.
Wave profiles at 6 different instants are compared in Fig. 6. From this figure, one
may see that the results of the Gaussian quadrature with 32 Gaussian points are
very different from these of the Gaussian quadrature with 72 Gaussian points. The
later is very similar to those obtained by using the semi-analytical technique. This
indicates that at least 72 (M=3) Gaussian points are required to compute the inte-
grals in Eq. (16) in this case. It is highly likely that such a number is needed for
modelling other 3D violent waves, which has been confirmed for the cases we con-
sidered so far. This also indicates that the semi-analytical technique can produce
the results that are as accurate as the Gaussian quadrature. Similar comparison of
CPU time to that shown in Table 1 is made in Table 2. This table demonstrates
that the CPU time required by the semi-analytical technique is only 1/17.65 of that
required by the Gaussian quadrature to achieve acceptable results. Although the
CPU time required for the case with 32 Gaussian points is only half of that with 72,
the accuracy of the former is not satisfactory as demonstrated in Fig. 6.

Investigations on these static and dynamic cases demonstrate that the semi-analytical
technique spends only a small fraction of the CPU time spent by the Gaussian



MLPG Method Based on Rankine Source Solution 197

Table 2: Comparison of CPU time required by using different methods to evaluate
the surface integrals (GQ: Gaussian quadrature) for a dynamic case

Method Semi-analytical 32 Gauss points (GQ) 72 Gauss points (GQ)
Average
CPU time
in one time
step

1 8.57 17.65

quadrature to achieve the results with similar accuracy. Because of this advance,
we can model the 3D breaking waves on a normal PC within a reasonable time,
which has proved to be impossible if using the Gaussian quadrature.

4.2 Parameter study and comparison with experimental data

In order to show the robustness of the MLPG_R for modelling 3D breaking waves,
two cases are presented in this section. In both cases, the numerical results will be
compared with experimental data. The convergent properties will also be consid-
ered for one of the two cases.

The first case to be considered is about a wave breaking over slope that is the same
as the one used in the previous section. However, the attention here is focused on
how the results are affected by choosing different computational parameters and
how they are correlated with the experimental data. In order to further save the
CPU time for this 3D case, computational process is split into two stages. The first
stage starts from time =0 and ends at the time when the wave propagates just to the
toe of the slope (x=10 in Fig. 7). The wave propagation in this stage is simulated
by using the 2D model. The second stage continues from the first stage, in which
the 3D model is employed. It is noted that the 3D model can be used for the entire
process, though it may need a longer CPU time.

In 2D simulations discussed by Ma & Zhou, (2009), two aspects of the convergence
property have been investigated: one is how the ratio ∆x/∆τ affects the numerical
results, where ∆x is the initial particle distance and ∆τ is the time step; and the other
is how the results vary by changing the value of ∆x with ∆x/∆τ fixed. It has been
concluded that a suitable value for ∆x/∆τ is 5 in studies on 2D cases in the cited
paper. Similar investigations have also been made for the 3D cases and confirm that
∆x/∆τ = 5 is still suitable. Corresponding results about this will not be presented
here because they are quite similar to the 2D cases.

What will be shown are the results obtained by using the three different values of
∆x, i.e., 0.05, 0.04 and 0.033 (corresponding to Nz=20, 25 and 30, respectively),
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Figure 13 Comparison of the free surface profiles (A): t ≈ 0.4s (a: experiment, b: FVM 
numerical results, both results from Klessfsman, et al, 2005; c: present method);  (B): t 
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Figure 7: Illustration of model set-up for the solitary wave

with ∆x/∆τ = 5 kept. The resulting wave profiles near the section when overturning
occurs at four instants and at three different transverse positions (y=0, y=0.25 and
y=0.5) are shown in Fig. 8. The four instants correspond to the instants when the
wave becomes very steep, just overturning, a jet and a jet touching the water surface
in its front. The experimental data from Li and Raichlen (1998) are also shown in
the figure, which should be considered as average wave profiles with respect to y-
coordinates because they are drawn from the photograph taken from a side during
laboratory experiments.

Fig. 8 shows that at all the four instants the wave profiles at the different sections
with different y-coordinates are very similar, as what is expected for this case. The
figure also shows that the results corresponding to different ∆x values are very close
to each other and that all of them agree quite well with the experimental profiles.
This demonstrate that the MLPG_R methods with the numerical techniques de-
veloped in the paper can yield good results as long as the number of particles is
sufficient large.

The wave profiles at the post-breaking stage are plotted in Fig. 9. At this stage, the
plunging jets hit the free surface in their front and cause splash, leading to a cavity
formed behind the new jet, as one see from this figure. In addition, the profiles for
∆x=0.04 (Nz=25) and ∆x=0.033 (Nz=30) are very similar to each other, but have
visible discrepancy with those for ∆x=0.05, especially in the shape of the cavities.
This indicates that one may need more particles to model the post-breaking waves.
It is noted that the profiles at different y-coordinates are not the same, unlike what
we have seen in Fig. 8. That is perhaps because some unknown random factors
arise due to the turbulence at the post-breaking stage. The similar phenomenon can
be observed in laboratory experiments. Further investigations are required to find
the reasons in future.

The second case considered is about impact on a 3D obstacle by the dam breaking
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Figure 8: Comparison between experimental wave profiles [Li and Raichlen
(1998)] and numerical results obtained by using different values of ∆xwhen
∆x/∆τ = 5
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Figure 9: Wave profiles in the post-breaking stage obtained by using different val-
ues of ∆xwhen ∆x/∆τ = 5

wave. This case has been used to validate our results in Zhou, Ma, Zhang and Yan
(2009). The reason for using the same case here to verify our improved method
is because the experimental data related to breaking wave’s impact on 3D solid
objects are very limited. Nevertheless, the results shown here are much improved
than those in the previous paper. The set-up of the case is the same as in Kleefsman,
Fekken, Veldman, Iwanowski and Buchner (2005) that presented the experimental
results, as illustrated in Fig. 10. For convenience of comparing our results with
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theirs, the parameters presented below are all dimensional. Specifically, the size of
the rectangle tank in Fig. 10 is 3.22 meter long, 1 meter high and 1 meter wide.
The water column, whose length, width and height are 1.228m, 1m and 0.55m,
respectively, is initially held to the right end of the tank by a rigid gate. A box-
type obstacle is mounted facing the water column. The distance between the centre
of the obstacle and the left vertical wall of the tank is 0.744 m. On its surface of
the obstacle, a number of pressure transducers are installed in their experiments
but only two of them are shown in Fig. 11, where the size of the obstacle is also
given. In their experiment, four probes are used to record the time history of the
wave height. The data from two of them (H3 and H4 shown in Fig. 10) will be
compared with our numerical results. For simulating this case, the initial distance
between two particles are taken as 0.022m (Nz=25) and the time step as 0.00189s
(equivalent dimensionless time step ∆τ = 0.008) is used according to the above
convergent investigation.

 21 
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Figure 10: Schematic view of the tank and the obstacle (unit: m). H3 and H4 represent 

the two wave probes, located at 1.488m and 2.638m from the left wall, respectively. 
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Figure 10: Schematic view of the tank and the obstacle (unit: m). H3 and H4
represent the two wave probes, located at 1.488m and 2.638m from the left wall,
respectively.

The numerical simulation starts when the gate is suddenly released. Some snap-
shots of the free surface profiles are shown in Fig. 12. In this figure different color
highlights different water surface height. The figure shows the different stages of
the wave evolution, illustrating the flow of water just after collapses (Fig.12a), the
collapsed water hitting the obstacle with very high speed (Fig.12b) and generating
an impact on the surface of the obstacle, and splash of water after that (Fig.12c).
The free surface profiles at two instants t ≈ 0.4s and t ≈ 0.56s are compared with
the experimental photographs and the numerical results by Kleefsman, Fekken,
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Figure 11: Sizes of the obstacle and the locations of pressure transducers (unit: m)

Veldman, Iwanowski and Buchner (2005) in Fig. 13. Only the free surfaces near
the obstacle are plotted. From this figure, it is found that the present results are very
similar to the Kleefsman’s numerical ones and both the numerical results are also
similar to the experimental profiles.

The comparison shown in Fig.13 qualitatively demonstrates an accuracy of the
MLPG_R method in predicting the spatial distribution of the free surface elevation
when interaction between waves and 3D obstacles is involved. To show its robust-
ness quantitatively, the comparison is also made of the time histories of the wave
height recorded at different positions with experimental data in Figs. 14 and 15.
Fig. 14 depicts the time history of the surface elevation at Probe H3 while Fig.15
depicts that at H4. It is observed from these figures that our numerical results corre-
late very well with the experimental data, though some inevitable difference exits.

Apart from the wave profiles, the comparisons of the pressure are given in Figs.
16 and 17, which display the time histories of pressure recorded at Point P1 and
P3 on the surface of obstacle (shown in Fig. 11), respectively. From the Figs. 16
and 17, one can notice that there are two pressure rises in each curve. The first
pressure rise is generated due to the primary impact on the obstacle after the water
column collapses while the second rise occurs when the returning wave front hits
the obstacle again from the right after it is reflected by the left and then right walls.
The first rise is extreme large and last for a very short period, demonstrating the
typical impulsive feature caused by impact. The second rise is not so large and
grows relatively slowly. One can also see that the shapes of the numerical curves
are largely similar to the experimental ones. Particularly, our numerical method
does not only predict the first pressure rise well, but also give a good estimation to
the second rise of experimental data. It is noted that although there are still some
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Figure 12: Snapshots of the free surface at (a) t=0.227s (b) t=0.493s and (c)
t=0.701s.

fluctuations in the time history of pressure, the curves are much smoother than what
we presented in Zhou, Ma, Zhang and Yan (2009).

5 Conclusions

In this paper, the MLPG_R method is extended to simulate 3D violent breaking
waves. Some technical improvements have been made: (1) extending the MPAM
method for identifying the free surface particles into 3D cases; (2) extending the
semi-analytical technique for the local domain integration into 3D cases and (3)
developing the new semi-analytical technique for computing the spherical surface
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Figure 13: (a) Comparison of the free surface profiles at t ≈0.4s (a: experiment,
b: FVM numerical results, both results from Klessfsman, et al, 2005; c: present
method); (b) Comparison of the free surface profiles at t ≈0.56s (a: experiment,
b: FVM numerical results, both results from Klessfsman, et al, 2005; c: present
method)

integrals. The semi-analytical techniques can dramatically reduce the CPU time.
Without them, it would have taken too long time to run the 3D cases on a normal
PC available nowadays.

Comparison of the numerical results produced by the MLPG_R method with ex-
perimental data in a couple of violent breaking wave cases shows that the MLPG_R
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Figure 14: The time histories of the free surface elevation at H3
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Figure 15: The time histories of the free surface elevation at H4
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Figure 16: Pressure time history at P1 in Fig. 10

method is robust and potentially one of good options to model the violent waves
and their interaction with structures. Nevertheless, the investigations also reveal
that the further improvement on the method is still required in some areas, such as
enhancing the accuracy of simulating post-breaking waves.
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Figure 17: Pressure time history at P3 in Fig. 10
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