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Abstract: A hybrid finite element formulation, combining nanoscopic and macro-
scopic considerations is proposed, for the prediction of the elastic mechanical prop-
erties of single walled carbon nanotube (SWCNT)-based composites. The nan-
otubes are modeled according to the molecular mechanics theory via the use of
spring elements, while the matrix is modeled as a continuum medium. A new
formulation concerning the load transfer between the nanotubes and matrix is pro-
posed. The interactions between the two phases are implemented by utilizing ap-
propriate stiffness variations describing a heterogeneous interfacial region. A pe-
riodic distribution and orientation of the SWCNTs is considered. Thereupon, the
nanocomposite is modeled using a three dimensional finite element unit cell, which
is subjected to longitudinal as well as transverse loadings in order to obtain the me-
chanical properties in these directions. The Halpin-Tsai equations are used to ex-
tract the mechanical properties for randomly oriented SWCNTs. The formulation
is validated through comparison of the predicted mechanical responses to corre-
sponding solutions, obtained from the literature.

Keywords: Carbon nanotube, Finite element method, Mechanical properties, In-
terface, Nanocomposite.

1 Introduction

As there is a demand in modern technological applications for superior composites,
innovative reinforcements having superior properties should be introduced. Such
reinforcements could be found in the field of nanotechnology. Since carbon-carbon
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covalent bonds are one of the strongest in nature, a nanostructure based on a perfect
arrangement of these bonds would produce a remarkably strong reinforcement.

Due to their molecular structure, carbon nanotubes (CNTs), first recognized by
Iijima [Iijima (2001)], are the stiffest and strongest known nano-reinforcing agents,
having also remarkable electronic and conductive properties and many other unique
characteristics [Thostenson, Ren and Chou (2001)]. Development of CNT-based
composites could demonstrate the advanced structural properties of the individual
nanotubes. SWCNT reinforced composite materials, with significant enhancement
in mechanical properties, have already been fabricated [Mamedv, Kotov, Prato,
Guldi, Wicksted and Hirsch (2002)]. Recent experimental investigations indicate
that significant improvements in the elastic properties of polymeric materials can
be achieved by using as reinforcement carbon nanotubes of even small volume frac-
tions [Ajayan and Tour (2007); Kueseng and Jacob (2006); Atieh, Girun, Mahdi,
Tahir, Guan, Alkhatib, Ahmadun and Baik (2006)]. Since the experimental study of
CNT composites is often an expensive and complicated task, computational mod-
eling could be a significant aid in the specific research area.

Atomic modeling of carbon-based nanostructures has attracted the attention of
several researchers [Brenner, Shederova, Areshkin, Schall and Frankland (2002);
Chen, Cheng and Hsu (2007); Wu, Chou, Han and Chiang (2009)]. Molecular dy-
namics (MD) [Frankland, Harik, Odegard, Brenner and Gates(2003); Zou, Ji, Feng
and Gao (2006); Han and Elliott (2007); Namilae, Chandra, Srinivasan, Chandra
(2007); ] and continuum mechanics [Chen and Liu (2004); Seidel and Lagoudas
(2006); Ashrafi and Hubert (2006); Liu and Chen (2003); Araújo and Gray (2008);
Guz, Rushchitsky, Guz (2008); Guz, Dekret (2009); Wang, Yao (2009)] based ap-
proaches have been adopted to simulate CNT composite behavior. Due to their
computational cost, MD approaches are restricted to small length and time scale
problems while continuum mechanics approaches fail to incorporate the nanostruc-
tural effects of the CNT. A micromechanical based method linking MD and con-
tinuum mechanics approaches has been recently proposed [Odegard, Gates, Wise,
Park and Siochi (2003)]. The performance of CNT-based composites is greatly
influenced by the interface, which has different properties from those of the ma-
trix and the CNT. Generally, the three main mechanisms of interfacial load transfer
are micromechanical interlocking, chemical bonding and the van der Waals inter-
actions between the matrix and the reinforcements. Al-Ostaz [Al-Ostaz, G. Pal,
Mantena and Cheng (2008)] investigated SWCNT-polymer interface interactions
in nanoscale via MD. To represent the CNT-polymer load transfer characteristics
and consequently the interface between the CNTs and the polymer, Frankland et
al. [Frankland, Caglar, Brenner and Griebel (2002)] employed just van der Waals
forces. Saber-Samadari and Khatibi [Saber-Samandari and Khatibi (2006)] con-
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sidered a continuum interfacial zone with variable elastic modulus to investigate a
CNT composite via a unit cell method. However, in the specific study all phases
including CNTs were assumed as continuum.

A finite element formulation, based on micromechanical analysis, is proposed for
the evaluation of the elastic mechanical behavior of a polymer matrix, filled with
short SWCNTs. Concerning nanotube modeling [Giannopoulos, Kakavas and An-
ifantis (2008)], the method utilizes the three dimensional atomistic microstructure
of the nanotube, defining nodes at the corresponding atomic positions of carbon
atoms. Appropriate spring elements, which interconnect the atoms, incorporate
directly the potential energies provided by molecular theory and therefore simu-
late accurately the interatomic interactions [Rappe, Casewit, Colwell, Goddard and
Skiff (1992)]. In contrast, the matrix is considered as a continuum medium. In ad-
dition, the load transfer between the nanotubes and the matrix is modeled by special
joint elements of variable stiffness. In this way, a heterogenous interface is simu-
lated. The advantage of the proposed hybrid method is that it utilizes macroscopic
properties in order to describe the matrix and interface behavior. Detailed repre-
sentation of the molecular nanostructure is avoided, making the proposed formula-
tion attractive and simultaneously, significant reductions in computational cost and
complexity is achieved. Predicted results regarding the nanocomposite mechani-
cal properties are presented and compared to solutions obtained from the literature.
The reinforcing ability of SWCNTs is evaluated.

2 Numerical model

2.1 Micromechanical analysis

A composite with homogenously distributed SWCNTs is assumed. It is considered
that all SWCNTs have the same dimensions and orientation and that their edges are
capped. The microstructure of the nanotube is developed around a mean diameter
dn = 2rn. The reinforcement length is `n. Its thickness is indirectly considered and
typically taken equal to tn = 0.34nm. It is assumed that the longitudinal distances,
between neighboring reinforcement ends, are equal to the corresponding transverse
distances and equal to d. The last condition in conjunction with the known volume
fraction Vf r , diameter dn and length ln of SWCNT are sufficient to lead to the
complete geometric definition of the problem. Due to the symmetry of the periodic
distribution, only the representative repeated unit cell of Fig. 1 is modeled. In this
figure, one quarter of the matrix is removed for clarity. An orthogonal Cartesian
coordinate system is used as reference with x, y and z axes, aligned with the main
dimensions of the unit cell. The longitudinal axis of the reinforcement is aligned
with the uniaxial loading direction (Fig. 1).
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Figure 1: Representative unit cell of the nanocomposite.

The volume fraction of the CNT in the composite is:

Vf r =
Vn

Vm +Vn
(1)

Small volume fractions are considered, so that a negligible interaction between ad-
jacent nanotubes can be assumed. In order to determine the longitudinal and trans-
verse elastic properties of the composite, by using the unit cell model, appropriate
boundary conditions must be implemented. For the calculation of the longitudinal
elastic modulus EL = Ez a uniform displacement uz = ∆z is applied on the bound-
ary z = ln + d. The symmetry constraint uz = 0 is applied on the boundary z = 0,
whereas the boundaries x =±(d +rn + tn/2) and y =±(d +rn + tn/2) are kept par-
allel to their original shape by nodal coupling (this is required, as shear stresses on
these boundaries must be zero due to symmetry). The longitudinal elastic modulus
EL of the composite is computed from average stress σz, obtained from the sum of
reactions and average strain εz on z = ln +d:

EL =
σz

εz
=

n
∑

i=1
(−i fz)

(2d+dn+tn)2

∆z
ln+d

(2)
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where i fz is the reaction in the direction z at node i, which belongs on the boundary
z = ln +d and n is the total number of nodes that belong in the specific boundary.

Similarly, in order to compute the transverse elastic modulus ET = Ex = Ey a uni-
form displacement ux = ∆x is applied on the boundary x = d + rn + tn/2, while the
constraint ux = 0 is imposed on the boundary x =−(d + rn + tn/2). In addition, the
boundaries y =±(d +rn + tn/2) and z = ln +d are constrained to remain parallel to
their original configuration. Finally, once more the symmetry constraint uz = 0 is
applied on the boundary z = 0. The transverse elastic modulus ET of the composite
is calculated from average normal reaction on the face x = d + rn + tn/2:

ET =
σx

εx
=

n
∑

i=1
(−i fx)

(2d+dn+tn)(ln+d)
∆x

(2d+dn+tn)

(3)

where i fx denotes the reaction along the direction x at node i, belonging on the face
x = d + rn + tn/2, while n is the sum of the nodes belonging on the corresponding
face.

After computing the elastic modulus EL and ET , predictions concerning the ran-
domly oriented SWCNTs are performed, by using the following Halpin-Tsai rela-
tionships for randomly oriented short fiber composites [Mallick (1988)]:

Erand =
3
8

EL +
5
8

ET (4)

Grand =
1
8

EL +
1
4

ET (5)

where Erand and Grand are the elastic and shear modulus of a composite with ran-
domly distributed short reinforcements, respectively.

2.2 Representation of SWCNT mechanical behavior

In contrast with a traditional carbon fiber, the mechanical performance of a SWCNT
is strongly dependent on its atomistic nanostructure and therefore it is essential to
be implemented into the proposed model [Giannopoulos, Kakavas and Anifantis
(2008)]. According to the method adopted, the SWCNT is developed around its
mean radius rn. Specifically, the nanotube is considered as a space frame struc-
ture, in which the carbon atoms are represented by nodes. Their position in three-
dimensional space, for a particular (p,q) SWCNT is established via the following
transformation equation [Koloczek, Young-Kyun and Burian (2001)]:

(x, y, z) =
(

rn cos
(

x′

rn

)
, rn sin

(
x′

rn

)
, y′

)
(6)
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where (x′, y′) represents the original coordinate system of a graphene sheet and
(x, y, z) represents the new coordinate system of the tube. The body of the tubu-
lar shell is mainly made of hexagonal rings of carbon atoms, whereas the ends are
capped by a dome-shaped half-fullerene molecule made of hexagonal and pentago-
nal rings. Details about the carbon atom positions on the capped edges of SWCNTs
can be found elsewhere [Reich, Li and Robertson (2005)].

The nodes that arise by using the above equation are properly connected with linear
spring elements, which simulate the potential energy of the interatomic interactions
[Rappe, Casewit, Colwell, Goddard and Skiff (1992)], depicted in Fig. 2. The
total potential energy, omitting the electrostatic interactions between carbon atoms
which have minor effect, is [Gelin (1994)]:

U = ∑Ur +∑Uθ +∑Uτ = ∑
1
2

kr(∆r)2 +∑
1
2

kθ (∆θ)2 +∑
1
2

kτ(∆ϕ)2 (7)

where Ur represents the energy due to bond stretching, Uθ the energy due to bond
angle bending and Uτ the energy due to torsion. The terms kr, kθ and kτ are the
bond stretching, bond angle bending and torsional resistance force constants, re-
spectively, while ∆r, ∆θ and ∆ϕ represent the bond length and bond angle vari-
ations, respectively. In order to represent the bond stretching interaction between
carbon atoms, a linear spring element of stiffness kr is utilized while a torsional
linear spring element of stiffness kτ is utilized for the representation of torsional
interaction. For simplicity reasons, the bond angle bending interaction is simulated
by the use of an equivalent straight spring element, connecting the opposite atoms-
nodes of the C-C-C nanostructure, as Fig. 2 shows. It is easy to prove that for small
deformations its stiffness is:

kb =
kθ

(ac−c)2−0.25(lc−c−c)2 (8)

where ac−c = 0.1421nm is distance between two neighboring carbon atoms while
lc−c−c is the distance between two opposite atoms in a C-C-C nanostructure.

The spring elements as well as their stiffness values, used in the analysis are de-
picted in Fig. 2. As it can be seen, the a elements simulate stretching and torsion
interaction while the b elements represent the angle bending interaction. These el-
ements are two-noded and have 3 degrees of freedom per node (three translations),
that are expressed in the global coordinate system. The two nodes of these elements
are connected with three translation springs. Theses springs are situated according
to the local coordinate system of the element (x̄, ȳ, z̄). The x̄-axis of the specific
local coordinate system always coincides with the line that connects the two nodes.
Each finite element is characterized by six values of stiffness, corresponding to the
aforementioned translation and rotation springs: (kx̄, kȳ, kz̄, krotx̄, krotȳ, krotz̄)
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Figure 2: Interatomic interactions and corresponding finite element model.

2.3 Representation of matrix mechanical behavior

The matrix can be modeled discretely, by taking into consideration its molecular
structure. However, this would increase significantly the computational cost, as
well as the complexity of the whole model. Therefore, the matrix is regarded as
a continuum isotropic elastic medium of elastic modulus Em and Poisson’s ratio
νm. Linear three-dimensional hexahedral isoparametric elements are used for the
discretization of the matrix (annotated hereafter as s elements). These elements
have eight nodes with three degrees of freedom per node (three translations) and a
linear strain variation displacement mode.

2.4 Representation of interface mechanical behavior

Between the matrix and the SWCNTs, occur complicated phenomena such chem-
ical bonding and van der Waals interactions which depend on the nature of the
interacting atoms and relative distances. Since it is difficult to implement implic-
itly such phenomena in a numerical model, a computationally efficient formulation
capable of representing approximately an overall interfacial mechanical response
should be adopted.

As it was previously mentioned, the nanostructure of a carbon nanotube is devel-
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oped around a mean diameter, while its thickness is considered indirectly. There-
fore, from a physical point of view, it is assumed that the interfacial interactions
take place along a radial distance equal to tn/2. Due to the atomistic modelling
of SWCNTs, a discrete modelling of the interfacial region is adopted. Two-noded
interfacial joint elements (annotated hereafter as j elements), are employed. As Fig.
3 illustrates, these elements interconnect radially the atoms-nodes of the nanotube
with corresponding nodes, belonging to the inner surface of the matrix.

 

Figure 3: Finite element model of interfacial interactions.

A series of J elements of equal lengths tn/(2J), is used to span the distance tn/2.
The translation stiffnesses, along the three directions of these elements are defined
according to a local cylindrical coordinate system (R, Θ, Z), positioned at the cen-
ter of the SWCNT perimeter. It is assumed that their values are functions of the
radial coordinate R:

ki = Φi(R) (9)

where i = R, Θ, Z. The following step is to define the lower and upper bounds
for functions Φi(R), by taking into consideration their minimum and maximum
allowed values. The radial reaction fR, produced by the joint above the SWCNT,
for a ∆R deformation, is according to Eq. (9):

fR = ΦR(R1)∆R (10)
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where R1 denotes the radial position of the joint element and is equal to:

R1 = rn + tn/(2J) (11)

Eq. (10) may take the form:

fR

An
=

ΦR(R1)(tn/2J)
An

∆R
(tn/2J)

(12)

where An indicates the mean surface area of the nanotube affected by the joint,
given by the equation:

An =
2πrnln

nc
(13)

where nc is the total number of carbon atoms of the tube. Eq. (12) may be equiva-
lently written as:

σR =
ΦR(R1)tnnc

4πJrnln
εR (14)

where σR and εR denote radial stress and strain, respectively. It is coherent to
assume that the radial elastic modulus of the interface, exactly above the reinforce-
ment, is equal to the corresponding radial elastic modulus of the nanotube ERn.
Therefore, from Eq. (14) the following constrained equation is obtained:

ΦR(R1) =
4πJrnln

tnnc
ERn (15)

A similar constrain equation can be obtained for function ΦΘ. The circumferential
reaction fΘ, produced by the joint above the SWCNT for a ∆Θ deformation, is:

fR = ΦR(R1)∆R (16)

or

fΘ

An
=

ΦR(R1)tnnc

4πJrnln

∆Θ

(tn/2J)
(17)

For small strains the above equation becomes:

τΘ =
ΦR(R1)tnnc

4πJrnln
γR (18)
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where τΘ and γΘ denote circumferential shear stress and strain, respectively. The
above equation leads to the following constrain equation:

ΦΘ(R1) =
4πJrnln

tnnc
GΘn (19)

where GΘn is the circumferential shear modulus of the SWCNT. Accordingly, func-
tion ΦZ becomes:

ΦZ(R1) =
4πJrnln

tnnc
GZn (20)

where GZn is the longitudinal shear modulus of the SWCNT. In a similar manner
and by making the same considerations for the joint element located exactly below
the matrix material, the following equations are obtained:

ΦR(R2) =
4πJ(rn + tn/2)ln

tnnc
ERm (21)

ΦΘ(R2) =
4πJ(rn + tn/2)ln

tnnc
GΘm (22)

ΦZ(R2) =
4πJ(rn + tn/2)ln

tnnc
GZm (23)

where ERm, GΘm and GZm are the radial elastic modulus, the circumferential shear
modulus and longitudinal shear modulus of the matrix material, respectively. Fi-
nally R2 denotes the radial position of the specific joint element and is given by the
following equation:

R2 = rn + tn/2− tn/(2J) (24)

It has to be noted that the above stiffness variations are not appropriate for the
capped edges of the tube. Therefore, in order to describe the interface surrounding
the capped edges, the above functions are expressed with respect to an appropriate
local spherical coordinate system positioned at the centre of the cap.

Summarizing, a heterogeneous interface is modeled in a discrete manner by intro-
ducing joint elements of variable stiffness properties. Their mechanical response is
prescribed by user-defined functions, along the three dimensions of a local coordi-
nate system. These functions, from physical point of view, are set to be bounded
exclusively by macroscopic parameters of the two phases surrounding the interface.
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3 Results and discussion

3.1 SWCNT properties

The armchair (6,6) SWCNTs is considered as reinforcement with a radius equal
to rn = 0.40709nm. In order to represent the mechanical interfacial behavior, as
Eqs. (15), (19) and (20) imply, some macroscopic material data i.e. ERn, GΘn
and GZn of the considered SWCNT are required. For this reason, initially the un-
capped (6,6) SWCNT is individually modeled. A length equal to ln = 10nm is
selected. The SWCNT is analyzed with reference to the local cylindrical coor-
dinate system (R, Θ, Z), mentioned earlier. The bond stretching and bond angle
bending resistance force constants are taken equal to kr = 6.52×10−7 Nnm - 1, and
kθ = 8.76×10−10, respectively [Giannopoulos, Kakavas and Anifantis (2008)].

In order to compute the radial elastic modulus of the SWCNT ERn, a radial force fR

is imposed at each one of its nodes. The ERn can then be calculated via equation:

ERn =
σR

εR
=

nc fR
2πrnln

∆R
rn

(25)

In order to compute the circumferential shear modulus of the SWCNT GRn, the Θ

degree of freedom of the nodes at Z = 0 is restrained, while a circumferential force
fΘ is applied uniformly on each node that belongs to the Z = ln plane. The shear
module GRn of the nanotube is computed from the reaction torgue MZ acting, in the
restrained end:

GRn =
MZln
S∆Θ

=
n′c fΘ rnln

π

2

((
rn + tn

2

)4−
(
rn− tn

2

)4
)

∆Θ

(26)

where S is the polar moment of inertia of the cross sectional area of the tube and n′c
is the number of edge nodes of the tube.

In order to compute the longitudinal shear modulus of the SWCNT GZn, only half
of the tube, from Θ = 0 to Θ = π , is modeled. R and Θ degrees of freedom of all
nodes an Z degree of freedom of nodes belonging to plane Θ = π , are constrained.
A longitudinal displacement variation Ri∆Z is applied to nodes, belonging to planes
Z = 0 and Z = ln, where Ri is the radial coordinate of node i. The shear module
GZn of the nanotube is computed using the following relationship:

GZn =
τZ

γZ
=

n”c
∑

i=1
(−i fZ)

lntn
∆Z
rn

(27)
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where i fZ is the longitudinal reaction of node i, belonging to plane Θ = π and n”c

is the total number of nodes belonging to the same plane.

The obtained values using the above techniques are ERn = 1515GPa, GΘn = 336.5GPa
and GZn = 547.3GPa.

3.2 Composite properties

In this section the computed elastic moduli, of a (6,6) capped SWCNT/polymer
nanocomposite, are presented in terms of nanotube length, volume fraction and
orientation. The thermoplastic polyamide LaRC-SI [Odegard, Gates, Wise, Park
and Siochi (2003)] is used as matrix material. The elastic modulus and Poisson’s
ratio of this material are Em = ERm = 3.8GPa and νm = 0.4, respectively. The shear
modulus of the polymer is:

Gm = GΘm = GZm =
Em

2(1+νm)
= 1.357GPa (28)

In order to define the interface properties, a set of linear functions are selected
having the form:

Φi(R) = αiR+βi (29)

where i = R, Θ, Z and αi, βi are constants that must be determined. Since the
macroscopic properties ERn, GΘn, GZn,ERm, GΘm, and GZm are known, the interfa-
cial stiffness variations, with reference to the local coordinate system (R, Θ, Z),
can be fully defined (evaluations of αi, βi constants) by substituting Eqs. (15),
(19)-(23) and (29). At the capped edge region these variations are transformed
with respect to the spherical local coordinate system mentioned previously. A set
of J = 10 joint elements is used along the radial direction. The selection of this
number has been made after convergence tests. During these tests it was proved
that for J > 10, elastic properties of same magnitude were produced.

A representative finite element model of the unit cell containing a capped (6,6)
SWCNT is illustrated in Fig. 4.

Before extracting the numerical data, numerous convergence tests have been con-
ducted in order to select the proper mesh density concerning the matrix material.
The variation of longitudinal and transverse elastic moduli versus SWCNT length,
for 1% volume fraction is given in Fig. 5. The variation of longitudinal and trans-
verse elastic moduli versus volume fraction, for a SWCNT length equal to 10nm,
is given in Fig. 6.

The isotropic elastic and shear modulus of a composite, with randomly aligned
SWCNTs, is semi-analytically obtained, by substituting the numerically predicted



Numerical Prediction of Young’s and Shear Moduli 243

 

Figure 4: Finite element model of the unit cell.

values of longitudinal and transverse elastic moduli, into Eq. (4) and (5), respec-
tively.

Fig. 7 presents the elastic and shear modulus of the composite with randomly
aligned tubes, for 1% volume fraction versus reinforcement length. Fig. 8 depicts
the elastic and shear modulus of the composite with randomly aligned tubes of
10nm length versus volume fraction.

Generally, for the aligned SWCNT/ LaRC-SI composites, the longitudinal elastic
modulus increases significantly, as the reinforcement length and volume fraction
increases, while the transverse elastic modulus remains almost constant. For the
aligned SWCNT/ LaRC-SI, the increase of the reinforcement length and volume
fraction leads to a less prominent increase of both isotropic elastic and shear mod-
uli. In general, a satifactory agreement is observed between preictions obtained us-
ing the proposed method and results presented by Odegard et al. [Odegard, Gates,
Wise, Park and Siochi (2003)].

4 Conclusions

In the present study a hybrid numerical method capable of predicting the mechani-
cal response of CNT based composites has been developed. The method combines
the discrete nature of the CNT and the macroscopic mechanical response of the
matrix. Furthermore, it utilizes a discrete representation of the interface, assuming
appropriate interfacial stiffness variations defined by functions of radius, bounded
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Figure 5: Longitudinal and trans-
verse moduli of aligned capped (6,6)
SWCNT/ LaRC-SI nanocomposite ver-
sus nanotube length, for 1% volume
fraction.
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Figure 6: Longitudinal and trans-
verse moduli of aligned capped (6,6)
SWCNT/ LaRC-SI nanocomposite ver-
sus nanotube length, for 1% volume
fraction.
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Figure 7: Elastic and shear mod-
uli of random capped (6,6) SWCNT/
LaRC-SI nanocomposite versus nan-
otube length, for 1% volume fraction.
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Figure 8: Elastic and shear moduli of
random capped (6,6) SWCNT/ LaRC-
SI nanocomposite versus volume frac-
tion, for 10nm long nanotubes.
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by the macroscopic properties of the two phases.

This hybrid method reduces significantly the computational cost and modeling
complexity since it uses macroscopic representation for the matrix and the inter-
face. Therefore the input of detailed data concerning the matrix atomistic structure,
possible covalent bonding and van der Waals interactions between the two phases
is avoided. The method has been tested successfully for a CNT-LaRC-SI composite
by comparison with other corresponding solutions available in the literature.
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