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An Advanced Implicit Meshless Approach for the
Non-linear Anomalous Subdiffusion Equation
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Abstract: Recently, the numerical modelling and simulation for anomalous sub-
diffusion equation (ASDE), which is a type of fractional partial differential equa-
tion(FPDE) and has been found with widely applications in modern engineering
and sciences, are attracting more and more attentions. The current dominant nu-
merical method for modelling ASDE is Finite Difference Method (FDM), which is
based on a pre-defined grid leading to inherited issues or shortcomings. This paper
aims to develop an implicit meshless approach based on the radial basis functions
(RBF) for numerical simulation of the non-linear ASDE. The discrete system of
equations is obtained by using the meshless shape functions and the strong-forms.
The stability and convergence of this meshless approach are then discussed and
theoretically proven. Several numerical examples with different problem domains
are used to validate and investigate accuracy and efficiency of the newly developed
meshless formulation. The results obtained by the meshless formulations are also
compared with those obtained by FDM in terms of their accuracy and efficiency.
It is concluded that the present meshless formulation is very effective for the mod-
elling and simulation of the ASDE. Therefore, the meshless technique should have
good potential in development of a robust simulation tool for problems in engineer-
ing and science which are governed by the various types of fractional differential
equations.
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1 Introduction

Recently, because of the new developments in advanced bio-engineering, sustain-
able environment and renewable energy, which are often governed by a series of
fractional ordinary differential equations (FODE) [Ye and Ding (2009); Kou, Yan,
and Liu (2009)] or fractional partial differential equations (FPDE) [Sokolov and
Klafter (2005); Benson, Wheatcraft, and Meerschaert (2000)], the numerical sim-
ulation of FPDE is becoming important. It has been reported that, in numerous
physical and biological systems, many diffusion rates of species cannot be char-
acterized by the single parameter of the diffusion constant [Sokolov and Klafter
(2005)]. Instead, the (anomalous) diffusion is characterized by a scaling parameter
α as well as a diffusion constant K, and the mean square displacement of diffusing
species 〈x2(t)〉 scales as a nonlinear power-law in time, i.e.,

〈x2(t)〉 ∼ 2Kα

Γ(1+α)
tα , t→ ∞,

where α (0 < α < 1) is the anomalous diffusion exponent and Kα is the general-
ized diffusion coefficient. Ordinary (or Brownian) diffusion corresponds to α = 1
with K1 = D (the ordinary diffusion coefficient). For example, single particle track-
ing experiments and photo-bleaching recovery experiments have revealed subdif-
fusion (0 < α < 1) of proteins and lipids in a variety of cell membranes [Brown,
Wu, Zipfel, and Webb (1999); Feder, Brust-Mascher, Slattery, Baird, and Webb
(1996); Ghosh (1991); Ghosh and Webb (1994); Sheets, Lee, Simson, and Jacobson
(1997); Slattery (1991); Smith, Morrison, Wilson, Fernandez, and Cherry (1999)].
Anomalous subdiffusion has also been observed in neural cell adhesion molecules
[Simson, Yang, Moore, Doherty, Walsh, and Jacobson (1998)]. Indeed anomalous
subdiffusion (the case with 0 < α < 1) is generic in media with obstacles [Sax-
ton (1994, 2001)] or binding sites [Saxton (1996)]. For anomalous subdiffusive
random walks, the continuum description via the ordinary diffusion equation is
replaced by the anomalous subdiffusion equations. The numerical modelling and
simulation for the anomalous subdiffusion equations are attracting more and more
attentions from researchers [Agrawal, Machado, and Sabatier (2004), Butzer and
Georges (2000), Kenneth and Bertram (1993), Yuste and Acedo (2005), Langlands
and Henry (2005), Chen, Liu, Turner, and Anh (2007), Zhuang, Liu, Anh, and
Turner (2008)]. Fractional kinetic equations (FKE) including a class of anomalous
subdiffusion equations, such as fractional diffusion equation, modified anomalous
subdiffusion equation, fractional advection-diffusion equation, fractional Fokker-
Planck equation, fractional cable equation etc., are recognized as useful approaches
for the description of transport dynamics in complex systems including systems
exhibiting Halmiltonian chaos, disordered medium, plasma and fluid turbulence,
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underground water pollution, dynamics of protein molecules, motions under the
influence of optical tweezers, reactions in complex systems, and more [Chechkin,
Gonchar, Kflafter, and Metzler (2006), Metzler and Klafter (2000), Metzler and
Klafter (2004), Sokolov, Klafter, and Blumen (2002), Zaslavsky (2002)]. When the
fractional kinetic equations describe the asymptotic behaviour of continuous time
random walks, their solutions correspond to the Lévy walks. The advantage of the
fractional kinetic model basically lies in the straightforward way of including ex-
ternal force terms and of calculating boundary value problems. Therefore, FKE
results in a more accurate representation of the relative phenomena than normal
partial differential equations (PDE). Unlike the normal PDE, the differential order
(regarding to time or space or both) of a FKE is not with a integer order, in other
words, the differential order might be a fractional order (i.e., 0.5th order, 1.5th or-
der, and so on), which will lead to a big difficulty in numerical simulation, because
most existing numerical simulation techniques are developed for the PDE with a
integer differential order.

Yuste and Acedo [Yuste and Acedo (2005)] proposed an explicit Finite Difference
Method(FDM) and a new Von Neumann-type stability analysis for the anomalous
subdiffusion equation. However, they did not give a convergence analysis and
pointed out the difficulty of this task when implicit methods was used. Implicit
difference method is usually unconditional stable and convergent, but the explicit
difference method is different. Langlands and Henry [Langlands and Henry (2005)]
proposed an implicit numerical scheme (L1 approximation) to analyze this prob-
lem, and discussed the accuracy and stability of this scheme. However, they did
not derive the global accuracy of this implicit numerical scheme and failed in es-
tablishing the unconditional stability for all γ in the range 0 < γ ≤ 1. Chen and
Liu et al. [Chen, Liu, Turner, and Anh (2007)] presented a Fourier method for the
anomalous subdiffusion equation, and they analyzed the stability and the global
accuracy of the difference approximation scheme. Zhuang and Liu et al. [Zhuang,
Liu, Anh, and Turner (2008)] also proposed analytical techniques of implicit nu-
merical methods for the anomalous subdiffusion equation. At present, most of the
anomalous subdiffusion equations were solved numerically by Finite Difference
Method (FDM) in one dimensional case [Langlands and Henry (2005); Yuste and
Acedo (2005); Chen, Liu, Turner, and Anh (2007); Zhuang, Liu, Anh, and Turner
(2008)], and a few research has been reported using Finite Element Method (FEM)
for this problem [Ervin and Roop (2005); Ervin, Heuer, and Roop (2007)].

FDM and FEM are numerical approaches based on pre-defined meshes/grids, which
lead to inherited issues or shortcomings including: a) difficulty in handling a com-
plicated problem domain; b) difficulty in handling the Newman boundary condi-
tions, c) difficulty in handling irregular nodal distribution; d) difficulty in conduct-
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ing adaptive analysis, and e) low accuracy. Therefore, these shortcomings become
the main barrier for the development of a powerful simulation tool for real appli-
cations governed by FPDE. In addition, most current research in this field is still
limited in some one-dimensional (1-D) or two-dimensional (2-D) benchmark prob-
lems with very simple problem domains (i.e., squares and rectangles) and Dirich-
letle boundary conditions. It already becomes crucial to develop an alternative
numerical technique for modeling and simulation of FPDE.

Recent years, a group of meshless (or meshfree) methods have been developed
and successfully used in many fields. Depending on whether a numerical integra-
tion is used in developing the system of algebraic equations, the meshless meth-
ods can be largely grouped into two different categories: meshless methods based
on collocation techniques (with Dirac-delta-test functions) and meshless methods
based on the general weak-forms (with non-Dirac-delta-test function) of ordinary
(partial) differential equations (ODEs or PDEs). The meshless methods based on
collocation techniques have a relatively long history, and they include smooth par-
ticle hydrodynamics (SPH) [Gingold and Moraghan (1977)], the meshless collo-
cation methods [Kansa (1990); Le, Mai-Duy, Tran-Cong, and Baker (2008)], finite
point method (FPM) [Onate, Idelsohn, Zienkiewicz, Taylor, and Sacco (1996)], etc.
The so-called meshless methods, using various global weak-forms, were proposed
about twenty years ago. This category of meshless methods includes the diffuse
element method (DEM) [Nayroles, Touzot, and Villon (1992)], the element-free
Galerkin (EFG) method [Belytschko, Lu, and Gu (1994)], and so on. The mesh-
less methods based on the weak-forms, in general, exhibit very good stability and
accuracy. Therefore, they have been successfully applied in problems of solid me-
chanics and fluid mechanics. However, in particular, the above-mentioned so-called
meshless methods are meshless only in terms of the interpolation of the field vari-
ables, as compared to the conventional FEM. Most of them have to use global
background cells (mesh) to integrate a weak-form over a global problem domain.
The global background mesh for integration makes them to be not truly meshless,
or they can be considered as advanced or modified cases of the FEM. In order to al-
leviate the global integration background mesh, the meshless local Petrov-Galerkin
(MLPG) methods were proposed by Atluri et al. [Atluri and Zhu (1998a); Atluri
and Zhu (1998b); Atluri, Kim, and Cho (1999); Atluri and Shen (2002a);Atluri
and Shen (2002b); Atluri, Han, and Rajendran (2004); Li and Atluri (2008); Gu
and Liu (2001); Ching and Batra (2001); Zheng, Long, Xiong, and Li (2009)]. In
the MLPG, Petorv-Galerkin local weak-forms, integrated in regular-shaped local
domains, were developed. The local integration domain can be as simple as pos-
sible (such as circles, ellipses, rectangles, or triangles in 2-D; spheres, rectangular
parallelepipeds, or ellipsoids in 3-D) and can be automatically constructed in com-
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puting. Therefore, MLPG advances a big step to the final target of a truly meshless
method.

The above discussed meshless methods have demonstrated some distinguished ad-
vantages [Liu and Gu (2005)] including: 1) they do not use a mesh (at least in
field approximation), so that the burden of mesh generation in FDM and FEM is
overcome. Hence, an adaptive analysis is also easily achievable; 2)they are usually
more accurate than FDM and FEM due to the use of higher order meshless trial
functions; and 3)they are capable of solving complex problems that are difficult
for the conventional FDM and FEM. Because of these unique advantages, mesh-
less methods seem to have a good potential for the simulation of FSDE. Although
the meshless methods have been successfully applied to a wide range of problems,
for which, however, the governing equations are conventional PDE with an integer
order, very limited work was reported to handle fractional partial differential equa-
tions (FPDE) by the meshless techniques [Chen, Ye, and Sun (2010)]. This topic
calls for a significant development.

The objective of this paper is to develop an implicit meshless formulation based on
the radial basis functions (RBF) for numerical simulation of non-linear anomalous
subdiffusion equation(ASDE). The discrete equations for two-dimensional non-
linear ASDE are obtained, based on the meshless shape functions and the strong-
forms. The essential boundary conditions are enforced by the direct collocation
method [Zhu and Atluri (1998); Atluri, Kim, and Cho (1999)]. The stability and
convergence of this method are then discussed and theoretically proven. Several nu-
merical examples with different problem domains and different nodal distributions
are used to validate and investigate accuracy and efficiency of the newly developed
meshless formulation.

The paper is organized as follows: a finite difference scheme for temporal dis-
cretization of time is proposed in Section 2, where the stability and convergence
analysis is given. The RBF interpolation approximation is briefed in Section 3. In
Section 4, we propose the meshless scheme for temporal discretization. Numerical
examples are studied and discussed in Section 5. Finally, conclusions are presented
in Section 6.

2 Discretization of time

Subdiffusive motion is particularly important in the context of complex systems
such as glassy and disordered materials, in which pathways are constrained for ge-
ometric or energetic reasons. For anomalous subdiffusive random walkers, the con-
tinuum description via the ordinary diffusion equation is replaced by the fractional
diffusion equation[Metzler and Klafter (2000), Yuste and Acedo (2004), Yuste and
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Acedo (2005), Langlands and Henry (2005)].

In this paper, we consider the following anomalous subdiffusion equation with non-
linear source term

∂u(x, t)
∂ t

= κ0D1−α
t [∆u(x, t)]+ f (u,x, t), x ∈Ω⊂ Rd , t > 0 (1)

together with the general boundary and initial conditions

u(x, t) = g(x, t), x ∈ ∂Ω⊂ Rd , 0 < t ≤ T (2)

u(x, t) = u0(x), t = 0 (3)

where ∆ is the Laplace differential operator, Ω is a bounded domain in Rd , ∂Ω is the
boundary of Ω, κ the diffusion coefficient, f (u,x, t), g(x, t) and u0(x) are known
functions. We suppose that the function f (u,x, t) satisfies the Lipschitz condition,
i.e.,

| f (u1,x, t)− f (u2,x, t)| ≤ L|u1−u2|, ∀u1,u2. (4)

In Eq. (1), 0D1−α
t u(x, t) is the Riemann-Liouville fractional derivative of order

1−α (0 < α < 1) defined as

0D1−α
t u(x, t) =

1
Γ(α)

∂

∂ t

∫ t

0
(t−η)α−1u(x,η)dη . (5)

2.1 Time Discretization

Define tk = k∆t, k = 0,1,2, . . . ,K, where ∆t = T/K is time stepsize. And we
suppose that ∆t ≤ 2/(3L).
By integrating both sides of (1), we obtain

u(x, tk+1)−u(x, tk) = κ
[

0D−α
t ∆u(x, tk+1)−0 D−α

t ∆u(x, tk)
]
+
∫ tk+1

tk
f (u,x, t)dt (6)

where the time fractional integral 0D−α
t u(x, tk) at t = tk can be approximated as

follow

0D−α
t u(x, tk) = 1

Γ(α)

k−1
∑
j=0

∫ t j+1
t j (tk−η)α−1u(x,η)dη

= 1
Γ(α)

k−1
∑
j=0

u(x, t j+1)
∫ t j+1

t j (tk−η)α−1dη + R̃k

(7)
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where

R̃k = 1
Γ(α)

k−1
∑
j=0

∫ t j+1
t j [u(x,η)−u(x, t j+1)] · (tk−η)α−1dη

= 1
Γ(α)

k−1
∑
j=0

[
u(x,ξ

( j)
1 )−u(x, t j+1)

]∫ t j+1
t j (tk−η)α−1dη

= 1
Γ(α)

k−1
∑
j=0

∂u(x,ξ
( j)
2 )

∂ t (ξ ( j)
1 − t j)

∫ t j+1
t j (tk−η)α−1dη

and t j ≤ ξ
( j)
1 ≤ ξ

( j)
2 ≤ t j+1.

Suppose that ∂u(x,t)
∂ t ∈C(Ω× [0,T ]), then

|R̃k| ≤
Ctα

k
Γ(1+α)

∆t max
x∈Ω,t∈[0,T ]

∣∣∣∣∂u(x, t)
∂ t

∣∣∣∣ . (8)

Let b j = ( j +1)α − jα , j = 0,1,2, . . . ,K, then Eq. (7) can be rewritten as

0D−α
t u(x, tk) =

(∆t)α

Γ(1+α)

k−1

∑
j=0

bk−1− ju(x, t j+1)+ R̃k, (9)

or

0D−α
t u(x, tk) = (∆t)α

Γ(1+α)

k−1
∑
j=0

b ju(x, tk− j)+ R̃k. (10)

Because

0D−α
t u(x, tk+1)

= 1
Γ(α)

∫ tk+1
0 (tk+1−η)α−1u(x,η)dη

= 1
Γ(α)

∫
∆t
0 (tk+1−η)α−1u(x,η)dη + 1

Γ(α)
∫ tk+1

t1 (tk+1−η)α−1u(x,η)dη

= 1
Γ(α)

∫
∆t
0 (tk+1−η)α−1u(x,η)dη + 1

Γ(α)
∫ tk

0 (tk−η)α−1u(x,η +∆t)dη ,

thus,
0D−α

t u(x, tk+1)−0 D−α
t u(x, tk)

= 1
Γ(α)

∫
∆t
0 (tk+1−η)α−1u(x,η)dη

+ 1
Γ(α)

∫ tk
0 (tk−η)α−1 [u(x,η +∆t)−u(x,η)]dη ,

From (10) and (8), we have[Zhuang, Liu, Anh, and Turner (2008)]

1
Γ(α)

∫ tk
0 (tk−η)α−1 [u(x,η +∆t)−u(x,η)]dη

= (∆t)α

Γ(1+α)

k−1
∑
j=0

b j
[
u(x, tk+1− j)−u(x, tk− j)

]
+R(1)

k ,
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where

|R(1)
k | ≤

Ctα
k

Γ(1+α)
∆t max

x∈Ω,t>0

∣∣∣∣∂ [u(x, t +∆t)−u(x, t)]
∂ t

∣∣∣∣≤C1(∆t)2.

Note that[Zhuang, Liu, Anh, and Turner (2008)]

1
Γ(α)

∫
∆t
0 (tk+1−η)α−1u(x,η)dη = 1

Γ(α)
∫

∆t
0 (tk+1−η)α−1u(x,∆t)dη +R(2)

k

= bk
Γ(1+α)u(x, t1)+R(2)

k ,

where |R(2)
k | ≤C2bk(∆t)1+α .

We also have∫ tk+1

tk
f (u,x,η)dη =

∆t
2

[ f (u(x, tk+1),x, tk+1)+ f (u(x, tk),x, tk)]+R(3)
k ,

where |R(3)
k | ≤C3(∆t)2.

Lemma 1[Zhuang, Liu, Anh, and Turner (2008)] The coefficients bk(k = 0,1,2 . . . ,K)
satisfy

(1)b0 = 1 > b1 > b2 > .. . > bK > 0,

(2)There is a positive constant C > 0 such that ∆t ≤Cbk(∆t)α .

Thus, from (6) we can obtain

u(x, tk+1) = u(x, tk)+ r

{
bk∆u(x, t1)+

k−1
∑
j=0

b j
[
∆u(x, tk+1− j)−∆u(x, tk− j)

]}
+∆t

2 [ f (u(x, tk+1),x, tk+1)+ f (u(x, tk),x, tk)]+Rk+1

(11)

where r = κ
(∆t)α

Γ(α+1) , and

|Rk+1| ≤Cbk(∆t)1+α . (12)

The equation (11) can be rewritten as

u(x, tk+1)− r∆u(x, tk+1)

= u(x, tk)+ r
k−1
∑
j=0

(b j+1−b j)∆u(x, tk− j)

+∆t
2 [ f (u(x, tk+1),x, tk+1)+ f (u(x, tk),x, tk)]+Rk+1.

(13)
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Let uk = uk(x) be the numerical approximation to u(x, tk), then the equation (1) can
be discretized as the following scheme

uk+1− r∆uk+1 = uk + r
k−1
∑
j=0

(b j+1−b j)∆uk− j

+∆t
2

[
f (uk+1,x, tk+1)+ f (uk,x, tk)

]
, k = 0,1, . . . ,K−1.

(14)

u0 = u0(x) (15)

uk|∂Ω = g(x, tk), k = 0,1, . . . ,K. (16)

2.2 Stability and Convergency

In order to discuss the stability and convergency of (14), let us introduce to the
following inner product

(v,w) =
∫∫
Ω

v(x)w(x)dxdy (17)

and norm in L2

‖v‖2 = [(v,v)]1/2 =

∫∫
Ω

v2(x)dxdy

1/2

(18)

Suppose that ũk = ũk(x), k = 1,2, . . . ,n is the solution of the Eq. (14) with the initial
condition u(x,0) = ũ0 and the boundary condition (16), then the error εk(x) =
uk(x)− ũk(x) satisfies

εk+1− r∆εk+1 = εk + r
k−1
∑
j=0

(b j+1−b j)∆εk− j

+∆t
2

[
f (uk+1,x, tk+1)− f (ũk+1,x, tk+1)

]
+∆t

2

[
f (uk,x, tk)− f (ũk,x, tk)

]
,

(19)

ε
0 = u(x,0)− ũ0(x), (20)

ε
k+1|∂Ω = 0. (21)

Theorem 1 The fractional implicit numerical method defined by (14) is un-conditionally
stable. And we have

‖εk‖2 ≤ eLT‖ε0‖2.
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Proof Multiplying (19) by εk+1 and integrating on Ω, we obtain

(εk+1,εk+1)− r(∆εk+1,εk+1)

= (εk,εk+1)+ r
k−1
∑
j=0

(b j+1−b j)(∆εk− j,εk+1)

+∆t
2

(
f (uk+1,x, tk+1)− f (ũk+1,x, tk+1),εk+1

)
+∆t

2

(
f (uk,x, tk)− f (ũk,x, tk),εk+1

)
,

(22)

i. e.,

‖εk+1‖2
2 + r

(
‖ ∂εk+1

∂x ‖
2
2 +‖ ∂εk+1

∂y ‖
2
2

)
= (εk,εk+1)+ r

k−1
∑
j=0

(b j−b j+1)
[(

∂εk− j

∂x , ∂εk+1

∂x

)
+
(

∂εk− j

∂y , ∂εk+1

∂y

)]
+∆t

2

(
f (uk+1,x, tk+1)− f (ũk+1,x, tk+1),εk+1

)
+∆t

2

(
f (uk,x, tk)− f (ũk,x, tk),εk+1

)
,

(23)

Using Schwarz inequality, from (4) and the inequality[Liu, Zhuang, Anh, Turner,
and Burrage (2007)]

b j ≥ b j+1, j = 0,1, . . . ,K−1,

we have

‖εk+1‖2
2 + r

(
‖ ∂εk+1

∂x ‖
2
2 +‖ ∂εk+1

∂y ‖
2
2

)
≤ 1

2

[
‖εk‖2

2 +‖εk+1‖2
2
]

+ r
2

k−1
∑
j=0

(b j−b j+1)
[
‖ ∂εk− j

∂x ‖
2
2 +‖ ∂εk− j

∂y ‖
2
2 +‖ ∂εk+1

∂x ‖
2
2 +‖ ∂εk+1

∂y ‖
2
2

]
+∆tL

2 ‖ε
k+1‖2

2 + ∆tL
2 ·

1
2

[
‖εk‖2

2 +‖εk+1‖2
2
]
,

(24)

Note that
k−1
∑
j=0

(b j−b j+1) = 1−bk ≤ 1, hence,

(1− 3
2 ∆tL)‖εk+1‖2

2 + r
k
∑
j=0

b j

[
‖ ∂εk+1− j

∂x ‖2
2 +‖ ∂εk+1− j

∂y ‖2
2

]
≤ ‖εk‖2

2 + r
k−1
∑
j=0

b j

[
‖ ∂εk− j

∂x ‖
2
2 +‖ ∂εk− j

∂y ‖
2
2

]
+ 1

2 ∆tL‖εk‖2
2,

(25)

Let Ek = ‖εk‖2
2 + r

k−1
∑
j=0

b j

[
‖ ∂εk− j

∂x ‖
2
2 +‖ ∂εk− j

∂y ‖
2
2

]
, then

(1− 3
2

∆tL)Ek+1 ≤ (1+
1
2

∆tL)Ek
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i. e.,

Ek+1 ≤
1+ 1

2 ∆tL

1− 3
2 ∆tL

Ek ≤

(
1+ 1

2 ∆tL

1− 3
2 ∆tL

)2

Ek−1 ≤ . . .≤

(
1+ 1

2 ∆tL

1− 3
2 ∆tL

)k+1

E0.

Hence, for ∀ 1≤ k ≤ n, we have

‖εk‖2
2 ≤ Ek ≤

(
1+ 1

2 ∆tL

1− 3
2 ∆tL

)K

E0 ≤

(
1+ LT

2K

1− 3LT
2K

)K

E0 ≤ e2LT‖ε0‖2
2.

Theorem 2 Suppose that the exact solution u(x, t) of (1)-(3) satisfies ∂ 2u(x,t)
∂ t2 ∈

C(Ω× [0,T ]),
{

uk(x)
}K

k=0 be the time-discrete solution of (14) with initial condi-
tion u0(x) = u(x,0) and the boundary condition (16), then we have the following
error estimates

‖u(x, tk)−uk(x)‖2 ≤C∆t, (26)

where C is a positive constant.

Proof Let ξ k(x) = u(x, tk)−uk(x), from (11) and (14), we obtain

ξ k+1− r∆ξ k+1 = ξ k + r
k−1
∑
j=0

(b j+1−b j)∆ξ k− j

+∆t
2

[
f (u(x, tk+1),x, tk+1)− f (uk+1,x, tk+1)

]
+∆t

2

[
f (u(x, tk),x, tk)− f (uk,x, tk)

]
+Rk+1,

(27)

ξ
0(x) = 0, (28)

ξ
k(x)|∂Ω = 0. (29)

where Rk+1 ≤Cbk(∆t)1+α .

Multiplying (19) by ξ k+1 and integrating on Ω, we obtain

‖ξ k+1‖2
2 + r

(
‖ ∂ξ k+1

∂x ‖
2
2 +‖ ∂ξ k+1

∂y ‖
2
2

)
= (ξ k,ξ k+1)+ r

k−1
∑
j=0

(b j−b j+1)
[(

∂ξ k− j

∂x , ∂ξ k+1

∂x

)
+
(

∂ξ k− j

∂y , ∂ξ k+1

∂y

)]
+∆t

2

(
f (u(x, tk+1),x, tk+1)− f (uk+1,x, tk+1),ξ k+1

)
+∆t

2

(
f (u(x, tk),x, tk)− f (uk,x, tk),ξ k+1

)
+(Rk+1,ξ

k+1),

(30)

Using Schwarz inequality, from (4) and the inequality[Liu, Zhuang, Anh, Turner,
and Burrage (2007)]

b j ≥ b j+1, j = 0,1, . . . ,K−1,
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we have

‖ξ k+1‖2
2 + r

(
‖ ∂ξ k+1

∂x ‖
2
2 +‖ ∂ξ k+1

∂y ‖
2
2

)
≤ 1

2

[
‖ξ k‖2

2 +‖ξ k+1‖2
2
]

+ r
2

k−1
∑
j=0

(b j−b j+1)
[
‖ ∂ξ k− j

∂x ‖
2
2 +‖ ∂ξ k− j

∂y ‖
2
2 +‖ ∂ξ k+1

∂x ‖
2
2 +‖ ∂ξ k+1

∂y ‖
2
2

]
+3∆tL

4 ‖ξ
k+1‖2

2 + ∆tL
4 ‖ξ

k‖2
2 + |(Rk+1,ξ

k+1)|,

(31)

Note that
k−1
∑
j=0

(b j−b j+1) = 1−bk ≤ 1, hence,

(1− 3
2 ∆tL)‖ξ k+1‖2

2 + r
k
∑
j=0

b j

[
‖ ∂ξ k+1− j

∂x ‖2
2 +‖ ∂ξ k+1− j

∂y ‖2
2

]
≤ ‖ξ k‖2

2 + r
k−1
∑
j=0

b j

[
‖ ∂ξ k− j

∂x ‖
2
2 +‖ ∂ξ k− j

∂y ‖
2
2

]
−bkr

[
‖ ∂ξ k+1

∂x ‖
2
2 +‖ ∂ξ k+1

∂y ‖
2
2

]
+ |(Rk+1,ξ

k+1)|+ 1
2 ∆tL‖ξ k‖2

2,

(32)

Note that ξ k(x)|∂Ω = 0, using ξ (x,y, t) =
∫ x

a
∂ξ

∂x dx =
∫ y

a
∂ξ

∂y dy, we know that there
is a positive constant A, such that

‖ξ k+1‖2
2 ≤ A

[
‖∂ξ k+1

∂x
‖2

2 +‖∂ξ k+1

∂y
‖2

2

]
.

Thus,

(1− 3
2 ∆tL)‖ξ k+1‖2

2 + r
k
∑
j=0

b j

[
‖ ∂ξ k+1− j

∂x ‖2
2 +‖ ∂ξ k+1− j

∂y ‖2
2

]
≤ (1+ 1

2 ∆tL)‖ξ k‖2
2 + r

k−1
∑
j=0

b j

[
‖ ∂ξ k− j

∂x ‖
2
2 +‖ ∂ξ k− j

∂y ‖
2
2

]
− bkr

A ‖ξ
k+1‖2

2

+|(Rk+1,ξ
k+1)|,

(33)

Using |(v,w)| ≤ a‖v‖2
2 + 1

4a‖w‖
2
2 and

|(Rk+1,ξ
k+1)| ≤ bkr

A
‖ξ k+1‖2

2 +
A

4bkr
‖Rk+1‖2

2 ≤
bkr
A
‖ξ k+1‖2

2 +Cbk(∆t)2+α .

Let ρk = ‖ξ k‖2
2 + r

k−1
∑
j=0

b j

[
‖ ∂ξ k− j

∂x ‖
2
2 +‖ ∂ξ k− j

∂y ‖
2
2

]
, then

ρk+1 ≤
1+ 1

2 ∆tL

1− 3
2 ∆tL

[
ρk +Cbk(∆t)2+α

]
.
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i. e., for ∀ 1≤ k ≤ K, we have

‖ξ k‖2
2 ≤ ρk ≤

(
1+ LT

2K

1− 3LT
2K

)K [
ρ0 +C

K−1

∑
j=0

bk(∆t)2+α

]
.

Note that
K−1
∑
j=0

bk(∆t)α = (K∆t)α = T α and ρ0 = 0, hence,

‖ξ k‖2
2 ≤CT αe2LT (∆t)2,

i.e.,
‖ξ k‖2 ≤

√
CT αeLT

∆t.

3 Meshless RBF shape functions

In this section, we present a collocation scheme using RBFs [Liu and Gu (2005);
Song and Chen (2009)]to Eq. (14)-(16).

The approximation of a function u(x), using RBF, may be written as a linear com-
bination of n radial basis functions and m polynomial basis functions

uh(x) =
n

∑
i=1

aiR(‖r− ri‖,ci)+
m

∑
j=1

an+ j p j(x) (34)

where R(‖r− ri‖,ci) is the radial basis functions (RBF), n is the number of the
nodes in the support domain of x, p j(x) is monomials, m is the number of poly-
nomial basis functions, coefficient ai are interpolation coefficients. In the RBF
R(‖r− ri‖,ci), the variable is only the distance ‖r− ri‖, between the interpolation
point x and a node xi.

There are a number of RBFs that can be used, such as

Modified Multi-quadrics(MQ) function

R(‖r− ri‖,ci) =
(
‖r− ri‖2 + c2

i
)q

,

Gaussian basis function

R(‖r− ri‖,ci) = e−c2
i (‖r−ri‖2/r2

c ),

and Thin plate spline function

R(‖r− ri‖,ci) = ‖r− ri‖2M log(‖r− ri‖).
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The MQ RBF replaces the classical finite difference and finite element spatial dis-
cretization schemes by a exponentially convergent, grid-free scattered data approxi-
mation scheme. Finite difference and finite element methods use low-order polyno-
mial basis functions. MQ in contrast is very high order[Moridis and Kansa (1994)].
The advantages/disadvantages associated with finite difference, finite element, and
MQ methods have been widely discussed. In this paper, we apply the MQ scheme
to solve the two-dimensional anomalous subdiffusion equation with nolinear source
term.

The second term of Eq. (34) consists of polynomials. To ensure invertible interpo-
lation matrix of RBF, the polynomial is often needed to augment RBF to guarantee
the non-singularity of the Matrix. In addition, the linear polynomial added into the
RBF can also ensure linear consistence and improve the interpolation accuracy. In
this study, we take linear polynomial, i. e., m = 3.

The cofficients ai in equation (34) can be determined by enforcing that the function
interpolations pass through all n nodes within the support domain. To square the
system of equations, an extra m equations are required. This is ensured by the m
conditions for (34), viz,

ni

∑
j=1

a(i)
j p(i)

l (x j) = 0, l = 1, . . . ,m (35)

In this paper, the interpolations of a function at the kth point can have the form of

û(xk) =
n

∑
i=1

aiR(‖rk− ri‖,ci)+an+1xk +an+2yk +an+3, k = 1,2, . . . ,n. (36)

The function interpolation can be expressed in a matrix form as follows:

ûe = Ga, (37)

G =



R(‖r1− r1‖,ci) · · · R(‖r1− rn‖,ci) x1 y1 1
...

. . .
...

...
...

...
R(‖rn− r1‖,ci) · · · R(‖rn− rn‖,ci) xn yn 1

x1 · · · xn 0 0 0
y1 · · · yn 0 0 0
1 · · · 1 0 0 0


(38)

ûe = [û(x1), . . . , û(xn),0,0,0]T, (39)

a = [a1, . . . ,an,an+1,an+2,an+3]T, (40)
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Thus, the known coefficients vector is found to be

a = G−1ûe. (41)

The form of the approximation function can be obtained as follows:

û(x) = ϕa = ϕG−1ûe = ψûe (42)

ϕ = [R(‖r− r1‖,c1),R(‖r− r2‖,c2), . . . ,R(‖r− rn‖,cn),x,y,1]1×n (43)

where the matrix of shape functions can be expressed as follows

ψ = ϕG−1 = [ψ1,ψ2, . . . ,ψn,ψn+1,Ψn+2,Ψn+3]1×n+3 (44)

in which ψi(i = 1,2, . . . ,n) are shape functions for points in the support domain,
which satisfy

ψi(x j) =
{

1, j = i
0, j 6= i.

(45)

Thus, the function u(x) can be expressed as follows

u(x) =
n

∑
k=1

ψkûe
k. (46)

4 Meshless Scheme

In this section, we give the meshless scheme of the problem (14)-(16).

Assume that there are Nd internal (domain) points x1, x2, . . . ,xNd and Nb boundary
points xNb+1, xNb+2, . . . ,xNd+Nb . For i = 1,2, . . . ,Nd , we suppose that xi1 , xi2 , . . . ,xini
are the nodes in the support domain Si of xi.

From (14), the following Nd equations are satisfied at internal domain nodes

ûk+1
i − r∆ûk+1

i = ûk
i + r

k−1
∑
j=0

(b j+1−b j)∆ûk− j
i

+0.5∆t
[

f (ûk+1
i ,xi, tk+1)+ f (ûk

i ,xi, tk)
]
, i = 1,2, . . . ,Nd .

(47)

The following Nb equations are satisfied on ∂Ω

ûk+1
i = g(xi, tk+1), i = Nd +1,Nd +2, . . . ,Nd +Nb. (48)
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Let Di = {i1, i2, . . . , ini}. Using the meshless shape functions, for x ∈ Si, ûk+1
i can

be written as

ûk+1(x) = ∑
j∈Di

ψ
(i)
j (x)ûk+1,e

j , (49)

and the derivatives can be written as

∂ ûk+1(x)
∂x = ∑

j∈Di

∂Ψ
(i)
j

∂x ûk+1,e
j , ∂ 2ûk+1(x)

∂x2 = ∑
j∈Di

∂ 2Ψ
(i)
j

∂x2 ûk+1,e
j ,

∂ ûk+1(x)
∂y = ∑

j∈Di

∂Ψ
(i)
j

∂y ûk+1,e
j , ∂ 2ûk+1(x)

∂y2 = ∑
j∈Di

∂ 2Ψ
(i)
j

∂y2 ûk+1,e
j .

(50)

Substituting into (14), then for i = 1,2, . . . ,Nd ,

∑
j∈Di

[
Ψ

(i)
j (xi)− r∆Ψ

(i)
j (xi)

]
ûk+1,e

j

= ∑
j∈Di

ψ
(i)
j (xi)û

k,e
j + r

k−1
∑

l=0
(bl+1−bl) ∑

j∈Di

∆ψ
(i)
j (xi)û

k−l,e
j

+0.5∆t
[

f ( ∑
j∈Di

Ψ
(i)
j (xi)û

k+1,e
j ,xi, tk+1)+ f ( ∑

j∈Di

Ψ
(i)
j (xi)û

k,e
j ,xi, tk)

]
.

(51)

For i = Nd +1,Nd +2, . . . ,Nd +Nb,

∑
j∈Di

Ψ
(i)
j (xi)û

k+1,e
i = g(xi, tk+1), (52)

or

ûk+1,e
i = g(xi, tk+1). (53)

Thus, ûk+1
i and its derivatives can be obtain by substituting x into xi in equations

(49) and (50)

ûk+1
i = ûk+1(xi),

∂ ûk+1
i

∂x = ∂ ûk+1(xi)
∂x ,

∂ ûk+1
i

∂y = ∂ ûk+1(xi)
∂y ,

∂ 2ûk+1
i

∂x2 = ∂ 2ûk+1(xi)
∂x2 ,

∂ 2ûk+1
i

∂y2 = ∂ 2ûk+1(xi)
∂y2 .

(54)

5 Test Examples

In this section, we present some numerical examples to demonstrate the effective-
ness of the newly algorithm. In all presented examples, we have used the multi-
quadric(MQ) RBF function as

Ri(r) = (r2
i +(αcdc)2)q
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where αc = 2.0, q = 1.03 and dc is a characteristic length that is related to the nodal
spacing in the local domain of the point of interest.

To investigate the accuracy and efficiency, we introduce the following error nota-
tions

εmax = max
i
|uexacti −unumi |, ε0 =

√√√√√ Nd
∑

i=1
(uexacti −unumi )2

Nd
∑

i=1
(uexacti )2

εx =

√√√√√ Nd
∑

i=1
(uexacti,x −unumi,x )2

Nd
∑

i=1
(uexacti,x )2

, εy =

√√√√√ Nd
∑

i=1
(uexacti,y −unumi,y )2

Nd
∑

i=1
(uexacti,y )2

(55)

and the error function ε(x,y, t) = |uexact(x,y, t)−unum(x,y, t)|.
In which ε0,εx and εy are the error norms for the solution and its derivatives with
respect to x and y, respectively, uexacti and unumi are the exact and the numerical
solutions at node i, respectively, ui,x and ui,y are derivatives of the solution with
respect to x and y, respectively, and Nd is the internal (domain) points.

5.1 Anomalous subdiffusion equation with linear source term

As a test equation, we consider the following anomalous subdiffusion equation with
linear source term

∂u
∂ t

=0 D1−α
t ∆u(x, t)+ f (x, t), x ∈Ω⊂ R2, t > 0 (56)

together with the general boundary condition

u(x, t) = t2+αex+y, x ∈ ∂Ω, t > 0 (57)

and initial condition

u(x,0) = 0 (58)

where f (x, t) =
[
(2+α)t1+α − 2Γ(3+α)

Γ(2+2α) t
1+2α

]
ex+y.

The exact solution of (56)-(58) is u(x,y, t) = t2+αex+y.

Firstly, the problem domain is considered with Ω = [0,1]× [0,1]. We choose
n = 21× 21 collocation points all together. The nodes distribution is shown in
Fig. 1. The proposed method is used to simulate this problem, Fig. 2 plots the
computational errors for different time steps. It has been found, the error reduces
with the descrease of time steps.
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Figure 1: Regular nodal distribution for rectangular domain
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Figure 2: Errors as a function of the time step ∆t(Regular nodal distribution shown
in Fig. 1 is used)

Secondly, the irregularly distributed nodes are also used, as shown in Fig. 3. The
computational errors for different time steps are plotted in Fig. 4. Similar as the
results presented in Fig. 2, the computational errors in Fig. 4 also decrease with
time steps. In other words, a small time step leads to a more accurate result. The
influences of different α are also studied. Figs. 5, 6 and 7 plot the computational
errors for α = 0.5, 0.7 and 0.9, respectively. The maximum errors for these three
different α are in the similar order of 10−3. The above figures have proven that the
newly proposed meshless approach has very good accuracy and convergence even
using irregular nodal distributions. It should mention here that the irregular grid
will lead to a big difficulty for the conventional FDM.
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A circular problem domain with Ω =
{
(x,y)

∣∣x2 + y2 ≤ 1
}

is also considered, and
the irregular nodal distribution is employed as shown in Fig. 8. The computa-
tional errors for different time steps are plotted in Fig. 9. The presented meshless
approach has led to a good convergence regarding to time steps. However, the
conventional FDM is hard to handle this circular problem domain.

For comparison, the equation (58) with rectangular problem domain has been also
simulated by the conventional FDM based on the regular grid. It has been found the
proposed meshless approach leads to more accurate results than FDM when their
computational errors are in the same order.

In summary, the above investigations have proven that the newly proposed meshless
method is accurate, convergent and effective for the ASDE discussed. It should
be mentioned that the present approach is robust for irregular nodal distributions
and different problem domains including non-rectangular problem domains, which
conventional FDM is difficult to handle.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3: Irregular nodal distribution for the rectangular domain

5.2 Anomalous subdiffusion equation with nonlinear source term

We consider the following anomalous subdiffusion equation with nonlinear source
term

∂u
∂ t

=0 D1−α
t ∆u(x, t)−u2 + f (x, t), x ∈Ω⊂ R2, t > 0 (59)

together with the general boundry condition

u(x, t) = t2+αex+y, x ∈ ∂Ω, t > 0 (60)
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Figure 4: Errors as a function of the time step ∆t(Irregular nodal distribution shown
in Fig. 3 is used)
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Figure 5: The error distribution for α = 0.5 at t = 1.0
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Figure 6: The error distribution for α = 0.7 at t = 1.0



An Advanced Implicit Meshless Approach for the Non-linear ASDE 323

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

x 10
−3

x
y

T
he

 n
um

er
ic

al
 e

rr
or

 ε
(x

,y
,t=

1.
0)

Figure 7: The error distribution for α = 0.9 at t = 1.0
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Figure 8: Irregular nodal distribution for the circular domain

and initial condition

u(x,0) = 0 (61)

where f (x, t) =
[
(2+α)t1+α − 2Γ(3+α)

Γ(2+2α) t
1+2α + t2+4αex+y

]
ex+y.

The exact solution of (59)-(61) is u(x,y, t) = t2+αex+y.

To simulate this nonlinear ASDE, similar to the Example 5.1, the rectangular prob-
lem domain, as shown in Fig. 1, and both regular and irregular nodal distributions,
as shown in Fig. 1 and Fig. 3, are considered. The convergence processes regarding
to time steps are plotted in Fig. 10 and Fig. 11, respectively. It can be found that
both regular and irregular nodal distributions lead to good convergence for nonlin-
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Figure 9: Errors as a function of the time step ∆t(Irregular nodal distribution shown
in Fig. 8 is used)

ear ASDE. The circular problem domain with irregular nodal distribution, as shown
in Fig. 8, is also considered. The computational errors for different time steps for
this circular problem domain governed by the nonlinear ASDE has been obtained
as plotted in Fig. 12. The distributions of computational errors for different cases
of α are presented in Figs. 13, 14 and 15. Very good accuracy and convergence
have been obtained.
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Figure 10: Computational errors for the nonlinear ASDE(Regular nodal distribu-
tion shown in Fig. 1 is used)

5.3 Anomalous subdiffusion equation with a Fisher nonlinear source term

Fisher[Fisher (1937)] proposed a reaction diffusion equation as a model to describe
the process of spatial spreading when mutant individuals with higher adaptability
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Figure 11: Errors as a function of the time step ∆t(Irregular distribution shown in
fig. 3 is used)
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Figure 12: Errors as a function of the time step ∆t(Irregular nodal distribution
shown in fig. 8 is used)

appear in populations, namely

ut = ∆u+(1−u)u (62)

This equation is well known in the field of population genetics. On the other hand,
in the field of theoretical ecology, Skellam [Skellam (1951)] used the following
diffusion equation to explain spatial patterns of biological individuals,

ut = κ∆u+ µ(1−u/B)u (63)

where µ > 0 is the intrinsic growth rate, B > 0 is the carrying capacity and u is the
density of a biological population.
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Figure 13: The error distribution for α = 0.5 at t = 1.0
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Figure 14: The error distribution for α = 0.7 at t = 1.0
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Figure 15: The error distribution for α = 0.9 at t = 1.0
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Figure 16: The numerical solution For Eq.(46)-(48) where α = 0.5

Let’s consider the following anomalous subdiffusion equation with a Fisher nonlin-
ear source termn[Lynch, Carreras, del Castillo-Negrete, Ferreira-Mejias, and Hicks
(2003)]

∂u
∂ t

= κα ·D1−α

0 ∆u+ µu(1−u/B), (64)

u(x, t) = 0, x ∈ ∂Ω, t > 0 (65)

u(x,0) = 10max
{

0.8,e−100(x2+y2)
}

,(x,y) ∈Ω. (66)

where Ω = [0,1]× [0,1]. In this example, we take α = 0.5, κα = 1.0, µ =
0.5, B = 1.0.

It should be mentioned here that there is no exact solution for this problem. Instead,
as a reference solution, we simulated this problem by FDM using very fine regular
grids.

The rectangular problem domain discretized by regular distributed nodes (as shown
in Fig. 1) is considered. Taking ∆t = 10−3, Fig. 16-18 show distributions of u
numerically obtained by the newly proposed meshless approach for different α

when t = 0.2, 0.5, 1.0, respectively. From these figures, we can find that the wave
travels more slowly as α decreases. This shows a same tendency as its natural
properties.

The conventional FDM based on the regular grid is also used to simulate this prob-
lem. It has been found that, even using the irregular nodal distribution, the present
approach leads to more accurate results than FDM (using the regular grids).

6 Conclusion

This paper has proposed an implicit meshless approach based on the radial basis
functions for numerical simulation of the non-linear anomalous subdiffusion equa-
tion , which is a type of fractional partial differential equation. The discrete system
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Figure 17: The numerical solution For Eq.(46)-(48) where α = 0.7
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Figure 18: The numerical solution For Eq.(46)-(48) where α = 0.9

of equations is obtained by using the meshless shape functions and the strong-
forms. The stability and convergence of this meshless approach are then discussed
and theoretically proven. Several numerical examples with different problem do-
mains are used to validate and investigate accuracy and efficiency of the newly
developed meshless formulation. The results obtained by the meshless formula-
tions are also compared with those obtained by FDM in terms of their accuracy and
efficiency.

The following conclusions can be drawn through the studies in this paper.

• The present implicit meshless formulation for time fractional differential
equations is un-conditionally stable.

• The accuracy of this present numerical approach is with the order of ∆t.

• If the same regular nodal distributions are used, the present meshless ap-
proach leads to more accurate results that FDM.

• The present meshless approach has good accuracy and convergence for ir-
regular nodal distributions and complex problem domains.

In summary, the newly developed meshless approach is accurate and convergent.
Most importantly, the present approach is robust for arbitrarily distributed nodes
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and complex problem domains, for which the conventional FDM is difficult to han-
dle. Hence, the present meshless formulation is very effective for the modelling and
simulation of fractional differential equations, and it has good potential in develop-
ment of a robust simulation tool for problems in engineering and science which are
governed by the various types of fractional differential equations.
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