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Solving Elastic Problems with Local Boundary Integral
Equations (LBIE) and Radial Basis Functions (RBF) Cells

E. J. Sellountos!, A. Sequeira' and D. Polyzos>

Abstract: A new Local Boundary Integral Equation (LBIE) method is proposed
for the solution of plane elastostatic problems. Non-uniformly distributed points
taken from a Finite Element Method (FEM) mesh cover the analyzed domain and
form background cells with more than four points each. The FEM mesh deter-
mines the position of the points without imposing any connectivity requirement.
The key-point of the proposed methodology is that the support domain of each
point is divided into parts according to the background cells. An efficient Radial
Basis Functions (RBF) interpolation scheme is exploited for the representation of
displacements in each cell. Tractions in the interior domain are avoided with the
aid of the companion solution. At the intersections between the local domains and
the global boundary, tractions are treated as independent variables with the use of
conventional boundary elements. Criteria about the size of the support domains
are provided. The integration in support domains is performed easily, fast and
with high accuracy. Due to the geometric information provided by the cells the
extension of the method to three dimensions is straightforward. Three representa-
tive numerical examples demonstrate the achieved accuracy of the proposed LBIE
methodology.

Keywords: Local Boundary Integral Equation (LBIE), meshless methods, elas-
tostatic analysis

1 Introduction

After the pioneering work of [Zhu, Zhang, and Atluri (1998)], the Local Boundary
Integral Equation (LBIE) method has been established as an excellent alternative
to the Boundary Element Method (BEM), since it circumvents problems associ-
ated with mesh, fully populated matrices and lack of fundamental solutions. As
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it appears in [Zhu, Zhang, and Atluri (1998)], the LBIE method is characterized
as “truly meshless” since no background cells are required for the numerical eval-
uation of the involved integrals. Properly distributed nodal points, without any
connectivity requirement, covering the domain of interest as well as the surround-
ing global boundary are employed instead of any boundary or finite element dis-
cretization. All nodal points belong to regular sub-domains (e.g. circles for two-
dimensional problems) centered at the corresponding collocation points. The fields
at the local and global boundaries as well as in the interior of the sub-domains are
usually approximated by the Moving Least Squares (MLS) approximation scheme.
The local nature of the sub-domains leads to a sparse linear system of equations
and after proper renumbering to a banded system.

In the framework of linear elasticity, the first LBIE methodology is due to [Atluri,
Sladek, Sladek, and Zhu (2000)]. Their work can be considered as a direct ex-
tension to elastostatics of the work of [Zhu, Zhang, and Atluri (1998)], on poten-
tial problems. After the aforementioned work, several papers dealing with LBIE
solutions of linear elastic problems appeared in the literature, such as those of
[Sladek, Sladek, Atluri, and Keer (2000)], [Sladek, Sladek, and Keer (2003)],
[Sladek, Sladek, and Atluri (2002)], [Atluri, Han, and Shen (2003)], [Han and
Atluri (2003)], [Sellountos and Polyzos (2003)], [Sellountos and Polyzos (2005b)],
[Sellountos and Polyzos (2005a)], [Sellountos, Vavourakis, and Polyzos (2005)],
[Bodin, Ma, Xin, and Krishnaswami (2006)], [Vavourakis, Sellountos, and Poly-
zos (2006)] [Zhu, Zhang, and Wang (2007)], [Vavourakis and Polyzos (2007)],
[Vavourakis and Polyzos (2008)], [ Vavourakis (2008)], [ Vavourakis (2009)] [ Vavourakis,
Protopappas, Fotiadis, and Polyzos (2009)], [Sladek, Sladek, Solek, Tan, and Zhang
(2009)] and [Sellountos, Sequeira, and Polyzos (2009)]. A comprehensive presen-
tation of meshless LBIE methods can be found in the books of [Atluri and Shen
(2002)] and [Atluri (2004)].

After the work of [Atluri, Sladek, Sladek, and Zhu (2000)], [Sellountos and Polyzos
(2003)] used the LBIE method for solving frequency domain elastic problems. The
new features of the latter work were 1) the treatment of boundary displacements and
tractions as independent variables thereby avoiding the MLS derivatives, and ii) the
use of a relatively uniform distribution of points so that in the global boundary the
MLS interpolation to possess the § - property [Gosz and Liu (1996)] which permits
the imposition of the essential boundary conditions directly to the fictitious values.
However, although accurate, the requirement for relatively uniform distribution of
points confines the use of the method to structures with regular shapes.

In order to avoid the requirement of using uniformly distributed points, [ Vavourakis
and Polyzos (2007)] and [Vavourakis and Polyzos (2008)] proposed an LBIE/MLS
method where both singular and hypersingular LBIEs are used for the represen-
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tation of displacement and traction fields. The problem in this approach is the
treatment of displacements and stresses as independent variables everywhere in the
analyzed domain, a fact that increases drastically the degrees of freedom, rendering
the method prohibitive for large structures.

Very recently, [Sellountos, Sequeira, and Polyzos (2009)] combined the LBIE method
of [Sellountos and Polyzos (2003)] with the Radial Basis Functions (RBF) scheme
[Sellountos and Sequeira (2008a)], [Sellountos and Sequeira (2008b)] instead of
MLS approximations, and created a new and very accurate LBIE method. Al-
though that paper solves almost all the problems appearing in the aforementioned
works of [Sellountos and Polyzos (2003)], [Vavourakis and Polyzos (2007)] and
[Vavourakis and Polyzos (2007)], it uses the same complicated integration tech-
nique of [Sellountos and Polyzos (2003)], which actually prevents the extension of
the method to three dimensions.

The present paper demonstrates the use of the LBIE/RBF method for the solution
of plane elastostatic problems. Its philosophy is different from that adopted in the
previous work of [Sellountos, Sequeira, and Polyzos (2009)] and the extension of
the present work to three dimensions seems to be straightforward. More precisely,
non-uniformly distributed points taken from a Finite Element Method (FEM) mesh,
cover the analyzed domain and form background cells with more than four points
each. The FEM mesh determines the position of the points and it does not impose
any connectivity requirement. The support domain of each point is divided into
parts according to the background cells, and the RBF interpolation scheme of [Sel-
lountos and Sequeira (2008a)], [Sellountos and Sequeira (2008b)] is exploited for
the meshless representation of displacements in each cell. Tractions in the interior
domain are avoided with the aid of the companion solution. At the intersections
between the local domains and the global boundary, tractions are treated as inde-
pendent variables with conventional boundary elements. The paper is organized as
follows: in the next section the adopted LBIE formulation is illustrated. In Section
3 the numerical implementation of the method is addressed and criteria for the size
of the support domains are provided. Finally, in Section 4 three benchmark prob-
lems are provided in order to demonstrate the accuracy of the proposed method.

2 LBIE formulation for elastostatics

Consider a two-dimensional linear and isotropic elastic domain V surrounded by a
surface S. According to the classical theory of elasticity, the displacement vector
u defined at any point x of the body satisfies the Navier-Cauchy partial differential
equation

uVu(x)+ (A 4+p)VV-u(x)+b(x) =0 (1)
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Figure 1: Local domains and boundaries used for the LBIE representation of disc-
pacements at point x

where A and u represent the Lamé constants, b indicates body forces and V is the
gradient operator.

The boundary conditions are assumed to be

u(x)=1u(x) forxes,
t(x) =t(x) forxe S, 2)

where t denotes the traction vector, @, t represent prescribed vectors and S, US, =S.
Any point x of the analyzed domain is considered to be the center of a local circular
domain Q (with boundary d€;) called support domain of x as illustrated in Fig. 1.

Considering zero body forces, employing the static fundamental solution of Eq. 1
and exploiting Betti’s reciprocal identity, the following LBIE for the support do-
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main of any interior or boundary point x is obtained [Sellountos and Polyzos (2003)]

u(x) +/ t* (x,y) u(y) ds, = / u* (x,y)-t(y) ds, 3)
9Q, 2Q;
when the support domain is interior to V and
ou (x) +/ t* (x,y)-u(y)dS, = / u* (x,y) - t(y)dSy 4)
9Q,UT, 9QUT

when the support domain intersects the global boundary at Iy = dQ,NS. The
coefficient « is equal to 1 for internal points and 1/2 for points lying on the global
boundary S, u*, t* represent the fundamental displacement and traction tensors,
respectively, given by [Polyzos, Tsinopoulos, and Beskos (1998)]

1
f=— [(4v—3)Inrl+f@F 5
u ST (1= ) [(4v—=3)InrI4+ TR T (%)
1 1-2v 1 1-2v 1
. oo s
27 [2(1—v)r(r®“ Aot - a—yy; P
SR SN
l_vr(n-r)l‘@)l‘] (6)

where r = |y — x|, ® indicates dyadic product defined as a®b = g;b;X; ® X;, with
i,j = 1,2 and X;,%X; being unit vectors of a Cartesian co- ordinate system and I is
the unit tensor.

In order to eliminate traction vectors appearing in integrals defined on dQ, the use
of the companion solution u® is made [Atluri, Sladek, Sladek, and Zhu (2000)].
Thus the LBIEs Eq. 3 and Eq. 4 obtain the form, respectively

w9+ [ L0y~ ()] u(y) ds, =0 ™
and
aul@+ [ I ) -t )] uly) dS, -

[ ey —w () t(y) 4, ®)
where
ul = Sw(ll_v):gf@ﬂ = (11 m— [2(53__4:‘/) (1 - :;) -3 —4v)1nro] I

®
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1
o S ed Ao (R 0
m(1=v) (v T ea-hAef=(A-DI (10

with ry being the radius of the support domain .

Replacing u” (x,y) —u(x,y), t'(x,y) — t°(x,y) by U*(x,y), T"(x,y), respec-
tively, Eqs Eq. 7 and Eq. 8 are written as

u(X)—i—/ag2 T (x,y)-u(y)dS, =0 (11)
and
o (x) + /a Ty uly)ds, = /r U (%) () dS, (12)

The integral Eq. 11 and Eq. 12 represent the LBIE of any interior and boundary
point of the analyzed domain and in conjunction with cell RBFs explained below,
they will be used in the proposed LBIE numerical scheme.

3 Interpolation and numerical implementation

In this section the numerical implementation of the proposed LBIE methodology is
illustrated. The formulation is explained for both cases where the support domain
intersects or not the global boundary.

Consider the elastic domain V' of Fig. 1 covered by arbitrarily distributed points
created by a FEM mesh. For the sake of simplicity, four point FEM elements are
used. Each element corresponds to an RBF cell [Sellountos and Sequeira (2008b)]
with four points. An internal point x* with support domain 8Q£k) (Fig. 2) is con-
sidered. The nearby points x!,x%,...,x3, form four cells that separate the local
boundary 20" into the arcs 8Q£ﬁ)>,8£2£g, ...,8&2%. Then, Eq. 11 valid for the
support domain of point x* takes the form

“(X(k))+/,,g<k> T (x,y) -u(y) dsy+...+/m(k) T*(x,y) - u(y)dS, =0  (13)
54

(1)

At any cell, the displacement field is approximated via a local RBF interpolation
scheme illustrated in [Sellountos and Sequeira (2008b)], i.e.

u(y) =R <y7x(j)) u (X(j)> (14)
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Figure 2: Internal point and its support domain being internal to the domain of
interest divided by the cells

By inserting Eq. 14 into Eq. 13, the following discretized equation is obtained

(1
2
(

=

=
—
W
=
~—
_|_
S—
e}
|
*
2
=
=
QU
\<C/J
= =

=
K

(k)
(5)
(
(

s =

2y | =0 (15)

8)

=

=

As it has been mentioned, more than four points per cell can be used for the RBF
representation of the displacement field at any cell. This depends on the degree
of the RBF interpolation scheme imposed in the analyzed fields, and it is accom-

plished with the aid of higher order FEM geometric elements. Each point has

its own support domain with a radius belonging in to the range (r(kil,r,(,gx), with

r,(,ﬁl being the minimum distance between x¥) and the opposite sides of the cell,

and r,(ﬁx is the maximum distance between x*) and the cell’s corner nodes. Both
rr(,lfil,r%x are illustrated in Fig. 3. In case where x*) is a boundary point and its

support domain intersects the global boundary S, the geometric FEM cells separate
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Figure 3: Definition of support domain range (shadow area) (a) for an internal cell
point and (b) for a corner cell point



Solving Elastic Problems with Local Boundary Integral Equations 117

the circular boundary QQ‘Ek) and the global boundary ng) into parts as shown in

Fig. 4. The displacement field at any cell is interpolated with the aid of the RBF
interpolation scheme and the tractions on the boundary are treated as independent
variables with the usage of linear or quadratic boundary elements.

Thus the LBIE Eq. 12 takes the form

1)

lu (X(k)> + T* (x,y)- R ds, - u? +
2 ') vaal) Y Y u®
S s ( )

T* (x,y) - R dS, -
/rifg) uagif;

u(®
. u®
/a o T (x,y) - RPdS,- | "o |+t

(
u
o a1
u®
) u®
/r“i sagy T ) | =
RO RN 4O
* t(3
/ U* (x,y)-NWds, - t(2 ] + U* (x,y)-N@das, - [ @

(16)

where N is the matrix containing the interpolation functions of the boundary ele-
ments defined by the nodes x(!),x?) x®) x®) x*) Observing Eq. 16, it is easy to
see that the boundary conditions of the problem are directly imposed via the values
of u and t at the nodes 1,2,k,3 and 4. Deriving the LBIEs for all points according
to Eq. 14 and Eq. 16, imposing the boundary conditions Eq. 2 and rearranging the
system coefficients, the system of algebraic equations

A-X=b (17)

is obtained, where the vector X is composed of all unknown displacements and
boundary tractions. The matrix A has sparse or band form. Finally, by solving the
above system of equations with an LU decomposition solver, the displacements and

]
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Figure 4: Boundary point and its support domain intersected by the global boundary
and divided by the cells

boundary tractions are provided. The stresses can be evaluated either by differenti-
ating displacements as in FEM, or by using the hypersingular LBIE.

4 Numerical examples

The achieved accuracy of the proposed LBIE method is demonstrated in the present
section by solving three representative elastic problems.

4.1 Cantilever beam

The first problem deals with a clamped cantilever beam subjected to a shear load at
its right free-end (Fig. 5) under conditions of plane strain. The analytical solution
of the problem can be found in the book of [Timoshenko and Goodier (1970)].
Thickness and length are H=1m and L=10m, respectively, Young modulus E =
10°Pa, Poisson ratio v = 0.1 and shear load P = 1Pa. Two meshes with nine-
noded elements have been used for the definition of the cells, as it is depicted in
Fig. 6. Fig. 7 depicts axial displacements across the axis of symmetry of the beam,
while Fig. 8 portrays axial tractions on the clambed side. Both figures show very
good agreement with analytical solutions. Finally, in Fig. 9 and Fig. 10 the axial
stresses on two cross-sections of the beam obtained by differentiating the RBF
representation of displacements and exploiting Hooke’s law are presented. The
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Figure 5: Cantilever beam subjected to a flexular load P.
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Figure 6: Meshes used for the cantilever beam problem, (a) a coarse mesh with 10
cells and 67 nodal points and (b) a fine mesh with 40 cells and 209 nodal points
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Figure 7: Vertical displacements along the axis of symmetry y = 0.5 m of the

cantilever beam.
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Figure 8: Axial tractions along the line AB of the cantilever beam.
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Figure 9: Axial stresses along the line AB of the cantilever beam.
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Figure 10: Axial stresses along the line CD of the cantilever beam.
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Figure 11: L2 Convergence norm of the displacements of the cantilever beam for
support domains in the area 7y, - Fipax

agreement of the present results with those of the analytical solutions is again very
good.

In order to demonstrate the influence of the support domain’s size to obtained re-
sults, a parametric study for different support domain radii (being between r,,;, and
Fmax) 18 performed and the L2-error norm defined as

(18)

is depicted in Fig. 11. In Eq. 18 N, &, u’ represent the number of nodal points, the
analytical and the achieved numerical solution. As it is apparent from Fig. 11, the
best accuracy is obtained for support domains having value close to r,,,,. However,
as the support domain is getting bigger, the accuracy is getting higher, for domains
with 7 < Fyin OF ¥ > rya, the solution appear to be unstable. This is due to the fact
that for support domains with radius r out of the limits 7y, #;uqx the coupling of
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Figure 12: Cylinder subjected to internal pressure

LBIEs becomes many times "non- uniform" thus affecting negatively the formation
of the final system of algebraic equations.

4.2 Cylinder subjected to internal pressure

The second problem deals with a circular cylinder with inner and outer radius
a = lm and b = 2m, respectively, subjected to a uniform internal pressure P = 1Pa.
The material properties are taken E = 10°Pa for Young modulus and v = 0.1 for
Poisson ratio. Because of the symmetry only a quarter part of the cylinder is an-
alyzed (Fig. 12). As in the previous example, two different distributions of points
have been used (Fig. 13). The analytical radial displacements and stresses of this
problem, expressed in polar coordinates are given in [Timoshenko and Goodier
(1970)]. The radial displacement and the traction field along the line CD of the
cylinder (Fig. 12) are numerically evaluated and compared to analytical solutions
as shown in Fig. 14 and Fig. 15, respectively. As it is evident, the agreement be-
tween numerical and analytical results is very good. Radial and hoop stresses along
the line CD of the cylinder are calculated by differentiating the RBF representation
of displacements and exploiting Hooke’s law. Analytical and numerical results are
presented in Fig. 16 and Fig. 17 and appear to be in very good agreement bewteen
them.
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Figure 13: Meshes used for the solution of the cylinder under internal pressure, (a)
a coarse mesh with 3 cells and 25 nodes and (b) a fine mesh with 12 cells and 69
nodes
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Figure 14: Radial displacements along the line CD of the cylinder.
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Figure 15: Tractions #, along the line CD of the cylinder.

4.3 Kirsch plate

The third problem deals with a 60m x 60m plate with a circular hole of radius
a = lm at its center, subjected to a uniform tensile load p = 1Pa (Fig. 18). The
material properties are assumed to be E = 10°Pa and v = 1. Due to the symmetry,
only the upper right quadrant of the plate is analyzed, while two different meshes
depicted in Fig. 19 are used. All obtained results are compared with the analytical
solutions provided in [Timoshenko and Goodier (1970)]. Fig. 20, Fig. 21, Fig. 22
and Fig. 23 portray displacements and tractions along the sides AB and CD. Finally,
stresses along the side AB and CD are evaluated as in the previous two examples
and they are depicted in Fig. 24, Fig. 25, Fig. 26 and Fig. 27. All the obtained
numerical results show a good agreement with the analytical solutions.
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Figure 16: Radial stresses along the line CD of the cylinder.
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Figure 17: Hoop (b) stresses along the line CD of the cylinder.
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Figure 18: Perforated plate under uniform tension P

5 Conclusions

A local boundary integral equation (LBIE) method for solving two dimensional
elastic problems has been proposed. Points taken from a Finite Element Method
(FEM) mesh cover the analyzed domain and form background cells. The support
domain of each point is divided into parts via the background cells, and the Radial
Basis Functions (RBF) interpolation scheme of [Sellountos and Sequeira (2008b)]
is exploited for the representation of displacements in each cell. Each point has
its own support domain with radius taking values in an interval, defined after para-
metric studies carried out in the context of the present work. In the interior do-
main, tractions are eliminated with the aid of the companion solution. At the global
boundary, tractions are treated as independent variables via line quadratic elements,
while the final system of algebraic equations is sparse or in banded form. The three
numerical examples considered here have shown that the accuracy of the method is
very good even for a coarse distribution of points. The most important feature of the
proposed LBIE/RBF technique is that its extension to three dimensional problems
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Figure 19: Meshes used for the solution of the kirsch plate, (a) a coarse mesh with
16 cells and 87 nodes, and (b) a fine mesh with 42 cells and 201 nodes

seems to be straightforward.
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Figure 22: 1, tractions along the side AB of the perforated plate
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Figure 26: oy stresses along the side CD (x = 0,0 = 90°, for the perforated plate)
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Figure 27: o, stresses along the side CD (x = 0,0 = 90°, for the perforated plate)
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