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A New Approach to Degraded Image Processing Based on
Two-Dimensional Parameter-Induced Stochastic

Resonance

Bohou Xu1, Yibing Yang1, Zhong-Ping Jiang2 and Daniel W. Repperger3

Abstract: A modified two-dimensional parameter-induced stochastic resonance
(2D-PSR) system is proposed. Both theoretical and simulation results indicate that
the 2D-PSR system performs a resonant-like behavior when system parameters are
properly adjusted. When applied to degraded image processing, 2D-PSR technique
is proved to be able to attain higher SNR gain than traditional linear filters. Due to
its strong robustness to environmental changes, adaptability, and complementarities
with other methods, the proposed 2D-PSR technique turns out to be promising in
the field of image processing.
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1 Introduction

Due to some unexpected disturbances, an image taken by image sensor may suffer
from multiple sources of degradations such as noise and low contrast level, which
shelter the original information from being recognized. Traditional linear filters
have been proved unable to obtain signal-to-noise ratio (SNR) gain greater than one
[Reid (1983)]. Thus the image processed by linear filters can only reach a certain
level of resolution. However, nonlinear systems may have SNR gain outstrip one
in particular cases. Therefore, a natural question arises: can we make use of such
profits to design an image processing system that can perform better than traditional
filters?

Stochastic Resonance (SR), which was first put forward by Benzi and al [Benzi,
Sutera, and vulpiani (1981); Benzi, Parisi, and Vulpiani (1982)] in 1981 to address
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the periodicity of ice ages, is a phenomenon that under certain conditions the disor-
dered noise power may contribute to ordered signal information. The mechanism
is described as follow. Consider a heavily damped particle moving in an asym-
metric double-well potential which is driven by weak periodic force (see Fig. 1).
Generally, the weak force itself cannot cause the particle to shift between the two
wells. However, if the system is interfered by noise with certain intensity which is
synchronized with the periodic force, the particle will roll between the two wells
in accordance with the periodic force [Gammaitoni, Hanggi, Jung, and Marchesoni
(1998)]. This synchronization is called the stochastic resonance.

Figure 1: The mechanism of stochastic resonance

Since the concept of SR has been raised and the effect has been experimentally
verified, the idea of utilizing noise to enlarge output SNR is widely applied to var-
ious scientific fields such as physics, chemistry, biomedical sciences and engineer-
ing [Gammaitoni, Hanggi, Jung, and Marchesoni (1998); Harry, Niemi, Priplata,
and Collins (2005); Morse and Evans (1996); Zozor and Amblard (2002); Stocks
(2001); Chapeau-Blondeau and Rousseau (2004)] over the last few decades, es-
pecially in the field of signal processing. The Receiver Operating Characteris-
tic (ROC) curve can be improved when SR occurrs to lower the probability of
false alarm under certain detecting level in signal detection [Zozor and Amblard
(2002); Jung (1995); Inchiosa and Bulsara (1996); Galdi, Pierro, and Pinto (1998);
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Kay (2000); Zozor and Amblard (2003); Bulsara, Seberino, Gammaitoni, Karlsson,
Lundqvist, and Robinson (2002); Zhang, Xu, Jiang, and Wu (2008)]. The Bit Error
Rate (BER) can be reduced when SR system is applied to conventional encoder
[Stocks (2001); Chapeau-Blondeau and Godvier (1996)].

Recently, the concept of parameter-induced stochastic resonance (PSR) has been
proposed to realize the resonant-like phenomenon by optimally tuning system pa-
rameters [Xu, Duan, Bao, and Li (2002); Duan and Xu (2003); Xu, Li, and Zheng
(2003); Xu, Duan, and Chapeau-Blondeau (2004); Xu, Li, and Zheng (2004); Wu,
Jiang, Repperger, and Guo (2006)]. Compared with traditional SR technique, PSR
achieves SR effect without adding any noise. It has been proved that the perfor-
mance of PSR is better than traditional SR technique which is in fact a particular
case in PSR region [Xu, Duan, and Chapeau-Blondeau (2004)].

Image processing is another important field to which SR technique can be applied.
Based on PSR theory, we propose a modified two-dimensional parameter-induced
stochastic resonance (2D-PSR) system with parameters a,b to be adjusted. It will
be proved in the paper that the output SNR gain of 2D-PSR system can surpass
one when parameters a,b are properly set. The examples we studied in this pa-
per also reveal that the performance of images processed by 2D-PSR technique is
much better than by traditional linear filters. Some mainstream nonlinear methods
for image processing are also cited to compare with our proposed technique. In ad-
dition, an adaptive 2D-PSR system and a combination of 2D-PSR technique with
Total Variation method are designed to attain even higher SNR.

The paper is organized as follows. In Section 2, we describe the modified 2D-
PSR system and its output probability density function which is derived by solving
the corresponding Fokker-Planck Equation [Risken (1989)]. In Section 3, we will
introduce how to use the theory discussed in Section 2 to improve SNR gain. Some
experimental results of degraded image processing by our proposed technique and
the comparison with other methods are presented in Section 4. Finally, in Section
5 we will draw the conclusions of 2D-PSR technique and its prospect.

2 Modified Two-dimensional SR system and corresponding Fokker-Planck
Equation

In Ref. [Yang, Jiang, Xu, and Repperger (2009)], we proposed a two-dimensional
SR system

∂ 2w
∂x∂y

=−γ(
∂w
∂x

+
∂w
∂y

)− ∂U
∂w

+Γ(x,y) (1)
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with w = w(x,y) the state variable (also taken as the system output), γ( ∂w
∂x + ∂w

∂y ) (γ >

0) the damping term, U = −1
2 aw2 + 1

4 bw4− hw the double-well potential where
h(x,y) is the original signal and a,b are the system parameters to be adjusted,
Γ(x,y) the Gaussian white noise with〈

Γ(x,y)Γ(x1,y1)
〉

= 2Dδ (x− x1,y− y1). (2)

Here D is the noise intensity [Zhu (1992)], which is related to noise variance σ2 by
σ2 = 2·D

∆x·∆y in the two-dimensional case, where ∆x, ∆y are the sampling intervals
along horizontal and vertical directions.

Recently, we have found that Eq. 1 will suffer from oscillation when approaching
steady state due to the damping term γ , which is unacceptable in image processing.
In fact, for large damping term γ we can neglect the second derivative in Eq. 1
[Risken (1989)]. Thus Eq. 1 can be rewritten as

−
(

∂w
∂x

+
∂w
∂y

)
+

f (w)
γ

+
Γ(x,y)

γ
= 0. (3)

Here f (w) =− ∂U
∂w = aw−bw3 +h. For convenience, we replace a

γ
, b

γ
, h

γ
by a,b,h,

and let

〈Γ(x,y)Γ(x1,y1)〉=
2D
γ
·δ (x− x1,y− y1) = 2D ·δ (x− x1,y− y1). (4)

Eq. 3 can be simplified to

∂w
∂x

+
∂w
∂y

= aw−bw3 +h+Γ(x,y). (5)

Eq. 5 is an over-damped equation, which makes it free of annoying oscillation. The
effect is shown in Fig. 2.

According to the characteristic method in Partial Differential Equation (PDE) the-
ory [Courant and Hilbert (1953)], Eq. 5 is equivalent to a set of Ordinary Differen-
tial Equations (ODE)

dx
1

=
dy
1

=
dw

aw−bw3 +h+Γ
. (6)

The characteristic line is dy
dx = 1 or y = x +C with C being the constant. This

indicates in any arbitrarily small region, the solution of Eq. 5 is symmetric along
the diagonal direction. Thus we can solve Eq. 5 by independently dealing with
Eq. 6{ dw

dx = aw−bw3 +h(x)+Γ(x)
dw
dy = aw−bw3 +h(y)+Γ(y) (7)
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Figure 2: (a) Original image (b) Image processed by Eq. 1, due to damping term
γ , there exists oscillation when approaching steady state. (c) Image processed by
Eq. 5 which is an over-damped equation

The corresponding Fokker-Planck Equation (FPE) [Risken (1989)] for Eq. 7-1 is

∂ρ(w,x)
∂x

=− ∂

∂x
[ f (w) ·ρ(w,x)]+

D
∆x
· ∂

2ρ(w,x)
∂w2 , (8)

where ρ(w,x) is the output probability density function (pdf). When x→ ∞, we
can obtain the static pdf of Eq. 8

ρ(w,x→ ∞) = ρs(w) = C · exp[ϕ0(w)] = C · exp
[∫ +∞

−∞

∆x · f (w)
D

dw
]
. (9)

Here C is the normalized factor.

We can also deduce the asymptotic dynamic pdf of Eq. 8 as follows [Li and Xu
(2006)]

ρ(w,x) =
n−1

∑
i=0

Ci ·Φi(w) · exp(−λi · x)+

[
ρs(w)−

n−1

∑
i=0

Ci ·Φi(w)

]
· exp(−λn · x),

(10)

where 0 = λ0 < λ1 < ... < λn and Φ0 = exp[ϕ0(w)],Φ1, ...,Φn are the eigenvalues
and eigenfunctions of Eq. 7-1, Ci is constant to be determined by orthogonal con-
dition of eigenfunctions [Xu, Li, and Zheng (2003); Pichler and Mang (2000)]. We
regard λ1 which is the dominant factor of system’s settling down to steady state as
the system response speed.

The static and dynamic pdf of Eq. 7-2 can be derived similarly.
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3 Theory of Two-dimensional Parameter-induced Stochastic Resonance (2D-
PSR) for degraded image processing

In previous investigations [Yang, Jiang, Xu, and Repperger (2009)], we set λ1 to
be around 3 so that the error between dynamic pdf ρ(w,x) and static pdf ρs(w)
is within e−3 ≈ 5%. However, this restriction will lessen the available choice for
parameter a,b. Therefore, we introduce the concept of dynamic signal-to-noise
ratio (DSNR)

DSNR(a,b) =
E[w]√
Var[w]

, (11)

where E[•] is an expectation operator and Var[•] = E[•2]−E2[•].
Without the restriction of λ1 ≈ 3, the system response speed can either be greater
or smaller. Consequently the valid sample points of the output will vary following
the value of λ1. Previously, when processing a noisy image through 2D-PSR sys-
tem, we just directly pick up the last sample point of each sample period, which is
assumed to have the best statistic characteristic in the means of probability density.
According to the dynamic solution, when the system response speed grows faster,
the output performance will decrease, however, there will be more sample points
valid to be considered. If these available sample points are averaged, we might get
a better result.

The statistic characteristics of averaged outputs can be calculated by the theory of
local average random field [Vanmarcke (1983); Manjuprasad and Manohar (2007)].
Assume w(x) is a random field with expectation m and variance σ2. WX(x) is length
average of w(x) over a period X . Here WX(x) is called the local average random
field, which has expectation and variance:

E [WX(x)] = m =
∫

w ·ρ(w,x)dw, (12)

Var [WX(x)] = Ω(X) ·σ2, (13)

where Ω(X) is called the variance function of WX(x).
Let ρ(ξ ) be the normalized correlation function of w(x)

ρ(ξ ) =
Cov(ξ )

σ2 . (14)

The relationship between Ω(X) and ρ(ξ ) can be described as follows

Ω(X) = 1
X2

∫ X
0
∫ X

0 ρ(x1− x2)dx1dx2

= 1
X2

∫ X
−X (X−|ξ |)ρ(ξ )dξ

= 2
X

∫ X
0

(
1− ξ

X

)
ρ(ξ )dξ

(15)
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In order to obtain variance function Ω(X) from Eq. 15, we have to figure out the
second-order statistic characteristics of w(x). To this end, we rewrite Eq. 8 as

∂ρ(w,x |w0,x0 )
∂x

=− ∂

∂x
[ f (w) ·ρ(w,x |w0,x0 )]+

D
∆x
· ∂

2ρ(w,x |w0,x0 )
∂w2 , (16)

where ρ(w,x |w0,x0 ) is the conditional pdf which satisfies the following initial con-
dition

ρ(w,x0 |w0,x0 ) = δ (w−w0), (17)

and

lim
x→∞

ρ(w,x |w0,x0 ) = ρ(w,x). (18)

Similar to Eq. 8, the first-order approximate solution of Eq. 16 is

ρ(w,x |w0,x0 ) = ρ(w,x)+ [δ (w−w0)−ρ(w,x)] · exp [−λ1 · (x− x0)] , (19)

with λ1 the system response speed. Thus the covariance function of w(x) can be
written as

Cov(ξ ) =
∫ ∫

w′ ·w ·ρ(w′,x+ξ |w,x) ·ρ(w,x)dw′dw
−
∫

w ·ρ(w,x)dw ·
∫

w′ ·ρ(w′,x)dw′

= σ2 · exp(−λ1 · |ξ |)
(20)

where

σ
2 =

∫
w2 ·ρ(w,x)dw−E2 [w] . (21)

Substituting Eq. 14, Eq. 20, Eq. 21 into Eq. 15 we finally come up with the variance
function

Ω(X) =
2
X

∫ X

0

(
1− ξ

X

)
exp(−λ1ξ )dξ . (22)

Replacing E[w],Var[w] in Eq. 11 with Eq. 12, Eq. 13, Eq. 22, we obtain

DSNR(a,b)=
∫

w ·ρ(w,x)dw
2
X

∫ X
0

(
1− ξ

X

)
exp(−λ1ξ )dξ ·

{∫
w2 ·ρ(w,x)dw− [

∫
w ·ρ(w,x)dw]2

} .

(23)

Here X is determined as follows: define an allowance error: err. Let

exp(−λ1 ·ξ ) = err⇒ ξ =− 1
λ1

lnerr. (24)



166 Copyright © 2010 Tech Science Press CMES, vol.57, no.2, pp.159-174, 2010

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

D

D
S

N
R

DSNR VS noise intensity D. a=2, b=4

 

 
theoretical solution
simulated solution

Figure 3: Output DSNR as a function of noise intensity D

If ξ ≥ Xb (here Xb means each length period), we directly use the last sample point
to calculate the DSNR. If ξ < Xb, we take X = Xb− ξ . Our goal is to maximize
DSNR by optimizing system parameters a,b, which can solved by gradient descent
algorithm [Nocedal and Wright (1999)] very efficiently. Fig. 3 shows the dynamic
signal-to-noise ratio as a function of noise intensity, with solid line the theoretical
solution based on Eq. 23 and hexagon the simulated solution. As the noise intensity
grows larger, we can see DNSR reaches a single peak before descending, which
means disordered noise can enhance ordered system output. This phenomenon is
called Stochastic Resonance.

It has been proved that the output SNR cannot surpass input SNR under linear sys-
tems [Reid (1983)]. Or equivalently, linear systems cannot have SNR gain greater
than one. The input SNR in our case can be written as

SNRinput =
h√
2 ·D

, (25)

with h the original image and D the noise intensity. However, in the case of 2D-
PSR system, we can obtain an SNR gain greater than one if the parameters a,b are
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optimized. The SNR gain can be defined as

SNRgain =
DSNR(a,b)

SNRinput
=

√
2 ·D ·

∫
w ·ρ(w,x)dw

2·h
X

∫ X
0

(
1− ξ

X

)
exp(−λ1ξ )dξ · {

∫
w2 ·ρ(w,x)dw−E2 [w]}

.

(26)

Fig. 4 shows the SNR gain as a function of parameter b, where a = 1.5 in the for-
mer figure and a = 2 in the latter one. It indicates when system parameters a,b are
properly set, the SNR gain will surpass one, which is impossible for linear filters.
In addition, the SNR gain remains high and descending slowly as the parameter b
grows larger, which means 2D-PSR technique performs strong robustness to sys-
tem parameters variations. If the parameters are not best optimized or even biased
seriously, we can still obtain high SNR gain through 2D-PSR system.
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Figure 4: SNR Gain as a function of parameter b
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4 Experimental results of 2D-PSR image processing

In practice, the evaluation of output performance equivalent to Eq. 23 can be written
as

SNR = 10 · lg
[

P(imgout)
P(noiseout)

]
. (27)

Here P(imgout) and P(noiseout) are respectively the power of image information
and noise under certain filtering system, such as 2D-PSR system and low pass
filtering system.

The simulation equation equivalent to Eq. 7 is [Benito, Urena, Gavete, and Alonso
(2008)] wm,n =

[
awm,n−1−bw3

m,n−1 +hm,n−1 +Γm,n−1

]
·∆x+wm,n−1

wm,n =
[
awm−1,n−bw3

m−1,n +hm−1,n +Γm−1,n

]
·∆y+wm−1,n

, (28)

where the subscripts represent the locations of sample points, and ∆x,∆y are the
sampling intervals along horizontal and vertical directions.

The intensity value of an image usually distributes in the region of [0,255]. How-
ever, the double-well potential of 2D-PSR system is symmetric to zero. Thus we
should first subtract the mean value of an image before processing with 2D-PSR
technique and add it back later. Fig. 5 (a) shows a computed tomography (CT)
image corrupted by additive Gaussian white noise N(0,57) (Fig. 5 (b)). We sample
the degraded image 5× 5 times per pixel (five by row and five by column), and
then operate it on 2D-PSR system. After optimizing parameters a,b according to
Eq. 23 we come up with the recovered image Fig. 5 (c). Fig. 5 (d) shows the re-
sult obtained by linear mean filtering, which takes the average value of every 5×5
blocks of Fig. 5 (b). As a comparison, we have further processed Fig. 5 (b) with
total variation method [Weickert (1996)], wavelet de-noising [Gonzalez, Woods,
and Eddins (2004)] and adaptive Wiener filter [Lim (1990)]. The results are shown
respectively in Fig. 5 (e), (f) and (g).

Another advantage of 2D-PSR system, due to nonlinearity, is that it can enhance the
contrast of a dim noisy image along with de-noising. Fig. 6 (a) shows an image cor-
rupted by multiplicative Erlang noise [Gonzalez, Woods, and Eddins (2004)] with
parameter A = B = 1. Fig. 6 (b) shows the result obtained by 2D-PSR technique.
Compared with other methods (Fig. 6 (c), (d), (e) and (f)), we can see besides noise
reduction, the contrast of the recovered image by 2D-PSR technique is enhanced.
Thus some information in the shadow can be recognized such as the cameraman’s
right hand and details of the jacket. Sometimes such information might be ex-
tremely useful.
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Figure 5: (a) Original CT image. (b) Sampled CT image degraded by additive
Gaussian white noise. (c) Image processed by 2D-PSR system, with parameters
a = 0.1,b = 1.1, the output SNR = 11.06dB. (d) Image processed by mean filter, the
output SNR = 5.59dB. (e) Image processed by total variation method, the output
SNR = 10.45dB. (f) Image processed by wavelet de-noising, the output SNR =
10.12dB. (g) Image processed by adaptive Wiener filter, the output SNR = 9.72dB.

In the above discussions, the 2D-PSR system we have presented did not make use
of the priori information of the input image. In order to exploit such information,
we propose an adaptive 2D-PSR systems. According to Eq. 23 and Eq. 24, once
the parameters a,b are optimized, the number of valid sampling points is fixed.
However, frequencies in the image may differ from area to area. To address this
issue, we define an edge factor

K = f (|∇g(h+Γ)|x,y) (29)

as a criterion to conduct down-sampling. g(•) is the Gaussian low-pass filtering
operator which is used to remove noise in the input image. f (•) is a mapping
function to control the number of sample points. Large K means fast varying in-
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Figure 6: (a) Sampled cameraman image degraded by multiplicative Erlang noise.
(b) Image processed by 2D-PSR system, with parameters a = −0.2,b = 0.7, the
output SNR = 15.32dB. (c) Image processed by mean filter, the output SNR =
7.56dB. (d) Image processed by total variation method, the output SNR = 14.67dB.
(e) Image processed by wavelet de-noising, the output SNR = 14.21dB. (f) Image
processed by adaptive Wiener filter, the output SNR = 13.84dB. (g) Image pro-
cessed by adaptive 2D-PSR technique, the output SNR = 15.57dB. (h) Image pro-
cessed by a combination of adaptive 2D-PSR system with Total Variation method,
the output SNR = 17.17dB.
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formation in the original image, thus we take the last few sample points of each
pixel to retain more details, while small K means slowly varying in the image, thus
we take more valid sample points of each pixel to achieve high static SNR. The
performance of adaptive 2D-PSR system is shown in Fig. 6 (g).

Besides, 2D-PSR technique can be combined with other nonlinear methods to fur-
ther improve the output performance. Fig. 6 (h) shows the example of degraded
cameraman image recovered by adaptive 2D-PSR technique combined with Total
Variation method. Compared with Fig. 6 (d) and (g), image processed by a com-
bination of the two methods performs better than only by single one. Therefore,
2D-PSR technique and TV method are complementary.

5 Conclusions

In this paper, a modified 2D-PSR system is proposed, which is over-damped thus
free of oscillation when approaching steady state. The corresponding static and
dynamic pdf of the Fokker-Planck Equation is derived. A new concept of dynamic
signal-to-noise ratio (DSNR) is introduced to utilize more valid sample points to
upgrade the output performance. According to our theoretical calculation, the out-
put DSNR manifests a resonant-like behavior when system parameters are properly
adjusted. The experimental results are in accordance with theoretical solution.

In practice, images processed by 2D-PSR technique are confirmed to achieve higher
SNR than by linear mean filtering and other mainstream image processing methods.
In order to utilize a priori information of the original image, we recommend an
adaptive 2D-PSR system that is able to maintain more details. Moreover, 2D-PSR
technique is complementary to other nonlinear methods (such as Total Variation
methods) and can be combined with them to obtain even higher SNR gain. We
believe the 2D-PSR technique to be promising in image processing.
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