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3D Higher-Order X-FEM Model for the Simulation of
Cohesive Cracks in Cementitious Materials Considering

Hygro-Mechanical Couplings

C. Becker1, S. Jox2 and G. Meschke3

Abstract: A three-dimensional numerical model based on the Extended Finite
Element Method (X-FEM) is presented for the simulation of cohesive cracks in
cementitious materials, such as concrete, in a hygro-mechanical framework. En-
hancement functions for the small scale resolution of the displacement jump across
cracks in the context of the X-FEM is used in conjunction with a higher order fam-
ily of hierarchical shape functions for the representation of the large scale displace-
ment field of the investigated structure. Besides the theoretical and computational
formulation in a multiphase context, aspects of the implementation, such as in-
tegration and crack tracking algorithms, are discussed. Representative numerical
examples include 3D benchmark problems, an analysis of anchor pullout test and
an application of the model to a hygro-mechanically loaded concrete beam.

Keywords: 3D-X-FEM; cracking; concrete structures; hygro-mechanical cou-
pling; porous materials

1 Introduction

Realistic modeling of the opening and propagation of cracks is a prerequisite for re-
liable prognoses of the serviceability, safety and durability of concrete, reinforced
concrete and masonry structures. In the context of lifetime-oriented design, consid-
eration of changing hygro-thermal environmental conditions including the transport
of moisture within opening cracks and the respective hygro-mechanical couplings
(Coussy and Ulm (2001)) is essential. Information on the width and topology of
evolving cracks is crucial, since crack widths exceeding a certain critical crack
opening may considerably promote the transport of corrosive substances (Maekawa
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and Ishida (2002)) when filled with water. Up to the mid of the 1990’s research in
computational failure analysis of concrete and reinforced concrete structures was
focussed on two alternative approaches: continuum-based models (see the reviews
contained e.g. in de Borst (2002); Mang, Meschke, Lackner, and Mosler (2003))
and discrete representations of fracture along mesh boundaries using concepts of
Linear Elastic Fracture Mechanics (LEFM) and cohesive crack models (see, e.g.,
Ingraffea and Saouma (1985); Xie and Gerstle (1995)). Since the mid of the 1990’s,
the goal of a discrete representation of cracks within the framework of the Finite
Element Method has resulted in approaches to represent cracks as embedded dis-
continuities within finite elements, circumventing the need for re-meshing as cracks
evolve. From a conceptual point of view, this strategy has the character of multi-
scale methods, characterized by superimposing the small scale resolution (the dis-
placement jump across cracks) onto a large scale resolution of the (smooth) dis-
placement field.

These formulations can generally be categorized into element-based formulations,
generally denoted as Embedded Crack Models (see Simo, Oliver, and Armero
(1993); Oliver (1996); Jirásek and Zimmermann (2001); Armero and Garikipati
(1996); Mosler and Meschke (2003), among others), and nodal-based formula-
tions, i.e. the Extended Finite Element Method (X-FEM) (see Moës, Dolbow, and
Belytschko (1999); Moës and Belytschko (2002); Wells and Sluys (2001a)). For
a comparative assessment of both approaches we refer to Jirásek and Belytschko
(2002); Dumstorff, Mosler, and Meschke (2003). The Extended Finite Element
Method has been successfully applied to model traction-free cracks in the context
of the LEFM in two- and three-dimensional settings (see. e.g. Moës, Dolbow, and
Belytschko (1999); Belytschko, Möes, Usui, and Parimi (2001); Sukumar, Moës,
Moran, and Belytschko (2000)) as well as for cohesive cracks (e.g. Wells and Sluys
(2001b); Moës and Belytschko (2002); Mariani and Perego (2003); Zi and Be-
lytschko (2003); Mergheim, Kuhl, and Steinmann (2005); Dumstorff and Meschke
(2007)). Since the topology of cracks is held fixed once they are signaled to open,
the determination of the crack propagation direction and of the crack path has re-
ceived considerable attention (see Oliver and Huespe (2002); Feist and Hofstetter
(2006); Meschke and Dumstorff (2007); J ager, Steinmann, and Kuhl (2008)).

In recent years the Extended Finite Element Method has been successfully applied
to fully three-dimensional problems (Sukumar, Moës, Moran, and Belytschko, 2000;
Moës, Sukumar, Moran, and Belytschko, 2000; Sukumar, Chopp, and Moran, 2003;
Gasser and Holzapfel, 2005). Considering 3D implementations of the X-FEM, in
general a conflict between accuracy, applicability and the complexity of the nu-
merical implementation arises, since, compared to 2D implementations, the effort
increases considerably. In particular, with respect to crack tracking algorithms, the



3D Higher-Order X-FEM Model 247

problem changes from the determination of the crack propagation angle Θc and
the crack propagation length 4lc initiating from the current crack tip to the de-
termination of the three-dimensional evolution of crack surfaces emanating from
(non-smooth) crack fronts. While the geometry of the evolving crack can be eas-
ily described explicitly in two-dimensional formulations, for the description of the
crack topology and crack propagation in three-dimensional implementations often
use of implicit strategies based on the level set method (Osher and Sethian, 1988;
Osher and Fedkiw, 2003) is made. In (Moës, Gravouil, and Belytschko, 2002;
Gravouil, Moës, and Belytschko, 2002) the level-set method is used to represent
arbitrary crack growth by solving HAMILTON-JACOBI-type equations.

In the majority of existing 3D implementations of the X-FEM for crack propaga-
tion analyses tetrahedral elements with linear approximations of the displacement
field are used in combination with elementwise plane crack propagation (see e.g.
(Areias and Belytschko, 2005)). In the present paper, a 3D X-FEM model is formu-
lated within the framework of a higher-order Finite element formulation (p-FEM)
(Becker, Jox, and Meschke, 2009). Both X-FEM and p-FEM are characterized by
the improvement of the approximation quality by adding higher order functions to
the linear approximation. The combination of X-FEM and p-FEM allows to adapt
the large scale resolution to the type of problem at hand using (anisotropic) higher
order shape functions, while the discontinuous approximations added in the X-FEM
allow for the resolution of the displacement field at the scale of the crack. This dis-
cretization concept is formulated in a generalized, hygro-mechanical framework
considering the influence of cracks on the liquid permeability of concrete (Bar-
ton, Bandis, and Bakhtar (1985); Meschke and Grasberger (2003)). For the hygro-
mechanical formulation in a continuum setting, the Theory of Porous Media (TPM)
(Coussy (1989); Schrefler (1995)) is used (see Grasberger and Meschke (2004);
Meschke and Grasberger (2003)). In this framework, the effect of cracks on the
moisture transport is considered using the information on the crack width and crack
topology from the X-FEM model.

The remainder of the paper is organized as follows: Section 2 contains a review of
the Extended Finite Element Method in a 3D setting. In Section 3 the hierarchical
higher order concept used for the field- and geometry-specific approximation of the
field variables is presented. The extension to hygro-mechanically coupled analyses
is contained in Section 4. Section 5 is devoted to the discussion of computational
aspects such as the spatial integration of the 3D X-FEM model considering mois-
ture transport within the crack channel. Finally, representative numerical examples
for 3D single and multiphase crack analyses of concrete structures are presented in
Section 6.
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2 X-FEM resolution of displacement jumps across cracks

This section contains a summary of the Extended Finite Element Method in a 3D
setting, restricted to the geometrically linear theory. It is assumed that cracks fully
penetrate through elements. Consequently, no crack tip enhancements as proposed
e.g. in Zi and Belytschko (2003); Asferg, Poulsen, and Nielsen (2005) are consid-
ered. For a more elaborate discussion on the background of the X-FEM we refer
to Moës, Dolbow, and Belytschko (1999); Sukumar, Moës, Moran, and Belytschko
(2000).

2.1 Kinematics

To incorporate a small scale resolution of the displacement jump across cracks into
the finite element we start by decomposing the displacement field into a continuous
part ū and discontinuous part ǔ (see Figure (1)):

X1
X2

X3

Ω

Ω−

Ω+

∂SΩ

u− û

u
u+ û

[[u]]

X

Figure 1: Separation of a body Ω by a discontinuity ∂SΩ into subdomains Ω− and
Ω+

u(X) = ū(X)+ ǔ(X). (1)

The discontinuous part is described with the help of the SIGNUM function

SS(X) =


−1 ∀ X ∈Ω−

0 ∀ X ∈ ∂SΩ

1 ∀ X ∈Ω+
(2)
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which is multiplied with the enhanced regular part of the displacements û:

ǔ(X) = SS(X) û(X). (3)

With the SIGNUM function the displacement jump at the discontinuity can be ex-
pressed as

[[u]] = 2 û(X)

∣∣∣∣∣
X∈∂SΩ

. (4)

From taking the gradient of the displacement field (1) a continuum-related part
of the strain field and a portion associated with the discontinuity containing the
DIRAC-delta function δS is obtained:

∇u(X) = ∇ū(X)+SS(X)∇û+2δS [û(X)⊗n] . (5)

2.2 Weak form of balance of momentum including a discontinuity

Incorporating the discontinuous displacement field (1) in the weak form of the bal-
ance of momentum∫
Ω

δ∇u :±σ dV =
∫

Γσ

δ ū t? dΓσ . (6)

leads to∫
Ω

[δ∇ū+SS δ∇û] :±σ dV +2
∫
Ω

δS [δ û⊗n] :±σ dV =
∫

Γσ

δ ū t? dΓσ . (7)

With the definition of an enhanced strain tensor

±̄ε = Bu = Bū+SS Bû, (8)

and the volume integral of the DIRAC-delta function∫
Ω

δS dΩ =
∫

∂SΩ

1dA (9)

finally the weak form of balance of momentum including a surface of discontinuity
is obtained:∫
Ω

δ ±̄ε :±σ dV +2
∫

∂SΩ

δ û±σ n︸ ︷︷ ︸
tS

dA =
∫

Γσ

δ ū t? dΓσ . (10)
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In Eq.(10) tS is the traction vector acting on the surface of discontinuity which
satisfies the balance of tractions:

[[tS]] = 0, ∀X ∈ ∂S Ω. (11)

A new crack is assumed to open if the average principal stress in an element exceeds
the tensile strength (see Section 5). The transition from a gradual opening of a zone
of micro-cracks to a fully developed macro-crack in concrete is represented by a
cohesive zone model. Since in this paper the focus is laid on mode-I crack opening,
the adopted softening interface law relates crack openings and tractions tS in the
direction of the crack normal n (see Figure(2)):

tS = tn([[u]])n. (12)

This mode-I cohesive interface law is obtained as a special case of the mixed mode
interface law proposed by Camacho and Ortiz (1996) by defining the equivalent
displacement jump as the displacement jump in the normal direction:

tn = tn([[ueq]]), [[ueq]] =
√

[[u]]2n = ||[[u]]n||. (13)

[[u℄℄ [mm℄
t n[N=mm2 ℄ 0.060.050.040.030.020.010

32.521.510.50
Figure 2: Interface law: softening relation between normal tractions and crack
separation

Adopting concepts of damage theory, the relation between normal tractions and
crack openings is given as Wells and Sluys (2001b):

tn =
[
T −T da([[ueq]])

]
[[ueq]], (14)
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with the initial stiffness T and the damaging (softening) portion T da depending on
the displacement jump:

T da = T
[

1− α

[[ueq]]
exp{− ftu

G f
[[[ueq]]−α0]}

]
. (15)

In Eq.(15), α is the largest value of [[ueq]] experienced in the loading history ac-
cording to the damage criterion

Φ([[ueq]],α) = [[ueq]]−α ≤ 0, (16)

ftu is the tensile strength and G f the fracture energy of concrete.

3 Hierarchical higher order approximation of smooth displacement fields

While the enhanced approximations of the displacement field according to the X-
FEM is used for the resolution of the displacement field at the scale of the individual
crack zones, a higher-order, anisotropic spatial discretization concept (p-FEM) as
recently proposed in Becker, Jox, and Meschke (2009) for multifield problems is
used for the resolution of the displacement at the large scale to allow for the adap-
tion of the spatial resolution to the specific characteristics of the problem such as
the geometry and to the requirements of the field variables involved, e.g. in coupled
hygro-mechanical analyses.

The spatial discretization method is based on the hierarchically organized LEGEN-
DRE polynomials. The one-dimensional shape functions can be easily generated
by a recursive formula, see e.g. Szabó and Babuška (1991). The extension of the
1D hierarchical concept of LEGENDRE-based shape functions to three-dimensional
shape functions for brick-type finite elements requires the numbering of relevant
geometrical entities, such as nodes, edges and faces (Figure 3) (see Szabó and
Babuška (1991); Düster (2002); Becker, Jox, and Meschke (2009)). The three-
dimensional shape functions are obtained as products of the one-dimensional shape
functions:

N3D
l (ξ ) = N1D

i (ξ 1) ·N1D
j (ξ 2) ·N1D

k (ξ 3)

i ∈ {1,2,3, ..., pξ 1 +1}
j ∈ {1,2,3, ..., pξ 2 +1}
k ∈ {1,2,3, ..., pξ 3 +1}
l ∈ {1,2,3, ...,NN3D}

, (17)

with the total number of element nodes

NN3D = [pξ 1 +1] · [pξ 2 +1] · [pξ 3 +1]. (18)
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Figure 3: 3D-higher order element concept: Numbering of vertices (Ni), edges (Ei)
and faces (Fi)

pξ i represents the polynomial degree of approximation in the direction of the re-
spective natural element coordinate ξ i. According to the number and type of one-
dimensional shape functions the resulting three-dimensional shape functions can
be categorized into four groups of modes: nodal modes, edge modes face modes
and internal modes. Figure 4 illustrates selected shape functions corresponding to
the different classes for various polynomial degrees.

This mode of generating shape functions for brick-type elements allows for the
choice of different approximation degrees in the different element directions. Spa-
tially anisotropic approximations of the field variables are useful if 3D elements
are used for lower dimensional structures such as shells, plates or beams. In these
cases the degree of the in-plane approximation of the displacement field can be
chosen arbitrarily high, whereas a quadratic or cubic approximation in thickness
direction would be sufficient (Becker, Kuhl, and Meschke (2005)). Furthermore,
this concept allows for a natural adaption of fieldwise approximations in multifield
analyses to the specific requirements of the individual field variables (Becker, Jox,
and Meschke (2009)).

4 Extension to coupled hygro-mechanical analyses

The extension to the hygro-mechanical model is formulated in the framework of the
Theory of Porous Media (TPM) (see, e.g. Coussy (1989); Schrefler (1995); Ehlers
and Bluhm (2000)). Full coupling between moisture transport and the mechanical
behaviour of concrete are taken into account. Details of the formulation are con-
tained in Grasberger and Meschke (2004); Meschke and Grasberger (2003) and,
in the context of a higher order p-FEM formulation, in Becker, Jox, and Meschke
(2009).
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The macroscopic capillary-pressure pc = pg − pl , with the gaseous pressure pg

assumed to be equal to the atmospheric pressure taken as zero pg = 0 and pl as the
liquid pressure, is considered as the basic variable for moisture transfer (Bear and
Bachmat (1991)).

εS

(a) (b)

Figure 5: Effects of changing moisture conditions in cementitous materials: (a)
Drying induces capillary forces; (b) Cracks promote transport of moisture

In cementitious materials such as concrete, saturation-dependent internal stresses
develop as a consequence of molecular adsorption and capillary condensation. When
subjected to drying, the internal stresses may lead to severe cracking in concrete
structures when the material strength is exhausted. In turn, cracks strongly affect
the permeability of the material (Figure 5). Details of the identification of the cou-
pling coefficients are contained in Grasberger and Meschke (2004). Based upon the
pore network model of Mualem (1976), the following relation between the capillary
pressure and the liquid saturation as proposed by van Genuchten (1980)

Sl(pc) =
[
1+(pc/pr)

1
1−m

]−m
for pc > 0. (19)

with the reference pressure pr = 18.6237N/mm2 and the coefficient m = 0.4396
specified in Baroghel-Bouny, Mainguy, Lassabatère, and Coussy (1999) for con-
crete, is used. The total stresses ±σ are expressed as a function of the effective
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skeleton stresses ±σ ′, the BIOT coefficient b and the capillary pressure pc

±σ = ±σ
′ + bpc1. (20)

The transport properties of concrete are strongly depending on the microstructure
and the degree of cracking. In the proposed 3D model flow of moisture within the
intact material is described by a DARCY model characterized by the (in general
nonlinear) relation between the moisture flux ql and the spatial gradient of the
liquid pressure ±∇p

ql =
ρl

µl
k f (Sl)kφ (φ) ±∇pc, (21)

with the liquid permeability matrix k f , the dynamic viscosity µl of the liquid, the
porosity φ and the mass density ρl . The permeability of the uncracked matrix
material

k f (Sl) = kr(Sl)k0 (22)

with the intrinsic permeability k0 and the relative permeability kr(Sl) is formulated
according to van Genuchten (1980) as

kr(Sl) =
√

Sl

[
1− (1−S1/m

l )m
]2

(23)

with 0 < m < 1.

The moisture flux along one single crack is modeled taking the solution of the
NAVIER-STOKES equation for plane POISEUILLE flow with an idealized crack for-
mation, assumed to be planar, parallel and of constant opening width wc, as a start-
ing point:

qt
l =

w2
c

12 µl
∇pc. (24)

Following the approach of Barton, Bandis, and Bakhtar (1985), taking into account
the roughness of the cracks as well as the aperture variation and the tortuosity, the
nominal crack width wc is replaced by the equivalent hydraulic crack width

wh =
w2

c

R2.5 for wc ≥ wh (25)

where the parameter R describes the roughness of the crack. This parameter has
been determined in Meschke and Grasberger (2003) by means of reanalyses of two
different series of tests performed by Aldea, Ghandehari, Shah, and Karr (2000);
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Figure 6: Moisture transport in cracks: Comparison between experimental and
model results (Grasberger and Meschke (2004))

Oshita and Tanabe (2000). Accordingly, the permeability for cracks filled with
water is expressed considering tortuosity effects along the crack channel ΩS (see
Figure 10) (Snow (1969)):

kt
c0(wh) =

w2
h

12
. (26)

The permeability of the evolving crack channel for partially filled cracks

kt
c(Sl,wh) = krc(Sl)kt

c0(wh) (27)

depends on kt
c0(wh) and the relative crack permeability

krc(Sl) = 8 ·10−6exp(11.7Sl). (28)

In a 3D setting the crack permeability in global coordinates is obtained from the
transformation of the local permeability along the crack plane

kt
c =

 0 0 0
0 kc(wh,Sl) 0
0 0 kc(wh,Sl)

 (29)

using the transformation matrix Tc as

kc = TT
c kt

c Tc. (30)
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5 Computational aspcets

For the incorporation of the X-FEM into the higher order p-FEM platform in a
three-dimensional setting the following assumptions are made:

• Cracks are assumed to fully propagate through elements after the opening
of a crack is signaled in the respective element. Hence, no crack-tip func-
tions are used and the crack tip is represented by homogeneous boundary
conditions for the enhanced displacement field at the crack front.

• Cracks are approximated as element-wise plane surfaces in the isoparametric
domain. Consequently, in physical coordinates, non-plane surfaces accord-
ing to the JACOBI-transformation are generated.

• An average weighted principal stress criterion characterized by the evalua-
tion of the stresses within the integration points of the elements adjacent to
the existing crack front and taking the principal values and axes of the aver-
aged tensor is used to determine crack propagation and direction.

• The enhanced displacement field is restricted to linear approximations whereas
the regular part is approximated arbitrarily high taking into account the kine-
matics associated with the specific geometry of the investigated structure,
e.g. shell-like or slab-like structures:

u(X)≈
NNp

∑
i=1

Np1,p2,p3ūei +
8

∑
j=1

N1,1,1S(X) ũe j. (31)

The hierarchical higher-order p-finite element formulation has proven its partic-
ular suitability in the context of coupled problems (see e.g Kuhl, Bangert, and
Meschke (2004); Becker, Jox, and Meschke (2009)) which results from its ability
to represent arbitrary complex (smooth) distributions of field variables by means
of field-specific higher order shape functions. The combination of the extended
(discontinuous) approximations according to the X-FEM for the representation of
discontinuous distributions with higher-order p shape functions for the representa-
tion of smooth distributions of the field variables allows to simulate crack propa-
gation in conjunction with multifield models without the need for mesh adaption
using relatively coarse discretizations. Although higher-order polynomials for the
regular and the enhanced displacement field are proposed in Moës, Dolbow, and
Belytschko (1999), we follow the approach proposed by Stazi, Budyn, Chessa, and
Belytschko (2003); Legay, Wang, and Belytschko (2005); Englund (2007), where
different polynomial orders are used for both fields. Besides a reduction of numer-
ical effort, linear dependencies of the enhanced shape functions with the standard
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n1

n2 n3
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P(2,3)
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Figure 7: 3D crack tracking algorithm using 3D quadrilateral finite elements

higher order shape functions are a priori eliminated. It should be emphasized, that
the investigation of interactions between the degree of approximation of the regular
and the enhanced part of the displacement field was not within the focus of this
paper. However, it should be noted, that, according to Laborde, Pommier, Renard,
and Salaün (2005), optimal convergence is obtained if the same order of polyno-
mial degree is used for the regular and the enhanced part of the displacement field.
As was shown by Peters and Hackl (2009), using hierarchical higher order approxi-
mations for both the enhanced and the regular part together with crack tip functions
also leads to an improved kinematics of the crack opening configuration.

5.1 Crack tracking algorithm

The representation of cracks as plane surfaces fully penetrating through finite el-
ements requires special considerations as far as tracking of cracks is concerned.
If a strictly C0-continuous evolution of cracks would be followed (see e.g. Areias
and Belytschko (2005)), in case that two intersections of an existing crack front
with an uncracked element exist, the topology of the new crack plane opening in
the uncracked element would be already defined by the two lines characterizing
the two crack fronts, without taking into account any information regarding the di-
rection of the new evolving crack from the cracking criterion. Therefore, a less
strict algorithm is adopted, following suggestions made by Gasser and Holzapfel
(2005). All element faces or facettes cut by the crack are considered as part of the
crack front. Consequently, all elements that are not cut so far but include the crack
front will be considered as potential cracking candidates. A crack plane is uniquely
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P1

P2

P

Figure 8: 3D crack tracking algorithm using 3D quadrilateral finite elements: Gen-
eration of the point P containing the new crack surface

defined by a point P of the potential new crack segment and the corresponding nor-
mal vector n established by the adopted principal stress criterion. n is the principal
direction related to the maximum principal stress of the averaged stress tensor eval-
uated in the candidate element (Figure 7). Since the crack is assumed to propagate
element-wise, the crack propagation criterion and the crack propagation direction
are computed from average stresses instead from the local stress state at the crack
front. In the proposed 3D implementation, the principal values and directions of
the averaged stress tensor evaluated in the candidate element

σ =
1

NGauss

NGauss

∑
m=1

(σi j ei⊗ e j)m (32)

are computed. The largest principal value is taken for the check of crack propaga-
tion according to the RANKINE crack propagation criterion and the corresponding
principal direction serves as the normal of the new crack segment. With this nor-
mal vector n and a point P defined according to the position of the current crack
front(s), the position of the new crack surface is fully defined.

The position of the point P of the potential new crack segment is obtained as the
vectorial average of the midpoints of all crack fronts connected with the considered
candidate element (Figure 8):

P =
n

∑
i=1

Pi

n
(33)
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5.2 Visualization of the crack topology

Although the geometry of the crack surface is stored explicitly, for the visualization
of the crack surface an implicite approach using the φ -level set method (Osher and
Sethian, 1988; Osher and Fedkiw, 2003) is adopted. According to this method, the
shortest distance of a particular point of the finite element with respect to the crack
surface is represented by

φ(X) = [X−XS] ·n XS ∈ ∂SΩ, (34)

with XS denoting a point on the crack surface ∂SΩ. The crack is visualized by
plotting the φ = 0 level set as an iso-surface.

5.3 Numerical Solution

In the context of a two-field hygro-mechanical model the primary variables u(x, t)
and pc(x, t) in the domain Ω are governed by the balance of linear momentum and
balance of liquid mass as

div ±σ = 0, div(ρlql) + ṁ = 0. (35)

In Eq.(35) body forces are neglected. The system of governing equations (35) is
completed by the boundary conditions

±σ(x, t) ·nΓ = t∗(t) ∀x ∈ Γσ , ql(x, t) ·nΓ = q∗l (t) ∀x ∈ Γql ,

u(x, t) = u∗(t) ∀x ∈ Γu, pc(x, t) = p∗c(t) ∀x ∈ Γpc (36)

and the initial conditions

u(x, t = 0) = u0, pc(t = 0) = pc,0. (37)

nΓ is the normal vector on the boundary of the structure, q∗l is the liquid flux across
the boundary, p∗c is the prescribed capillary pressure, u∗ is the prescribed displace-
ment and t∗ the traction vector on the boundary.

The weak form of the balance of momentum is obtained according to Eq.(7) after
inserting Eq.(20) as

δWm =
∫
Ωe

δ±ε : ±σ dV −
∫

Γσ

δu · t∗ dA

=
∫
Ωe

∇δ ū :
(
±σ

′+bpc1
)

dV +
∫

Ω+−

SS∇δ û :
(
±σ

′+bpc1
)

dV (38)

+ 2
∫

∂SΩe

δ û ·
(
t′S +bpcnS

)︸ ︷︷ ︸
tS

dA−
∫

Γσ

δu · t∗ dA,
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with the total and effective traction vectors (tS([[u]], pc)) and (t′S([[u]])) at the surface
of discontinuity ∂SΩe. The weak form of balance of liquid mass and the hygral
NEUMANN boundary conditions reads

δWh =
∫
Ωe

δ pc
ṁl

ρl
dV −

∫
Ωe

δ ±∇pc · ql dV −
∫
Γq

δ pc q∗l dA = 0. (39)

Spatial discretization of Eqs.(38) and (39) yields the semi-discrete coupled set of
equations

Se(xe) ẋe + Ke(xe)xe = re(xe) (40)

with the storage and stiffness matrices

Se =

 0 0 0
0 0 0

Qpū Qpû Spp

 , Ke =

 Kūū Kūû Qūp

Kûū Kûû Qûp

0 0 Hpp

 (41)

and the nodal degrees of freedom and nodal forces

ẋe =

 ˙̄u
˙̂u

ṗc

 xe =

 ū
û
p

 re =

 rū

rû

rp

 . (42)

After assembly, applying time discretization using finite differences together with
a fully implicit time integration scheme and consistent linearization by means of
the NEWTON-RAPHSON algorithm (Lewis and Schrefler (1998)) the resulting al-
gebraic system of equations is solved within the time interval [tn, tn+1]:

[S + ∆t K]n+1 xn+1 = Sxn + ∆t rn+1. (43)

5.4 Numerical integration

For the numerical integration of the weak form (38) and (39) at the element level
the discontinuous character of the enhanced strain field has to be taken into ac-
count. Consequently, both parts of elements separated by a crack plane have to
be integrated separately. As a more efficient alternative to a standard subdivi-
sion using DELAUNEY-triangularization, cracked elements are subdivided into a
fixed set of six sub-tetrahedrons (Figure 9). For each of these tetrahedrons it is
checked, whether it contains the crack plane segment. The crack plane cutting
the element may either have a triangular or a quadrilateral shape. Consequently, a
sub-tetrahedron can be split into two tetrahedrons, two pentahedrons, a tetrahedron
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Figure 9: Numerical intgeration of cracked elements: Subdivision of the element
into six sub-tetrahedrons

and a pentahedron or into a tetrahedron and a pyramid. For the integration of the
traction-separation law and the moisture flow the respective subdomains are either
triangles or quadrilaterals. The volume integral of a cracked finite element is com-
puted, after transformation to natural element coordinates ξ i with the help of the
Jacobian J, by summing all contributions of nsub sub-continua that are integrated
numerically over the natural coordinates η j of the sub-domains:

∫
Ωe

(•)dV =
∫
Vξ

(•) || ∂X
∂ ±ξ

||︸ ︷︷ ︸
||J||

dVξ =
nsub

∑
i=1

∫
Vη

(•)|| ∂X
∂ ±ξ

∂ ±ξ

∂ ±η
||dVη . (44)

The relation between both natural coordinates ±ξ = ±ξ (±η) is obtained from
determining the ξ i coordinates of the nodes of the sub-domains. These correspond
either to the vertices of the element or to points on the crack surface. The latter
ones are identified with the help of the φ -level sets.

5.5 Numerical integration of the crack channel

Intact parts and the crack plane have to be considered as different domains in the
integration procedure. Hence, the stiffness matrix Kûû and the liquid permeability
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Sub-tetrahedron Crack channel ΩS

Sub-tetrahedron crossed by crack planes

Figure 10: Integration concept: Separate integration of sub-continua (sub-
tetahedrons) and the crack channel ΩS

matrix Hpp are evaluated as

Kûû =
∫

Ω+−
S2

S BT
u CBu dV +

∫
∂SΩ

NT
u TNu dA,

Hpp = −∫
Ω

BT
p k f /µl Bp dV − ∫

ΩS

BT
p AT kt

c(w)/µl ABp dV .
(45)

Nu contains the hierarchical shape functions of the displacement field, Bu and Bp

are the gradient matrices of the displacement and the capillary pressure field and
kt

c(w) is the liquid permeability in the crack channel according to Eq.(29). The
matrix A(n) is the projection of ∇pc onto the crack channel characterized by the
normal unit vector n.

The permeability matrix Hpp is computed as

Hpp ∼−
GPp

∑
n=1

BT
p k f /µl Bp|Jn|αn−

GPc

∑
j=1

BT
p AT kt

c(w)/µl ABp w j |J∂SΩ, j|α j , (46)

using GPp integration points for the continuum and GPc integration points for the
crack channel (Figure 10). The integration is performed either over triangles or
quadrilaterals according to the integration concept described above.
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6 Numerical examples

6.1 Cracking of a double notched slab

As a first benchmark example a double notched slab subjected to a combined load-
ing of shear and normal forces which has been investigated experimentally by
(Nooru-Mohamed, 1992) is analyzed using the proposed 3D X-FEM model. The
geometry, material parameters and the finite element discretization are contained
in Figure 11. According to the geometry of the slab the approximation of the dis-
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Figure 11: 3D X-FEM analysis of a double notched slab: geometry, material pa-
rameter and finite element mesh

ment field is chosen as u ≈ u3,3,1. In a first loading stage, the slab is subjected to
a shear force Fs = 10kN . Subsequently, keeping the load level of the shear force
constant, a normal force Fn is applied incrementally by controlling the respective
displacement.

Figure 12 illustrates the curved crack paths obtained from the proposed crack model
for the combined loading scenario. The visualization of the crack path is accom-
plished by plotting the φ = 0-level set. The left hand side of Figure 13 shows a
comparison of the crack topologies obtained from the present 3D X-FEM model
using a slab-like higher order solid FEM formulation, with a variational 2D X-
FEM model proposed by (Meschke and Dumstorff, 2007) and with the experimen-
tally determined range of cracks (in grey color). The crack topology obtained from
the proposed 3D X-FEM model correlates well with the experimental results and
the results from 2D analyses using a variational X-FEM model with crack tip en-
hancements (Meschke and Dumstorff, 2007). Figure 13 (right) shows a comparison

Figure 11: 3D X-FEM analysis of a double notched slab: geometry, material pa-
rameter and finite element mesh

placement field is chosen as u≈ u3,3,1. In a first loading stage, the slab is subjected
to a shear force Fs = 10kN. Subsequently, keeping the load level of the shear force
constant, a normal force Fn is applied incrementally by controlling the respective
displacement.

Figure 12 illustrates the curved crack paths obtained from the proposed crack model
for the combined loading scenario. The visualization of the crack path is accom-
plished by plotting the φ = 0-level set. The left hand side of Figure 13 shows a
comparison of the crack topologies obtained from the present 3D X-FEM model us-
ing a slab-like higher order solid FEM formulation, with a variational 2D X-FEM
model proposed by (Meschke and Dumstorff, 2007) and with the experimentally
determined range of cracks (in grey color). The crack topology obtained from the
proposed 3D X-FEM model correlates well with the experimental results and the
results from 2D analyses using a variational X-FEM model with crack tip enhance-
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φ = 0

φ = 0

Figure 12: 3D X-FEM analysis of a double notched slab: Visualization of the crack
topology by the φ = 0-level set
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Figure 13: 3D X-FEM analysis of a double notched slab: Comparisons of re-
sults from the proposed 3D X-FEM model with a variational 2D X-FEM model
(Meschke and Dumstorff, 2007) and the experimental results. left: crack topolo-
gies, right: load-displacement curves

ments (Meschke and Dumstorff, 2007). Figure 13 (right) shows a comparison of the
corresponding load displacement curves. In this figure, also computational results
from (Feist, 2004) are included. All three numerical results are within a relativley
small range while they differ significantly with respect to the experimental results.
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It should be emphasized, that, due to the lack of reported material parameters the
set of parameters taken by (Feist, 2004; Meschke and Dumstorff, 2007) has been
adopted.

6.2 Anchor pull-out test

To illustrate the capability of the proposed three-dimensional implementation of
the Extended Finite Element Method in a fully 3D situation, an anchor pull-out
test is investigated numerically. Figure14 shows the analyzed structure and the cor-
responding finite element mesh using 996 elements. The material parameters are

4z = 0
40

0
[m

m
]

400 [m
m]

400 [mm]

X

Y
Z

80 [m
m]

Figure 14: Numerical analysis of an anchor pull-out test: Geometry and finite ele-
ment mesh (NE = 996)

the same as used previously for the numerical analysis of the double-notched slab.
Due to symmetry only one quarter of the structure is discretized. The pull-out of
the anchor is simulated by applying displacements on the bottom side of the ele-
ments representing the counterpart of the anchor plates. The anchor itself is not
discretized. The displacements are approximated by tri-quadratic shape functions
(u = u2,2,2). Along the shaded part of the top surface (Figure14) the concrete speci-
men is supported in z-direction. Figure 15 (left) shows the resulting crack surface of
the pull-out test. This figure illustrates the three-dimensional character of the crack
surface and its conical propagation from the anchor plate towards the supporting
area at the top face of the specimen. It is observed that the gaps between crack
surface segments resulting from the C0-discontinuous crack tracking algorithm are
marginal. Figure 15 (right) illustrates the displacement component uz in pull-out
direction. The jump of the displacement component uz at the position of the de-
termined crack surface indicates a complete separation of the upper and lower part
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Figure 15: Numerical analysis of an anchor pull-out test: left: crack topology, right:
distribution of displacement u3 in pull-out direction
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Figure 16: Numerical analysis of an anchor pull-out test: left: stress component
σ33 at an initial stage of the pull-out process, right: stress component σ33 at the
end of crack process

of the concrete structure. Figure 17 contains the load displacement curve obtained
from the numerical analysis. The irregularities in this curve reflect the cracking of
single elements resulting from the elementwise crack propagation algorithm.

In an initial stage, the curve shows a linear elastic behavior of the structure up to
a prescribed displacement of uz ≈ 0.04mm. Subsequently, a nonlinear relation be-
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Figure 17: Numerical analysis of an anchor pull-out test: load-displacement curve

tween the applied load and the displacement of the anchor plate is observed, with-
out, however, showing a structural softening behavior. During this phase, a crack
surface emanates from the anchor plate with a relatively small inclination which
prevents the crack surface reaching the top surface and therefore prevents struc-
tural softening. Hence, after the displacement has reached a level of uz ≈ 0.21mm,
the response of the structure is again more or less linear since the crack evolution
comes to a standstill and the stresses are transferred directly to the supporting area
at the top surface.
This observed structural behavior is a consequence of the fact, that, due to the spe-
cific geometry of the chosen example, the fracture cone does not fully penetrate
up to the top surface and the load is transferred via inclined compressive struts. If
the present model for mode I fracture would be supplemented by a comprehensive
3D model for concrete which also accounts for failure in compression and shear,
structural softening would also be observed for the present example (Gasser and
Holzapfel (2005)).

Figure 16 illustrates the distribution of the stress component σ33 in two loading
stages. Figure16 (right) shows the strongly increased level of the stress compo-
nent σ33 along the supporting area after the cracking process has come to an end
compared to the initial stage (Figure16 left).

6.3 Drying of a three-point bending beam

The applicability of the proposed finite element formulation for prognoses of mois-
ture transport in cracks is shown by the numerical analysis of a notched three point
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Figure 19: Hygro-mechanical simulation of a concrete beam: mechanical and hy-
gral loading history
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Figure 20: Hygro-mechanical simulation of a concrete beam: temporal evolution
of the crack opening

the left hand side of Figure 21 showing the distribution of the capillary pressure pc

along the height of the beam at the position of the initial crack at different stages of
the drying process.

Figure 18: Hygro-mechanical simulation of a concrete beam: geometry, material
parameters and finite element mesh
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Figure 19: Hygro-mechanical simulation of a concrete beam: mechanical and hy-
gral loading history

bending beam subjected to drying. Figure 18 contains the geometry, the mechan-
ical and hygral boundary conditions, the material parameters and the spatial dis-
cretization by means of 272 3D-p-elements. For the approximation of the regular
displacement field, the anisotropic Ansatz u≈ u2,2,1 is chosen while trilinear shape
functions are used for the enhanced displacements and the capillary pressure, re-
spectively. Figure 19 illustrates the mechanical and hygral loading history of the
beam structure. A fixed crack located in the center at the bottom side of the beam
with a length of 3.25mm is generated by applying a displacement u∗ = 0.56mm
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at the center of the top face of the beam. After applying the mechanical loading a
drying process at the lower face, starting from a liquid saturation of S∗l = 88.2%
(pc = 10.0N/mm2) to a final saturation of S∗l = 58.8% (pc = 20.0N/mm2) is pre-
scribed while the liquid saturation at the upper face remains constant. Due to the
drying process, the existing crack opens (Figure20).

w [mm]

0.10

0.08

0.06 40 80 120
t [h]

Figure 20: Hygro-mechanical simulation of a concrete beam: temporal evolution
of the crack opening

Figure 21 illustrates the distribution of capillary pressure pc in the vicinity of the
crack at different stages of the drying process. Due to the hygral environmental
conditions, the moisture front penetrates from the bottom upwards. In the vicinity
of the crack, an accelerated drying process is observed. This is also illustrated on
the left hand side of Figure 21 showing the distribution of the capillary pressure pc

along the height of the beam at the position of the initial crack at different stages of
the drying process.

7 Conclusions

A three-dimensional implementation of the Extended Finite Element Method (X-
FEM) for the numerical analysis of cohesive cracks in cementitious materials, such
as concrete, was presented in a hygro-mechanical modeling framework in conjunc-
tion with a p-finite element (p-FEM) strategy based on hierarchical higher order
shape functions has been presented. The hygro-mechanical model for partially
saturated cementitious materials is based upon the Theory of Porous Media and
allows for the representations of relevant hygro-mechanical couplings within the
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Figure 21: Hygro-mechanical simulation of a concrete beam: temporal evolution
of the capillary pressure in the vicinity of the initial crack
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intact parts of the material. The X-FEM implementation is characterized by an
efficient integration scheme using pre-defined subdomains and crack tracking al-
gorithms allowing for discontinuities between adjacent crack surfaces in neighbor-
ing elements. The p-FEM modeling platform allows for anisotropic, field-specific
higher order approximations considering the specific requirements associated with
the geometry of the structure and the individual field variables. Interactions be-
tween evolving cracks and the accelerated moisture transport has been taken into
account by means of a POISEUILLE flow model together with a separate integration
along the crack channel. The performance of the proposed 3D higher order X-FEM
model has been demonstrated by two crack propagation analyses and one hygro-
mechanical analysis of a concrete beam. The re-analyses of a double-notched con-
crete slab has shown a good agreement with 2D analyses published previously as
well as with experimental results. In the analysis of a pullout test it was shown that
a more or less smooth crack surface resulting from the pullout of an anchor from a
concrete specimen is generated by the adopted discontinuous crack tracking algo-
rithm. From the hygro-mechanical analysis of the drying of a pre-cracked concrete
beam the capability of the coupled model to represent the accelerated transport of
moisture through the crack channel has been demonstrated.
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