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Locking-free Thick-Thin Rod/Beam Element for Large
Deformation Analyses of Space-Frame Structures, Based
on the Reissner Variational Principle and A Von Karman

Type Nonlinear Theory
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Abstract: This paper presents a new shear flexible beam/rod element for large de-
formation analyses of space-frame structures comprising of thin or thick members,
based on the Reissner variational principle and a von Karman type nonlinear theory
of deformation in the co-rotational reference frame of the present beam element.
The C0 continuous trial functions for transverse rotations in two independent direc-
tions are used over each element, to derive an explicit expression for the (16x16)
symmetric tangent stiffness matrix of the beam element in the co-rotational refer-
ence frame. When compared to the primal approach wherein C1 continuous trial
functions for transverse displacements over each element are necessary, the trial
functions for the transverse bending moments, shear deformations and rotations
are very simple in the current approach, and can be assumed to be linear within
each element. The present (16×16) symmetric tangent stiffness matrices of the
thick/thin beam are much simpler than those of many others in the literature. Nu-
merical examples demonstrate that the present element is free from shear locking
in the thin beam limit, and is suitable for the large deformation analysis of spaced
frames with thick/thin members. The present methodologies can be extended to
study the very large deformations of plates and shells as well.
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1 Introduction

Exact and efficient nonlinear large deformation analyses of space frames have at-
tracted much attention due to their significance in diverse engineering applications,
such as civil and aerospace engineering, and tensegrity structures in biological ap-
plications. In the past decades, many different methods were developed by numer-
ous researchers for the geometrically nonlinear analyses of 3D frame structures.
Bathe and Bolourchi (1979) employed the total Lagrangian and updated Lagrangian
approaches to formulate fully nonlinear 3D continuum beam elements. Punch and
Atluri (1984) examined the performance of linear and quadratic Serendipity hybrid-
stress 2D and 3D beam elements. Based on geometric considerations, Lo (1992)
developed a general 3D nonlinear beam element, which can remove the restriction
of small nodal rotations between two successive load increments. Kondoh, Tanaka
and Atluri (1986), Kondoh and Atluri (1987), Shi and Atluri(1988) presented the
derivations of explicit expressions of the tangent stiffness matrix, without employ-
ing either numerical or symbolic integration. Zhou and Chan (2004a, 2004b) devel-
oped a precise element capable of modeling elastoplastic buckling of a column by
using a single element per member for large deflection analysis. Izzuddin (2001)
clarified some of the conceptual issues which are related to the geometrically non-
linear analysis of 3D framed structures. Simo (1985), Mata, Oller and Barbat
(2007, 2008), Auricchio, Carotenuto and Reali (2008) considered the nonlinear
constitutive behavior in the geometrically nonlinear formulation for beams. Iura
and Atluri (1988), Chan (1994), Xue and Meek (2001), Wu, Tsai and Lee(2009)
studied the nonlinear dynamic response of the 3D frames. Lee, Lin, Lee, Lu and
Liu (2008), Lee, Lu, Liu and Huang (2008), Lee and Wu (2009) gave the exact large
deflection solutions of the beams for some special cases. Gendy and Saleeb (1992);
Atluri, Iura, and Vasudevan(2001) had brief discussions of arbitrary cross sections.
Atluri and Zhu (1998), Zhu, Zhang and Atluri (1999), Wen and Hon (2007); Dinis,
Jorge and Belinha (2009), Han, Rajendran and Atluri (2005), Lee and Chen (2009)
applied meshless methods to the analyses of nonlinear problems with large defor-
mations or rotations. Gendy and Saleeb (1992), Atluri, Iura, and Vasudevan(2001)
had brief discussions of the frames with arbitrary cross sections. Large rotations in
beams, plates and shells, and attendant variational principles involving the rotation
tensor as a direct variable, were studied extensively by Atluri and his co-workers
(see, for instance, Atluri 1980, Atluri 1984 ,and Atluri and Cazzani 1994).

In previous papers (Cai, Paik and Atluri 2009a,b), we proposed two types of sim-
ple “thin” beam/rod elements, based on simple mechanics and physical clarity, for
geometrically nonlinear large rotation analyses of space frames consisting of mem-
bers of arbitrary cross-section. However, the elements are only accurate for very
thin beams and for structures containing thin beams, because the influence of the
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shear deformation was neglected. The neglect of the effect of the shear deforma-
tion may impair the computational accuracy and may lead to the error of results
for moderately thick structures. Researchers had developed many shear-flexible
beam elements (Reddy 1997; Mukherjee and Prathap 2001; Atluri, Cho and Kim
1999; Zhang and Di 2003; Li 2007) to obtain acceptable results for a wide range of
element thicknesses, and successfully applied them to diverse engineering fields.
Nevertheless, these methods will involve very complex algebraic derivations when
they are extended to the large deformation analysis of structures. In this paper, we
present a new shear flexible beam/rod element for large deformation analyses of
space-frame structures consisting of thick or thin members, based on the Reissner
variational principle and a von Karman type nonlinear theory of deformation in
the co-rotational reference frame of the present beam element. The C0 continuous
trial functions for transverse rotations in two independent directions, over each el-
ement, are used to derive an explicit expression for the (16x16) symmetric tangent
stiffness matrix of the beam element in the co-rotational reference frame. When
compared to the primal approach wherein C1 continuous trial functions for trans-
verse displacements over each element are necessary (Zhu, Cai, Paik and Atluri
2010), the trial functions for the transverse bending moments, shear deformations
and rotations are very simple in the current approach, and can be assumed to be lin-
ear within each element. The present (16×16) symmetric tangent stiffness matrices
(which remain symmetric throughout the deformations and large rotations) of the
beam, based on the Reissner variational principle and the von Karman type simpli-
fied rod theory, are much simpler than those of many others in the literature, such
as, Simo (1985), Bathe and Bolourchi (1979), Crisfield (1990), Kondoh, Tanaka
and Atluri (1986), Kondoh and Atluri (1987), and Shi and Atluri (1988). Numeri-
cal examples demonstrated that the present element is free from shear locking and
is suitable for the large deformation analysis of spaced frames consisting of thick or
thin members. The present methodologies can be extended to study the very large
deformations of plates and shells (Sladek, Sladek, Solek and Atluri 2008; Majorana
and Salomoni 2008; Gato and Shie 2008; Kulikov and Plotnikova 2008) as well.

2 Von-Karman type nonlinear theory including shear deformation for a rod
with large deformations

We consider a fixed global reference frame with axes x̄i (i = 1,2,3) and base vectors
ēi. An initially straight rod of an arbitrary cross-section and base vectors ẽi, in
its undeformed state, with local coordinates x̃i (i = 1,2,3), is located arbitrarily in
space, as shown in Fig.1. The current configuration of the rod, after arbitrarily large
deformations (but small strains) is also shown in Fig.1.

The local coordinates in the reference frame in the current configuration are xi and
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the base vectors are ei (i = 1,2,3). The nodes 1 and 2 of the rod (or an element of
the rod) are supposed to undergo arbitrarily large displacements, and the rotations
between the ẽi (i = 1,2,3) and the ek (k = 1,2,3) base vectors are assumed to be
arbitrarily finite. In the continuing deformation from the current configuration, the
local displacements in the xi (ei) coordinate system are assumed to be moderate,
and the local gradient (∂u10/∂x1) is assumed to be small compared to the transverse
rotations (∂uα0/∂x1)(α = 2,3). Thus, in essence, a von-Karman type deformation
is assumed for the continued deformation from the current configuration, in the co-
rotational frame of reference ei (i = 1,2,3) in the local coordinates xi (i = 1,2,3).
If H is the characteristic dimension of the cross-section of the rod, the precise
assumptions governing the continued deformations from the current configuration
are
u10
H ≤ 1; H

L need not be ≤ 1.

uα0

H
≈ O(1) (α = 2,3)

∂u10

∂x1
<<

∂uα0

∂x1
(α = 2,3)

and
(

∂uα0
∂x1

)2
(α = 2,3) are not negligible.

As shown in Fig.2, we consider the large deformations of a cylindrical rod, sub-
jected to bending (in two directions), and torsion around x1. The cross-section is
unsymmetrical around x2 and x3 axes,and is constant along x1.

As shown in Fig.2, the warping displacement due to the torque T around x1 axis is
u1T (x2,x3) and does not depend on x1, the axial displacement at the origin (x2 =
x3 = 0) is u10 (x1), and the bending displacement at x2 = x3 = 0 along the axis x1
are u20 (x1) (along x2) and u30 (x1) (along x3).

We consider only loading situations when the generally 3-dimensional displace-
ment state in the ei system, donated as

ui = ui (xk) i = 1,2,3; k = 1,2,3

is simplified to be of the type:

u1 = u1T (x2,x3)+u10 (x1)− x2θ2− x3θ3

u2 = u20 (x1)−θ1x3

u3 = u30 (x1)+θ1x2

(1)

where θ1 is the total torsion of the rod at x1 due to the torque T , θ2 is the total
rotation around x3, and θ3 is the total rotation around x2, where θ2 and θ3 include
the influence of the shear deformation.
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2.1 Strain-displacement relations

Considering only von Karman type nonlinearities in the rotated reference frame
ei (xi), we can write the Green-Lagrange strain-displacement relations in the up-
dated Lagrangian co-rotational frame ei in Fig.1 as:

ε11 =
∂u1

∂x1
+

1
2

(
∂u2

∂x1

)2

+
1
2

(
∂u3

∂x1

)2

=
∂u10

∂x1
+

1
2

(
∂u20

∂x1

)2

+
1
2

(
∂u30

∂x1

)2

− x2
∂θ2

∂x1
− x3

∂θ3

∂x1

ε12 =
1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
=

1
2

(
∂u1T

∂x2
− ∂θ1

∂x1
x3 +

∂u20

∂x1
−θ2

)
ε13 =

1
2

(
∂u1

∂x3
+

∂u3

∂x1

)
=

1
2

(
∂u1T

∂x3
+

∂θ1

∂x1
x2 +

∂u30

∂x1
−θ3

)
ε22 =

∂u2

∂x2
+

1
2

(
∂u1

∂x2

)2

+
1
2

(
∂u2

∂x2

)2

+
1
2

(
∂u3

∂x2

)2

≈ 0

ε23 ≈ 0

ε33 ≈ 0 (2)

By letting

θ
′
1 = θ1,1

γ2 = u20,1−θ2

γ3 = u30,1−θ3

χ22 =−u20,11

χ33 =−u30,11

ε
0
11 = u10,1 +

1
2

(u20,1)
2 +

1
2

(u30,1)
2 = ε

0L
11 + ε

0N
11

(3)

the strain-displacement relations can be rewritten as

ε11 = ε
0
11 + x2χ22 + x3χ33 + x2γ2,1 + x3γ3,1

ε12 =
1
2
(
u1T,2−θ

′
1 x3 + γ2

)
ε13 =

1
2
(
u1T,3 +θ

′
1 x2 + γ3

)
ε22 = ε33 = ε23 = 0

(4)
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Figure 1: Kinematics of deformation of a space framed member

where , i denotes a differentiation with respect to xi.

The matrix form of the Eq.(4) is

εεε = εεε
Lb + ε

Ls +εεε
N = εεε

L +εεε
N (5)

where εεεLb is the linear part of the bending strain, εεεN is the nonlinear part of the
bending strain, εεεLs is the shear strain, and

εεε
Lb =


εLb

11
εLb

12
εLb

13

=


u10,1 + x2χ22 + x3χ33

1
2 (u1T,2−θ ′1 x3)
1
2 (u1T,3 +θ ′1 x2)

 (6)

εεε
Ls =


εLs

11
εLs

12
εLs

13

=


x2γ2,1 + x3γ3,1

γ2/2
γ3/2

 (7)

εεε
N =


εN

11
εN

12
εN

13

=


1
2 (u20,1)

2 + 1
2 (u30,1)

2

0
0

 (8)
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 Figure 2: Large deformation analysis model of a cylindrical rod

From Eqs.(3) and (4), it is seen that in the present formulation, the transverse dis-
placements (u20 and u30) as well as the transverse shear strains (γ2 and γ3) are re-
tained as independent variables. This type of formulation has beem clearly shown
(Atluri 2005) to lead to be locking-free and remains uniformly valid for either thick
or thin beams, without using such numerical gimmicks as selective/reduced inte-
grations and without the need for stabilizing the attendant spurious modes of zero-
energy. On the other hand, one may also use formulations wherein the transverse
displacements (u20 and u30) as well as the total rotations (θ2 and θ3) are retained as
independent variables. However, it has been simply explained in (Atluri 2005), how
such formulations lead to locking, thus necessitating the use of selective reduced
integration and the need for the stabilization of the attendant zero-energy modes.

2.2 Stress-Strain relations

Taking the material to be linear elastic, we assume that the additional second Piola-
Kirchhoff stress, denoted by tensor S1 in the updated Lagrangian co-rotational ref-
erence frame ei of Fig.1 (in addition to the pre-existing Cauchy stress due to prior
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deformation, denoted by τττ0), is given by:

S1
11 = Eε11

S1
12 = 2µε12

S1
13 = 2µε13

S1
22 = S1

33 = S1
23 ≈ 0

(9)

where µ = E
2(1+ν) ; E is the elastic modulus; ν is the Poisson ratio.

By using Eq.(5), Eq.(9) can also be written as

S1 = D̃
(

εεε
Lb +εεε

Ls +εεε
N
)

= SLb +SLs +SN = S1L +S1N (10)

where

D̃ =

E 0 0
0 2µ 0
0 0 2µ

 (11)

From Eq.(4) and Eq.(9), the generalized nodal forces of the rod element in Fig.1
can be written as

N11 =
∫

A
S1

11dA

= E
(

Aε
0
11 + χ22

∫
A

x2dA+ χ33

∫
A

x3dA+ γ2,1

∫
A

x2dA+ γ3,1

∫
A

x3dA
)

= E
(
Aε

0
11 + I2χ22 + I3χ33 + I2γ2,1 + I3γ3,1

)
M33 =

∫
A

S1
11x3dA = E

∫
A

(
ε

0
11 + x2χ22 + x3χ33 + x2γ2,1 + x3γ3,1

)
x3dA

= E
(
I3ε

0
11 + I23χ22 + I33χ33 + I23γ2,1 + I33γ3,1

)
M22 =

∫
A

S1
11x2dA = E

∫
A

(
ε

0
11 + x2χ22 + x3χ33 + x2γ2,1 + x3γ3,1

)
x2dA

= E
(
I2ε

0
11 + I22χ22 + I23χ33 + I22γ2,1 + I23γ3,1

)
T =

∫
A

S1
13x2−S1

12x3dA = 2µ

∫
A
(x2ε13− x3ε12)dA

=
2µ

2

∫
A

[(
u1T,3 +θ

′
1x2 + γ3

)
x2−

(
u1T,2−θ

′
1x3 + γ2

)
x3
]

dA

= µ

∫
A

θ
′
1
(
x2

2 + x2
3
)

dA+ µ

∫
A
(γ3x2− γ2x3)dA+ µ

∫
A
(u1T,3x2−u1T,2x3)dA

= µIrrθ
′
1 + µI2γ3−µI3γ2 + µ

∮
S
(u1T n3x2−u1T n2x3)dS

= µIrrθ
′
1 + µI2γ3−µI3γ2
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Q12 =
∫

A
S1

12dA = µ

∫
A

(
u1T,2−θ

′
1x3 + γ2

)
dA ≈ µ

(
−I3θ

′
1 +Aγ2

)
Q13 =

∫
A

S1
13dA = µ

∫
A

(
u1T,3 +θ

′
1x2 + γ3

)
dA ≈ µ

(
I2θ
′
1 +Aγ3

)
(12)

where n j is the outward normal, I2 =
∫

A x2dA, I3 =
∫

A x3dA, I33 =
∫

A x2
3dA, I22 =∫

A x2
2dA, I23 =

∫
A x2x3dA, and Irr =

∫
A

(
x2

2 + x2
3
)

dA.

The matrix form of the above equations is

σ = DE (13)

where

σσσ =



σ1
σ2
σ3
σ4
σ5
σ6


=



N11
M22
M33
T

Q12
Q13


= element generalized stresses (14)

E = EL +EN =



E1
E2
E3
E4
E5
E6


= element generalized strains (15)

D =



EA EI2 EI3 0 0 0
EI2 EI22 EI23 0 0 0
EI3 EI23 EI33 0 0 0
0 0 0 µIrr −µI3 µI2
0 0 0 −µI3 µkA 0
0 0 0 µI2 0 µkA

 (16)

where k is the shear coefficient related to the cross section, e.g., k is taken to be 2/3
for the rectangular cross sections and k is taken to be 1.0 for the asymmetric cross
sections in this paper.

EL =
[
u10,1 −u20,11 + γ2,1 −u30,11 + γ3,1 θ1,1 γ2 γ3

]T (17)

EN =
[

1
2

(
u2

20,1 +u2
30,1

)
0 0 0 0 0

]T
(18)
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3 Updated Lagrangian formulation in the co-rotational reference frame ei

3.1 The use of the Reissner variational principle in the co-rotational updated
Lagrangian reference frame

If τ0
i j are the initial Cauchy stresses in the updated Lagrangian co-rotational frame

ei of Fig.1, S1
i j are the additional (incremental) second Piola-Kirchhoff stresses in

the same updated Lagrangian co-rotational frame with axes ei, Si j = S1
i j +τ0

i j are the
total stresses, and ui are the incremental displacements in the co-rotational updated-
Lagrangian reference frame, the functional of the Reissner variational principle
(Reissner 1953) [see also Atluri and Reissner 1989] for the incremental S1

i j and ui

in the co-rotational updated Lagrangian reference frame is given by [Atluri 1979,
1980]

ΠR =
∫
V

{
−B
(
S1

i j
)
+

1
2

τ
0
i juk, iuk, j +

1
2

Si j (ui, j +u j, i)−ρbiui

}
dV −

∫
Sσ

T̄iuidS

(19)

where V is the volume in the current co-rotational reference state, Sσ is the surface
where tractions are prescribed, bi = b0

i +b1
i are the body forces per unit volume in

the current reference state, and T̄i = T̄ 0
i + T̄ 1

i are the given boundary tractions.

The conditions of stationarity of ΠR, with respect to variations δS1
i j and δui lead

to the following incremental equations in the co-rotational updated- Lagrangian
reference frame.

∂B
∂S1

i j
=

1
2

[ui, j +u j,i] (20)

[
S1

i j + τ
0
iku j,k

]
, j

+ρb1
i =−

(
τ

0
i j
)
, j
−ρb0

i (21)

n j
[
S1

i j + τ
0
iku j,k

]−
T̄ 1

i =−n jτ
0
i j + T̄ 0

i at Sσ (22)

In Eq.(19), the displacement boundary conditions,

ui = ūi at Su (23)

are assumed to be satisfied a priori, at the external boundary, Su. Eq.(21) leads to
equilibrium correction iterations.
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If the variational principle embodied in Eq.(19) is applied to a group of finite ele-
ments, Vm,m = 1,2, · · · ,N, which comprise the volume V , ie, V = ∑Vm, then

ΠR =

∑
m

∫
Vm

{
−B
(
S1

i j
)
+

1
2

τ
0
i juk, juk, j +

1
2

Si j (ui, j +u j,i)−ρbiui

}
dV −

∫
Sσm

TiuidS


(24)

Let ∂Vm be the boundary of Vm, and ρm be the part of ∂Vm which is shared by the
element with its neighbouring elements. If the trial function ui and the test function
∂ui in each Vm are such that the inter-element continuity condition,

u+
i = u−i at ρm (25)

(where + and – refer to either side of the boundary ρm) is satisfied a priori, then it
can be shown (Atluri 1975,1984; Atluri and Murakawa 1977; Atluri, Gallagher and
Zienkiewicz 1983) that the conditions of stationarity of ΠR in Eq.(24) lead to:

∂B
∂S1

i j
=

1
2
[
ui, j +u j,i

]
in Vm (26)

[
S1

i j + τ
0
iku j,k

]
, j

+ρb1
i =−τ

0
i j, j−ρb0

i in Vm (27)[
ni
(
S1

i j + τ
0
iku j,k

)]+
+
[
ni
(
S1

i j + τ
0
iku j,k

)]−
=−

[
niτ

0
i j
]+− [niτ

0
i j
]−

at ρm (28)

n j
[
S1

i j + τ
0
iku j,k

]−
T̄ 1

i =−n jτ
0
i j + T̄ 0

i at Sσm (29)

Eq.(28) is the condition of traction reciprocity at the inter-element boundary, ρm.
Eqs. (27) and (28) lead to corrective iterations for equilibrium within each element,
and traction reciprocity at the inter-element boundaries, respectively.

Carrying out the integration over the cross sectional area of each rod, and using
Eqs.(4) and (12), Eq.(24) can be easily shown to reduce to:

ΠR = ∑
elem


∫
l

(
−1

2
σσσ

T D−1
σσσ

)
dl +

∫
l

N0
11

1
2
(
u2

20,1 +u2
30,1
)

dl

+
∫
l

[
~N11ε

0L
11 + ~M22 (χ22 + γ2,1)+ ~M33 (χ33 + γ3,1)+~T θ11 + ~Q12γ2 + ~Q13γ3

]
dl

− Q̄q

}
(30)
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where D is given in Eq.(16), C = D−1, l is the length of the rod element, σσσ is
given in Eq.(14), σ0

i j =
[
N0

11 M0
22 M0

33 T 0 Q0
12 Q0

13

]T is the initial element-
generalized-stress in the corotational reference coordinates ei, and ~σσσ = σσσ0 +σσσ =[
~N11 ~M22 ~M33 ~T ~Q12 ~Q13

]T
is the total element generalized stresses in the

corotational reference coordinates ei. Q̄ is the nodal external generalized force
vector (consisting of force as well as moments) in the global Cartesian reference
frame, and q is the incremental nodal generalized displacement vector (consisting
of displacements as well as rotations) in the global Cartesian reference frame. It
should be noted that while ΠR in Eq.(30) represents a sum over the elements, the
relevant integrals are evaluated over each element in it’s own co-rotational updated
Lagrangian reference frame.

By integrating by parts, the third item of the right side of Eq.(30) can be written as∫
l

~N11ε
0L
11 dl =

∫
l

~N11u10,1dl =−
∫
l

~N11,1u10dl + ~N11u10

∣∣∣l
0∫

l

~M22 (χ22 + γ2,1)dl =−
∫
l

~M22u20,11dl +
∫
l

~M22γ2,1dl

=−
∫
l

~M22,11u20dl + ~M22,1u20

∣∣∣l
0
− ~M22u20,1

∣∣∣l
0
−
∫
l

~M22,1γ2dl + ~M22γ2

∣∣∣l
0∫

l

~M33 (χ33 + γ3,1)dl =−
∫
l

~M33u30,11dl +
∫
l

~M33γ3,1dl

=−
∫
l

~M33,11u30dl + ~M33,1u30

∣∣∣l
0
− ~M33u30,1

∣∣∣l
0
−
∫
l

~M33,1γ3dl + ~M33γ3

∣∣∣l
0∫

l

~T θ1,1dl =
∫
l

~T θ1,1dl =−
∫
l

~T,1θ1dl + ~T θ1

∣∣∣l
0

(31)

The condition of stationarity of ΠR in Eq.(30) leads to:

D−1
σ = E =

[
u10,1 −u20,11 + γ2,1 −u30,11 + γ3,1 θ1,1 γ2 γ3

]T
~N11,1 = 0 in each element
~T,1 = 0 in each element
~M22,11 +

(
N0

11u20,1
)
,1 = 0 in each element

~M33,11 +
(
N0

11u30,1
)
,1 = 0 in each element

− ~M22,1 + ~Q12 = 0 in each element

− ~M33,1 + ~Q13 = 0 in each element

(32)
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and the nodal equilibrium equations, which arise out of the term:

∑
elem

{
~N11δu10

∣∣l
0 + ~M22,1δu20

∣∣l
0 − ~M22δu20,1

∣∣l
0 + ~M22δγ2

∣∣∣l
0

+ ~M33,1δu30
∣∣l
0 − ~M33δu30,1

∣∣l
0

+ ~M33δγ3

∣∣∣l
0
+~T δ θ1|l0 +

(
N0

11u20,1
)

δ u20|l0 +
(
N0

11u30,1
)

δ u30|l0− Q̄δq
}

= 0

(33)

3.2 Trial functions of the stresses and displacements in each element

We assume the trial functions for N11,M22,M33,T ,Q12 and Q13 in each element, as

N11 = n

M22 =−m3 =−φ1
1m3−φ2

2m3

M33 = m2 = φ1
1m2 +φ2

2m2

T = m1

Q12 = φ1
1q2 +φ2

2q2

Q13 = φ1
1q3 +φ2

2q3

(34)

where

φ1 = 1−ξ

φ2 = ξ

(
ξ =

x1

l

)
(35)

The matrix form of the above equation is

σσσ = Pβ (36)

where

P =



1 0 0 0 0 0 0 0 0 0
0 −φ1 −φ2 0 0 0 0 0 0 0
0 0 0 φ1 φ2 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 φ1 φ2 0 0
0 0 0 0 0 0 0 0 φ1 φ2

 (37)

βββ =
[
n 1m3

2m3
1m2

2m2 m1
1q2

2q2
1q3

2q3
]T (38)
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In a same way, the initial stress σσσ0 can be expressed as

σσσ
0 = Pβ

0 (39)

where

βββ
0 =

[
n0 1m0

3
2m0

3
1m0

2
2m0

2 m0
1

1q0
2

2q0
2

1q0
3

2q0
3

]T (40)

The incremental internal nodal force vector βββ n of node 1 and node 2 of a rod is
denoted as

βββ n =
[

1N 1q2
1q3

1m1
1m2

1m3
2N 2q2

2q3
2m1

2m2
2m3
]T (41)

In the functional in Eq.(30), only γ2, γ3, and the squares of u20,1 and u30,1 occur
within each element. Thus, ~θ2 = −u30,1 and ~θ3 = u20,1 are assumed directly to
be linear within each element, in terms of their respective nodal values. This will
be enormously simple and advantageous in the case of plate and shell elements.
This is in contrast to the primal approach (Zhu, Cai, Paik and Atluri 2010) wherein
u20 and u30 were required to be C1 continuous over each element, and thus were
assumed to be Herimitian polynomials over each element. In this paper, however,
we assume:

uθ =

{
~θ2
~θ3

}
= Nθ aθ =

[
φ1 0 φ2 0
0 φ1 0 φ2

]
1~θ2
1~θ3
2~θ2
2~θ3

 (42)

Assuming that ‘a’ represents the vector of generalized displacements of the nodes
of the rod element in the updated Lagrangian co-rotational frame ei of Fig.1, the
displacement vectors of node i are:

ia =
[

iu1
iu2

iu3
iu4

iu5
iu6

iu7
iu8
]T

=
[

iu10
iu20

iu30
iθ1

i~θ2
i~θ3

iγ3
iγ2

]T
[i = 1,2]

(43)

where i~θ2 =−iu30,1 and i~θ3 = iu20,1.

The relation between aθ and a can be expressed as

aθ = Tθ a (44)
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where

Tθ =


0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

 (45)

γ2and γ3 can also be assumed as

uγ =
{

γ2
γ3

}
= Nγaγ =

[
φ1 0 φ2 0
0 φ1 0 φ2

]
1γ2
1γ3
2γ2
2γ3

 (46)

3.3 Explicit expressions of the tangent stiffness matrix for each element

Because of the assumption of the trial functions of the stresses in Eq.(34), the fol-
lowing items in Eq.(31) become

∫
l

~N11,1u10dl = 0

∫
l

~M22,11u20dl = 0

∫
l

~M33,11u30dl = 0

∫
l

~T,1θ1dl = 0

(47)

Eq.(30) can be rewritten as

ΠR =−ΠR1 +ΠR2 +ΠR3−ΠR4 (48)

where

ΠR1 = ∑
elem

∫
l

(
1
2

σσσ
T D−1

σσσ

)
dl = ∑

elem

∫
l

(
1
2

βββ
T PT CPβββ

)
dl (49)
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ΠR2 = ∑
elem

{
2N2u10− 1N1u10 +

1
l

(1m3− 2m3
)(2u20− 1u20

)
+ 2m3

2~θ3− 1m3
1~θ3

+
1
l

(2m2− 1m2
)(2u30− 1u30

)
+ 2m2

2~θ2− 1m2
1~θ2 + 2m1

2
θ1− 1m1

1
θ1

− 2m3
2
γ2 + 1m3

1
γ2 + 2m2

2
γ3− 1m2

1
γ3 +

l
6
(
21q2

1
γ2 + 1q2

2
γ2

+2q2
1
γ2 +22q2

2
γ2 +21q3

1
γ3 + 1q3

2
γ3 + 2q3

1
γ3 + 2q3

2
γ3
)}

= ∑
elem

{
(βββ )T Rσ a

}
(50)

where

Rσ =



−1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 −1

l 0 0 0 −1 0 1
2 0 1

l 0 0 0 0 0 −1
2

0 1
l 0 0 0 0 0 1

2 0 −1
l 0 0 0 1 0 −1

2
0 0 1

l 0 −1 0 −1
2 0 0 0 −1

l 0 0 0 1
2 0

0 0 −1
l 0 0 0 −1

2 0 0 0 1
l 0 0 0 1

2 0
0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 l

3 0 0 0 0 0 0 0 l
6

0 0 0 0 0 0 0 l
6 0 0 0 0 0 0 0 l

3
0 0 0 0 0 0 l

3 0 0 0 0 0 0 0 l
6 0

0 0 0 0 0 0 l
6 0 0 0 0 0 0 0 l

3 0


(51)

In ΠR2, only the element nodal values of the transverse displacements, derivatives
of the transverse displacements, and transverse shear strains appear. Thus, for eval-
uating ΠR2, one need not assume these trial functions over the element.

ΠR3 = ∑
elem

∫
l

N0
11

[
1
2

(u20,1)
2 +

1
2

(u30,1)
2
]

dl = ∑
elem

∫
l

σ
0
1

[
1
2

(
~θ2

)2
+

1
2

(
~θ3

)2
]

dl

= ∑
elem

∫
l

σ0
1

2
uT

θ uθ dl = ∑
elem

∫
l

σ0
1

2
aT TT

θ NT
θ Nθ Tθ adl

(52)

in ΠR3, only the squares of u20,1 and u30,1 appear over each element. Thus, u20,1
and u30,1 are simply assumed to be C0 continuous over each element.
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Letting Ann = TT
θ

NT
θ

Nθ Tθ , ΠR3 can be rewritten as

ΠR3 = ∑
elem

∫
l

σ0
1

2
aT Annadl (53)

and

ΠR4 = ∑
elem

(
aT F−aT RT

σβββ
0) (54)

Thus, in summary, in the present development of a (16x16) symmetric tangent stiff-
ness matrix for a thick/thin beam element which undergoes large rotations over each
element we need only assume:

1. C0 continuous functions over the element for u20,1 and u30,1

2. C0 continuous functions over each element for M22 and M33

3. C0 continuous functions over each element for Q12 and Q13, and

4. a constant over each element for T .

Thus, the present development based on the Reissner’s varitional principle is much
simpler than that based on the primal method in Zhu, Cai, Paik and Atluri (2010).
This simplicity of the present method will be far more pronounced when plate and
shell elements developed.

By invoking δ ΠR = 0, we can obtain

δΠR = ∑
elem

δβββ
T

−
∫
l

PT CPβdl +Rσ a

+

∑
elem

δaT

RT
σβββ +σ

0
1

∫
l

Annadl +RT
σβββ

0−F


(55)

Let

H =
∫
l

PT CPdl, G = Rσ , KN = σ
0
1

∫
l

Anndl, F0 = GT
βββ

0 (56)

then

δΠR = ∑
elem

δβββ
T {−Hβ +Ga} − ∑

elem
δaT {GT

βββ +KNa−F+F0}= 0 (57)
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Since δ βββ T in Eq.(57) are independent and arbitrary in each element, one obtains

βββ = H−1Ga (58)

and

∑
elem

δaT {(KL +KN)a−F+F0}= 0 (59)

where

KL = GT H - 1G (60)

KN = σ
0
1

∫
l

Anndl (61)

The components of the element tangent stiffness matrix, KL and KN , respectively,
can be derived explicitly, after some simple algebra, as follows.

KN =
lσ0

1
6



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

sym. 0 0 0 0 0 0
0 0 0 0 0

2 0 0 0
2 0 0

0 0
0



(62)

KL =
E
lA

[
KL1 KL12
KT

L12 KL2

]
(63)
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where

KL1 =



A2 0 0 0 AI3 −AI2 AI3 AI2
a1 a2 0 −a3 a4 0 0

a5 0 −a6 a3 0 0
a7 0 0 −a10I2 a10I3

a8 a9 AI33 AI23
sym. a13 −AI23 −AI22

a15 a17
a19


(64)

KL2 =



A2 0 0 0 AI3 −AI2 AI3 AI2
a1 a2 0 a3 −a4 0 0

a5 0 a6 −a3 0 0
a7 0 0 a10I2 −a10I3

a8 a9 AI33 AI23
sym. a13 −AI23 −AI22

a15 a17
a19


(65)

KL12 =



−A2 0 0 0 −AI3 AI2 −AI3 −AI2
0 −a1 −a2 0 −a3 a4 0 0
0 −a2 −a5 0 −a6 a3 0 0
0 0 0 −a7 0 0 −a10I2 a10I3
−AI3 a3 a6 0 a11 a12 −AI33 −AI23
AI2 −a4 −a3 0 a12 a14 AI23 AI22
−AI3 0 0 a10I2 −AI33 AI23 −a16 −a17
−AI2 0 0 −a10I3 −AI23 AI22 −a17 −a18


(66)

where a1 = 12
(
AI22− I2

2
)
/l2, a2 = 12(AI23− I2I3)/l2, a3 = 6(AI23− I2I3)/l, a4 =

6
(
AI22− I2

2
)
/l, a5 = 12

(
AI33− I2

3
)
/l2, a6 = 6

(
AI33− I2

3
)
/l, a7 = AµIrr/E, a8 =

4AI33−3I2
3 , a9 =−4AI23 +3I2I3, a10 = 0.5Aµl/E, a11 = 2AI33−3I2

3 , a12 =−2AI23 +
3I2I3, a13 = 4AI22−3I2

2 , a14 = 2AI22−3I2
2 , a15 = AI33 +µkA2l2/(3E)−AµI2

2 l2/(12EIrr),
a16 = AI33−µkA2l2/(6E)−AµI2

2 l2/(12EIrr), a17 = AI23 +µAI2I3l2/(12EIrr), a18 =
AI22−µkA2l2/(6E)−AµI2

3 l2/(12EIrr), and a19 = AI22 +µkA2l2/(3E)−AµI2
3 l2/(12EIrr).

Thus, KL is the usual linear symmetric (16×16) stiffness matrix of the beam in the
co-rotational reference frame, with the geometric parameters I2, I3, I22, I33, I23, Irr,
and the current length l.
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The external equivalent nodal force in Eq.(59) can also be simplified to

F0 =
[
−σ0

1 −σ0
2−σ0

3
l

σ0
4−σ0

5
l −σ0

6 −σ0
4 −σ0

2 c1 c2

σ0
1

σ0
2−σ0

3
l −σ0

4−σ0
5

l σ0
6 σ0

5 σ0
3 c3 c4

]T (67)

where c1 = −σ0
4 +σ0

5
2 + l

6

(
2σ0

9 +σ0
10

)
, c2 = σ0

2 +σ0
3

2 + l
6

(
2σ0

7 +σ0
8

)
, c3 = σ0

4 +σ0
5

2 +
l
6

(
σ0

9 +2σ0
10

)
and c4 =−σ0

2 +σ0
3

2 + l
6

(
σ0

7 +2σ0
8

)
.

The items c1,c2,c1, and c4 of the external equivalent nodal force in Eq.(67) can also
be simplified to c1 = 0, c2 = 0, c3 = 0 and c4 = 0. Numerical examples indicate that
the simplification could dramatically accelerate the convergence rates of the large
deformation analyses of the shear flexible beam element in some cases, however, it
would not impair the accuracy of the results.

It is clear from the above procedures, that the present (16×16) symmetric tan-
gent stiffness matrices of the beam in the co-rotational reference frame, based on
the Reissner variational principle and simplified rod theory, are much simpler than
those of Kondoh, Tanaka and Atluri (1986), Kondoh and Atluri (1987), and Shi and
Atluri (1988). Moreover, the explicit expressions for the tangent stiffness matrix of
each rod can be seen to be derived as text-book examples of nonlinear analyses.

4 Transformation between deformation dependent co-rotational local [ei],
and the global [ēi] frames of reference

As shown in Fig.1, x̄i (i = 1,2,3) are the global coordinates with unit basis vectors
ēi. x̃i and ẽi are the local coordinates for the rod element at the undeformed element.
The basis vector ẽi are initially chosen such that (Shi and Atluri 1988)

ẽ1 = (∆x̃1ē1 +∆x̃2ē2 +∆x̃3ē3)/L

ẽ2 = (ē3× ẽ1)/|ē3× ẽ1|
ẽ3 = ẽ1× ẽ2

(68)

where ∆x̃i = x̃2
i − x̃1

i , L =
(
∆x̃2

1 +∆x̃2
2 +∆x̃2

3
) 1

2 .

Then ẽi and ēi have the following relations:
ẽ1
ẽ2
ẽ3

=

 ∆x̃1/L ∆x̃2/L ∆x̃3/L
−∆x̃2/S ∆x̃1/S 0

−∆x̃1∆x̃3/(SL) −∆x̃2∆x̃3/(SL) s/L


ē1
ē2
ē3

 (69)

where S =
(
∆x̃2

1 +∆x̃2
2
) 1

2 .
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Thus we can define a transformation matrix λ̃0 between ẽi and ēi as

λ̃λλ 0 =

 ∆x̃1/L ∆x̃2/L ∆x̃3/L
−∆x̃2/S ∆x̃1/S 0

−∆x̃1∆x̃3/(SL) −∆x̃2∆x̃3/(SL) S/L

 (70)

When the element is parallel to the x̄3 axis, S =
[
∆x̃2

1 +∆x̃2
2
] 1

2 = 0 and Eq.(69) is
not valid. In this case, the local coordinates is determined by

ẽ1 = ē3, ẽ2 = ē2, ẽ3 =−ē1 (71)

Let xi and ei be the co-rotational reference coordinates for the deformed rod ele-
ment. In order to continuously define the local coordinates of the same rod element
during the whole range of large deformation, the basis vectors ei are chosen such
that

e1 = (∆x1ē1 +∆x2ē2 +∆x3ē3)/l = a1ē1 +a2ē2 +a3ē3

e2 = (ẽ3× e1)/|ẽ3× e1|
e3 = e1× e2

(72)

where ∆xi = x2
i − x1

i , l =
(
∆x2

1 +∆x2
2 +∆x2

3
) 1

2 .

We denote ẽ3 in Eq.(69) as

ẽ3 = c1ē1 + c2ē2 + c3ē3 (73)

Then ei and ēi have the following relations:
e1
e2
e3

=

 a1 a2 a3
b1 b2 b3

a2b3−a3b2 a3b1−a1b3 a1b2−a2b1


ē1
ē2
ē3

= λλλ 0ēi (74)

where

b1 = (c2a3− c3a2)/l31

b2 = (c3a1− c1a3)/l31

b3 = (c1a2− c2a1)/l31

(75)

l31 =
[
(c2a3− c3a2)

2 +(c3a1− c1a3)
2 +(c1a2− c2a1)

2
] 1

2
(76)
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and

λλλ 0 =

 a1 a2 a3
b1 b2 b3

a2b3−a3b2 a3b1−a1b3 a1b2−a2b1

 (77)

Thus, the transformation matrix λλλ , between the 16 generalized coordinates in the
co-rotational reference frame, and the corresponding 16 coordinates in the global
Cartesian reference frame, is given by

λλλ =
[1λλλ

2λλλ

]
(78)

where

i
λλλ =


λλλ 0 0 0 0
0 λλλ 0 0 0
0 0 b2 b3
0 0 a3b1−a1b3 a1b2−a2b1

 (79)

Letting xi and ei be the reference coordinates, and repeating the above steps [Eq.(72)
– Eq.(79)], the transformation matrix of each incremental step can be obtained in a
same way.

If a single straight beam is discretized into finite elements, one may enforce the
nodal continuity of (~θ2 and γ2) as well as (~θ3 and γ3) separately, thus leading to
the nodal continuity of the total rotations θ2 and θ3 respectively. However, when
two or more beams are connected arbitrarily at a node, as in a space-frame, geo-
metric compatibility requires the nodal connectivity of only the global Cartesian
components of θ2 and θ3 of the beams joined at the node. However, for algebraic
simplicity, and with some sacrifice of theoretical exactness, only the nodal connec-
tivity of the global Cartesian components of (~θ2 and ~θ3) as well as of (γ2 and γ3)
are enforced separately, in this paper.

Then the element matrices are transformed to the global coordinate system using

ā = λλλ
T a (80)

K̄ = λλλ
T Kλλλ (81)

F̄ = λλλ
T F (82)

where ā,K̄, F̄ are respectively the generalized nodal displacements, element tangent
stiffness matrix and generalized nodal forces, in the global coordinates system.
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After assembling the element stiffness matrices and nodal force vectors, into their
global counterparts, we obtain the discretized equations of the space frames as

K̂â = F̂− F̂0 (83)

The Newton-Raphson method, modified Newton-Rapson method or the artificial
time integration method (Liu 2007a, 2007b; Liu and Atluri 2008) can be employed
to solve Eq.(83). In this implementation, the Newton-Raphson algorithm is used.

5 Numerical examples

5.1 A cantilever beam with a symmetric cross section

A large deflection and moderate rotation analysis of a cantilever beam subject to a
transverse load at the tip, as shown in Fig. 3, is considered. The cross section of
the beam is a square. The Poisson’s ration is ν = 0.25. The transverse load at the
tip is PL2/(EI) = 7.0. The exact linear solution of the vertical tip deflection of the
cantilever beam is given by Prathap and Bhashyam (1982) as

wr =
PL3

3EI

(
1+

3EI
kµAL2

)
(84)

For the comparison in the following examples, the rod element including the shear
deformation is denoted as ‘TKREM’, the rod element not including the shear de-
formation (Cai, Paik and Atluri 2009b) is denoted as ‘TNREM’, the rod element
including the shear deformation and based on the primal principle (Zhu, Cai, Paik
and Atluri 2010) is denoted as ‘TKRE’, and the two nodal Timoshenko shear flex-
ible beam element with reduced integration is denoted as ‘TSBE’.

Tab.1 shows the comparison of the deflection at the tip for the linear analysis for
different ratios of h/L. Tab.2 shows the comparison of the deflection at the tip for
the large deformation analysis for different ratios of h/L.

Table 1: Comparison of the deflection (δ/L) at the tip for linear analysis

h/L 0.4 0.2 0.1 0.05 0.02 0.001 0.0001
TNREM 2.33400 2.33300 2.33350 2.33325 2.33330 2.33334 2.33333
TKREM 2.67400 2.41800 2.35450 2.33875 2.33420 2.33334 2.33333
TKRE 2.67400 2.41800 2.35450 2.33875 2.33420 2.33334 2.33333
TSBE 2.67800 2.41500 2.34950 2.33300 2.32840 2.32750 2.32750
Exact 2.67000 2.41700 2.35450 2.33850 2.33420 2.33334 2.33333

The results presented in Tab.1 indicate that the present element TKREM has very
good characteristics of being free from locking for linear analysis of a rod.
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It is shown in Tab.2 that, except for the shear strain, the Poisson’s ration has a little
influence to the results of the large deformation analysis of rod (for different ratios
of h/L). Tab.2 also indicates that the accuracy of the present element is comparable
to the element based on primal principle, although the simple linear trial function
approaches are used here.

Table 2: Comparison of the deflection(δ/L) at the tip for nonlinear analysis

h/L 0.4 0.2 0.1 0.05 0.02 0.001 0.0001
TNREM 0.85800 0.79900 0.78500 0.78150 0.78060 0.78045 0.78045
TKREM 0.92600 0.81700 0.78950 0.78275 0.78080 0.78045 0.78045
TKRE 0.89800 0.81100 0.78800 0.78225 0.78070 0.78042 0.78042

 
Figure 3: A cantilever beam subject to a transverse load at the tip

5.2 A cantilever beam with an asymmetric cross section

We consider a cantilever beam with an asymmetric cross section, as shown in Fig.4.
The Poisson’s ration is ν = 0.3. The areas of cross section in Fig.4 are A = 1. The
transverse load at the tip is PL2/(EI33) = 7.0. Let h = A1/2 be the characteristic
length of the cross section.

Tab.3 shows the comparison of the deflection u2/L at the tip for linear analysis for
different ratios of h/L. Tab.4 shows the comparison of the deflection u3/L at the
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Table 3: Comparison of the deflection (u2/L) at the tip for linear analysis

h/L 0.4 0.2 0.1 0.05 0.02 0.001 0.0001
TNREM 3.24400 3.24400 3.24450 3.24425 3.24430 3.24432 3.24450
TKREM 2.53800 3.06800 3.20000 3.23325 3.24250 3.24431 3.24450
TKRE 2.54400 3.06300 3.19300 3.22575 3.23480 3.23655 3.23650

tip for linear analysis for different ratios of h/L.

Table 4: Comparison of the deflection (u3/L) at the tip for linear analysis

h/L 0.4 0.2 0.1 0.05 0.02 0.001 0.0001
TNREM 5.44800 5.44900 5.44900 5.44875 5.44880 5.44883 5.44900
TKREM 8.94400 6.32300 5.66750 5.50350 5.45760 5.44886 5.44900
TKRE 8.92200 6.31100 5.65850 5.49550 5.44980 5.44109 5.44100
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Figure 4: A cantilever beam with an asymmetric cross section

Fig.5 shows the comparison of the deflections in x3 direction for the cantilever beam
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with asymmetric cross section by using different rod elements, when h/L = 0.1.
Fig.6 shows the deflection in x2 direction for the cantilever beam with asymmetric
cross section by using different rod elements, when h/L = 0.1. It is noted that the
scale of the abscissa axis should be corrected to P/2500 and E = 0.75e8 in the same
cantilever example with asymmetric cross section in Cai, Paik and Atluri (2009a,
b).
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Figure 5: Comparison of the deflections in x3 direction for the cantilever beam with
asymmetric cross section
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u 2

 

Figure 6: Deflections in x2 direction for the cantilever beam with asymmetric cross
section
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5.3 Large rotations of a cantilever subject to an end-moment and a transverse
load

An initially-straight cantilever subject to an end moment M∗ = ML
2πEI (Crisfield

1990) as shown in Fig.7, is considered. The cross section of the beam is the same
as the Fig.3. The beam is divided into 10 equal elements. Fig.6 shows the compari-
son of the deflections in x3 direction for the cantilever beam by using the thin/thick
beam elements, when h/L = 0.1.

M*=0.3
M*=0.5

EI2
MLM*

π
=

TKREM

TNREM

L

M*=0

M*=1.0
 

Figure 7: Initial and deformed geometries for cantilever subject to an end-moment
by using the thin/thick beam elements (h/L = 0.1)

If a non-conservative, follower-type transverse load P∗ = PL2

2πEI is applied at the tip,
instead of M∗, the comparison of the deflections in x3 direction for the cantilever
beam by using the thin/thick beam elements, when h/L = 0.2, is shown in Fig.8.

5.4 A framed dome

A framed dome shown in Fig.9 is considered (Shi and Atluri 1988). A concentrated
vertical load P is applied at the crown point. Each member of the dome is modeled
by 4 elements. The comparison of the deflections in x3 direction at the crown point
by using the thin/thick beam elements is shown in Fig.10.

6 Conclusions

Based on the Reissner variational principle and a von Karman type nonlinear the-
ory of deformation, a new shear flexible rod/beam element has been developed for
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Figure 8: Initial and deformed geometries for cantilever subject to a transverse load
by using the thin/thick beam elements (h/L = 0.2)
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Figure 9: Framed dome
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λ
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Figure 10: The comparison of the deflections in x3 direction for the crown point of
a framed dome

large deformation analysis of space frames. The trial functions for the derivatives
of transverse displacements, the bending moments, the shear forces, and the torque,
all can be simply assumed to be linear within each element in the current approach.
Thus the development of the present element based on the Reissner’s principle is
much simpler than the thick-thin element based on the primal method presented
in Zhu, Cai, Paik and Atluri (2010). This simplicity will become much more pro-
nounced when the present development is extended, as planned, to plate and shell
elements. The explicit expressions for the (16x16) tangent stiffness matrix of each
element can be seen to be derived as text-book examples of nonlinear analyses.
Numerical examples demonstrate that the present method is just as competitive as
the existing methods in terms of accuracy and efficiency. The present method can
be extended to consider the formation of plastic hinges in each beam of the frame;
and also to consider large-rotations of plates and shells.
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