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Energetic Galerkin BEM for wave propagation
Neumann exterior problems
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Abstract: In this paper we consider 2D wave propagation Neumann exterior
problems reformulated in terms of a hypersingular boundary integral equation with
retarded potential. Starting from a natural energy identity satisfied by the solu-
tion of the differential problem, the related integral equation is set in a suitable
space-time weak form. Then, a theoretical analysis of the introduced formulation
is proposed, pointing out the novelties with respect to existing literature results. At
last, various numerical simulations will be presented and discussed, showing accu-
racy and stability of the space-time Galerkin boundary element method applied to
the energetic weak problem.
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1 Introduction

Exterior wave propagation problems have become an interesting field of research in
the last decades (see e.g. [Patlashenko and Givoli (2000); Premrov and Spacapan
(2004); Chandrasekhar and Rao (2005); Chandrasekhar (2005); Tadeu, Godinho,
Antonio and Amado Mendes (2007)]).) For what concerns the discretization of
hyperbolic initial-boundary value problems rewritten in terms of boundary integral
equations (BIEs), in principle, both frequency-domain and time-domain boundary
element methods (BEMs) can be used (see e.g. among recent works [Frangi (1999,
2000); Moser, Antes and Beer (2005); Kielhorn and Schanz (2008); Schanz, Antes
and Ruberg (2005); Soares Jr. and Mansur (2007)]). Most earlier contributions
concerned direct formulations of BEM in the frequency domain, often using the
Laplace or Fourier transforms and addressing wave propagation problems. After
this transformation a standard boundary integral method for an elliptic (Helmholtz)
problem is applied and then the transformation back to time domain employs spe-
cial methods for the inversion of Laplace or Fourier transforms.
1 Dept. of Mathematics, University of Parma, Italy.



186 Copyright © 2010 Tech Science Press CMES, vol.58, no.2, pp.185-219, 2010

On the other side, the consideration of the time-domain (transient) problem yields
directly the unknown time-dependent quantities. In this case, the representation
formula in terms of single layer and double layer potentials uses the fundamental
solution of the hyperbolic partial differential equation and jump relations, giving
rise to retarded BIEs. Usual numerical discretization procedures include collo-
cation techniques and Laplace-Fourier methods coupled with Galerkin boundary
elements in space. The convolution quadrature method for the time discretization
has been developed in [Lubich (1988, 1994)]. It provides a straightforward way to
obtain an efficient time stepping scheme using the Laplace transform of the kernel
function, although stability and convergence are assured under strong regularity as-
sumptions on problem data.
The application of Galerkin boundary elements in both space and time has been
implemented by several authors but in this direction only the weak formulation due
to Bamberger and Ha Duong [Bamberger and Ha Duong (1986); Ha Duong (1990,
2003)] furnishes genuine convergence results. During the last 20 years, the Bam-
berger and Ha Duong method has been successfully applied to many problems in
transient wave propagations (see e.g. [Becache (1993); Becache and Ha Duong
(1994); Ha Duong, Ludwig and Terrasse (2003)]). The technique they use to find
the weak formulation and to prove stability results may be summarized in the fol-
lowing steps: Fourier-Laplace transform in time variable; uniform estimates with
respect to complex frequencies of the corresponding Helmholtz problem; appli-
cation of Paley-Wiener theorem and Parseval identity. In particular this final step
provides a space-time weak formulation (see (2.11)) closely related to the energy
functional of the wave equation, whose associated quadratic form turns out to be
coercive with respect to a suitable weighted Sobolev norm. The only drawback of
the method is that passage to complex frequencies leads to stability constants that
grow exponentially in time, as stated in [Costabel (2004)]. We refer to the surveys
[Costabel (1994, 2004)] for a more complete bibliography on the subject.
In this paper, we consider two-dimensional Neumann problems for a temporally
homogeneous (normalized) scalar wave equation outside an obstacle Γ in the time
interval [0,T ], reformulated as a hypersinguar BIE with retarded potential. We
avoid the passage to complex frequencies by simply exploiting the well-known
energy-flux relation satisfied by any solution u of the (real-valued) wave equation.
From the energy identity, we obtain a natural quadratic form in the unknown den-
sity and we derive a suitable space-time weak formulation of the integral problem.
We remark that the idea of introducing a space-time weak formulation for the tran-
sient wave problem based on the energy identity is not new. In fact, in [Ha Duong,
Ludwig and Terrasse (2003)] it was already exploited to get a satisfactory stability
result for the acoustic wave equation with the aid of an absorbing boundary condi-
tion. Unfortunately, the case of the Neumann problem, here considered, does not
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lead to any natural coerciveness property and is much more difficult to be theoreti-
cally treated.
Hence, starting from the consideration that for suitable geometries of the obstacle,
and owing to the finite speed of propagation property, the square root of the energy
defines a norm, special attention is devoted to the investigation of the coerciveness
properties of the energy functional: in Section 2 we analyze it, via Fourier trans-
form, in the case of a flat obstacle. Then in Section 3 Galerkin BEM discretization
applied to the space-time energetic weak problem is introduced. At last various nu-
merical simulations will be presented and discussed in Section 4. We will compare,
when possible, results obtained with the energetic Galerkin BEM with analogous
literature results. Instabilities phenomena, which arise starting from classical L2

weak formulation of the BIEs, as shown in [Becache (1993)], are never present in
the energetic procedure, which appears to be accurate and stable. Brief conclusions
are reported in Section 5.
We finally note that the present work is conceived as a completion of [Aimi, Dili-
genti, Guardasoni, Mazzieri and Panizzi (2009)], where the energetic procedure for
the exterior Dirichlet wave propagation problem, reformulated in terms of a weakly
singular BIE, was theoretically and numerically analyzed.

2 Two-dimensional wave equation

2.1 Neumann problem and its energetic weak formulation

We will consider a Neumann problem for the wave equation exterior to an open arc
Γ ⊂ R2 that is the scattering problem by a crack in an unbounded elastic isotropic
medium Ω = R2 \ Γ. Let Γ− and Γ+ denote the lower and upper faces of the
crack, respectively, and n the normal unit vector to Γ, oriented from Γ− to Γ+. As
usual, the total displacement field can be represented as the sum of the incident
field (the wave propagating without the crack) and the scattered field. In a three-
dimensional elastic isotropic medium, there are three plane waves propagating in a
fixed direction: the P wave, the SH wave and the SV wave. The two-dimensional
antiplane problem corresponds to an incident SH wave, when all quantities are
independent of the third component z (in particular, the crack has to be invariant
with respect to z).
The scattered wave satisfies the following Neumann problem for the wave operator
(without loss of generality we will consider a dimensionless problem which can be



188 Copyright © 2010 Tech Science Press CMES, vol.58, no.2, pp.185-219, 2010

obtained after an appropriate scaling of the units):

utt −4u = 0, x ∈ R2 \Γ, t ∈ (0,T ) (2.1)

u(x,0) = ut(x,0) = 0, x ∈ R2 \Γ (2.2)
∂u
∂n

(x, t) = g(x, t), (x, t) ∈ ΣT := Γ× [0,T ] . (2.3)

In (2.1)-(2.3) the unknown function u stands for the third component of the dis-
placement field and g is the datum, which is the opposite of the normal derivative
of the incident wave along Γ, i.e. g =− ∂uI

∂n .
Let us consider the double layer representation of the solution of (2.1)-(2.3):

u(x, t) =
∫

Γ

∫ t

0

∂

∂nξξξ

G(r, t− τ)φ(ξξξ ,τ)dτ dγξξξ , x ∈ R2 \Γ, t ∈ (0,T ), (2.4)

where r = ‖x−ξξξ‖2, φ = [u] is the jump of u along Γ and G is the forward funda-
mental solution of the two-dimensional wave operator, that is

G(r, t− τ) =
1

2π

H[t− τ− r]√
(t− τ)2− r2

, (2.5)

where H[·] is the Heaviside function.
Taking the normal derivative with respect to x of the double layer potential and
using the assigned Neumann boundary condition (2.3), we obtain the space-time
hypersingular BIE∫

Γ

∫ t

0

∂ 2

∂ nx∂nξξξ

G(r, t− τ)φ(ξξξ ,τ)dτ dγξξξ = g(x, t), x ∈ Γ, t ∈ (0,T ), (2.6)

in the unknown density function φ , which can be written with the compact notation

Dφ = g. (2.7)

Note that the hypersingular integral operator D can be equivalently expressed in the
following way:

Dφ(x, t) =−
∫

Γ

∂ 2r
∂nx∂nξξξ

∫ t

0
G(r, t− τ)

[
φt(ξξξ ,τ)+

φ(ξξξ ,τ)
(t− τ + r)

]
dτ dγξξξ

+
∫

Γ

∂ r
∂nx

∂ r
∂nξξξ

∫ t

0
G(r, t− τ)

[
φtt(ξξξ ,τ)+2

φt(ξξξ ,τ)
(t− τ + r)

+3
φ(ξξξ ,τ)

(t− τ + r)2

]
dτ dγξξξ .

(2.8)
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Expression (2.8) can be obtained starting from the definition of the double layer
operator∫

Γ

∫ t

0

∂G
∂nξξξ

(r, t− τ)φ(ξξξ ,τ)dτdγξξξ (2.9)

and observing that

∂G
∂nξξξ

(r, t− τ) =
∂G
∂ r

(r, t− τ)
∂ r

∂nξξξ

=
1

2π

∂

∂ r

[ 1√
t− τ + r

H[t− τ− r]√
t− τ− r

]
∂ r

∂nξξξ

=
1

2π

[
− 1

2
1√

(t− τ + r)3

H[t− τ− r]√
t− τ− r

+
1√

t− τ + r
∂

∂ r
H[t− τ− r]√

t− τ− r

]
∂ r

∂nξξξ

=
1

2π

[
− 1

2
1

t− τ + r
H[t− τ− r]√
(t− τ)2− r2

+
1√

t− τ + r
∂

∂τ

H[t− τ− r]√
t− τ− r

]
∂ r

∂nξξξ

.

Now, considering the integration over Γ× (0, t) of the obtained final expression
multiplied by φ(ξξξ ,τ), integrating by parts the term containing the derivative with
respect to τ , one gets, up to the factor − 1

2π
,

∫
Γ

∂ r
∂nξξξ

∫ t

0

{1
2

H[t− τ− r]√
(t− τ)2− r2

φ(ξξξ ,τ)
t− τ + r

+
H[t− τ− r]√

t− τ− r
∂

∂τ

[
φ(ξξξ ,τ)√
t− τ + r

]}
dτdγξξξ ;

expressing explicitly the time derivative of the second term in the integrand func-
tion, one finally deduces the following equivalent expression for (2.9):

−
∫

Γ

∂ r
∂nξξξ

∫ t

0
G(r, t− τ)

[
φt(ξξξ ,τ)+

φ(ξξξ ,τ)
(t− τ + r)

]
dτ dγξξξ . (2.10)

At this stage, considering the derivative of (2.10) with respect to nx and operating
with the same arguments as before, after a cumbersome but easy calculation one
obtains (2.8).

The main mathematical results on existence and uniqueness of the solution to prob-
lem (2.7) are due to Bamberger and Ha Duong [Bamberger and Ha Duong (1986);
Ha Duong (1990, 2003)]. Their analysis is based on the following space-time weak
formulation:∫ +∞

0
e−2σt

∫
Γ

(Dφ)(x, t)ψt(x, t)dγx dt =
∫ +∞

0
e−2σt

∫
Γ

g(x, t)ψt(x, t)dγx dt (2.11)

where σ is a strictly positive parameter and ψ is any test function belonging to a
suitable functional space. Under the restriction σ ≥ σ0 > 0, Bamberger and Ha
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Duong provide optimal results in terms of regularity and stabilty of the associated
bilinear form.

The crucial remark is that the above formulation is strictly related to the energy of
the wave equation, which is defined as follows

E (t,u) :=
1
2

∫
R2\Γ

((
∂u(x, t)

∂ t

)2

+ |∇u(x, t)|2
)

dx.

In fact, after multiplying by ut the equation (2.1), we get the identity

(utt −4u)ut =
∂

∂ t

(
1
2

u2
t +

1
2
|∇u|2

)
−∇x · (ut∇u) = 0, (2.12)

satisfied by any solution u of the (real-valued) wave equation. If we integrate by
parts on R2 \Γ× [0,T ] the equation (2.12), under Neumann boundary conditions,
we obtain

0 =
∫ T

0

∫
R2\Γ

{
∂

∂ t

(
1
2

u2
t +

1
2
|∇u|2

)
−∇x · (ut∇u)

}
dxdt

= E (T,u)−
∫ T

0

∫
Γ

[
∂u
∂ t

]
(x, t)

∂u
∂n

(x, t) dγx dt . (2.13)

Since, along Γ, the jump
[

∂u
∂ t

]
of the time derivative of u represents also the time

derivative of the density function φ in (2.7) and since, owing to (2.7) and (2.3), we
have ∂u

∂n = Dφ , the equation (2.13) may be written as follows

E (T,u) =
∫ T

0

∫
Γ

(Dφ)(x, t)φt(x, t) dγx dt . (2.14)

Note that for φ = ψ in the bilinear form defined by the left hand side of (2.11),
considering the limit for σ → 0 and restricting the integration to a bounded time
interval [0,T ], we get the energetic quadratic form (2.14).

From now on, we shall refer to the energetic weak formulation of the BIE (2.7), as
the space-time weak problem related to (2.14) and defined as follows

aE (φ ,η) =< g,η t >L2(ΣT )

where

aE (φ ,η) :=< Dφ , η t >L2(ΣT )=
∫ T

0

∫
Γ

(Dφ)(x, t)η t(x, t)dγx dt (2.15)
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and η is a suitable test function belonging to the same functional space of φ .
The main motivation for our theoretical and numerical work on the BIE (2.7),
is that, as far as we know, in every numerical implementation of energy related
Galerkin methods for the transient wave equation, the parameter σ in (2.11) has
always been set equal to 0. As shown above, this corresponds to the weak formu-
lation (2.15) with associated quadratic functional E (T,u). In this case there are
many examples showing evidence of numerical stability but no theoretical result is
known1.
In the following section we investigate the coerciveness properties of the nonneg-
ative quadratic form E (T,u) (the energy at a fixed time T ) and we show that, at
least for a simple geometrical configuration, it is possible to obtain some stability
results.

2.2 Analysis of the energy in the case of a flat obstacle

In order to apply the Fourier transform to the analysis, we restrict ourselves to the
case of a flat obstacle, that is Γ = {(x,0) : x ∈ [0,L]}.
We start by considering a given function φ ∈S (R2) (the space of rapidly decreas-
ing C∞ functions) having support in Γ× [0,+∞). Then we reinterpret the function
u given by the representation formula (2.4), as the solution of the jump problem:

utt −uxx−uyy = 0 (x,y) ∈ R2 \Γ, t > 0, (2.16)

[u] (x,0, t) = φ(x, t) x ∈ R, t > 0, (2.17)[
∂u
∂y

]
(x,0, t) = 0 x ∈ R, t > 0, (2.18)

u(x,y,0) = ut(x,y,0) = 0, (x,y) ∈ R2. (2.19)

In what follows, we denote by Fx,t the Fourier transform in x and t, with dual real
variables ξ and ω and we shall write

û(ξ ,y,ω) := Fx,t(u)(ξ ,y,ω) =
1

2π

∫ +∞

−∞

∫ +∞

0
e−i(xξ+tω) u(x,y, t)dt dx , y 6= 0,

φ̂(ξ ,ω) := Fx,t(φ)(ξ ,ω) =
1

2π

∫ L

0

∫ +∞

0
e−i(xξ+tω)

φ(x, t)dt dx

or

φ̃(ξ , t) := Fx(φ)(ξ , t) =
1√
2π

∫ L

0
e−ixξ

φ(x, t)dx , t ∈ R+,

1 Stabilty results are known for absorbing boundary conditions such those considered in [Ha Duong,
Ludwig and Terrasse (2003)]. In this case the energy turns out to be a coercive quadratic functional.
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the Fourier transform with respect to x. We shall also need the analytic extension of
the Fourier transform with respect to t, to the complex half-plane Im z < 02. That
is, for z = ω− iσ , σ > 0, we set

φ̂(ξ ,z) :=
1

2π

∫ L

0

∫ +∞

0
e−i(xξ+tz)

φ(x, t)dt dx = Fx,t(e−σt
φ)(ξ ,ω).

We recall the Parseval’s identity, valid for (real-valued) functions f (or g) such that
e−σt f ∈ L2(R2):∫

∞

−∞

∫
∞

−∞

e−2σt f (x, t)g(x, t) dxdt =
∫

∞

−∞

dξ

∫
∞

−∞

f̂ (ξ ,z)ĝ(ξ ,z)dω . (2.20)

If we perform a Fourier transformation of problem (2.16) - (2.19) with respect to x
and t, we obtain the following differential problem in y, with jumps conditions for
y = 0,

(ξ 2− z2)û− ûyy = 0 y 6= 0, (2.21)

[û] (ξ ,0,z) = φ̂(ξ ,z), (2.22)[
∂ û
∂y

]
(ξ ,0,z) = 0. (2.23)

To solve problem (2.21) - (2.23), we first fix the the determination of the complex
square root of ξ 2− z2 by setting

Re
√

ξ 2− (ω− iσ)2 > 0, for σ > 0. (2.24)

Then the solutions of the differential equation (2.21) for y > 0, are given by

û(ξ ,y,z) = A(ξ ,z)exp
[
−y
√

ξ 2− z2
]
+B(ξ ,z)exp

[
y
√

ξ 2− z2
]
.

In order to determine the unknown functions A and B, we remark that to avoid
exponential growth in y we must set B(ξ ,z)≡ 0. Then, by continuity for y→ 0+,
A(ξ ,z) = û+(ξ ,0,z), where û± = limy→0± û . Analogous considerations hold for
y < 0. It follows that the unique (finite energy) solution of problem (2.21) - (2.23)
is given by

û(ξ ,y,z) =


û+(ξ ,0,z)exp

[
−y
√

ξ 2− z2
]

y > 0 ,

û−(ξ ,0,z)exp
[
y
√

ξ 2− z2
]

y < 0 .

(2.25)

2 This analytic extension is justified by the Paley-Wiener theorem for causal functions, that is for
functions vanishing for t < 0.
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By differentiation in (2.25) and thanks to (2.18), we get for y = 0

∂ û
∂y

(ξ ,0,z) =−
√

ξ 2− z2 û+(ξ ,0,z) =
√

ξ 2− z2 û−(ξ ,0,z),

thus û+(ξ ,0,z) =−û−(ξ ,0,z) and

∂ û
∂y

(ξ ,0,z) =
1
2

√
ξ 2− z2 [û](ξ ,0,z).

Therefore we have the following representation of the integral operator D in Fourier
variables

D̂φ(ξ ,z) =
1
2

√
ξ 2− z2 φ̂(ξ ,z). (2.26)

Owing to the representation (2.26) and the Parseval’s identity (2.20) for f = Dφ

and g = ψt , we can give a meaning to the bilinear form introduced in (2.11)∫ L

0

∫ +∞

0
e−2σt(Dφ)(x, t)ψt(x, t)dtdx =

1
2

∫ +∞

−∞

∫ +∞

−∞

√
ξ 2− z2 φ̂(ξ ,z)ψ̂t(ξ ,z)dξ dω

for various functional spaces. We refer to the Ha Duong’s paper [Ha Duong (1990)]
where this bilinear form has been studied in great details. Here we only define the
space Hσ , σ > 0, of functions in L2(R2), having support in Γ× [0,+∞) and such
that∫ +∞

−∞

∫ +∞

−∞

|z|(|z|2 +ξ
2)1/2 |φ̂(ξ ,z)|2 dω dξ < ∞, z = ω− iσ , σ > 0.

Owing to (2.20) and the identity ψ̂t(ξ ,z) = iz ψ̂(ξ ,z), we obtain

∫ L

0

∫ +∞

0
e−2σt(Dφ)(x, t)ψt(x, t)dtdx =

1
2

∫ +∞

−∞

∫ +∞

−∞

√
ξ 2− z2 φ̂(ξ ,z)iz ψ̂(ξ ,z)dωdξ ,

(2.27)

and it is easy to see that, for functions φ ,ψ ∈Hσ , the right-hand side integral in
(2.27) is finite. In some cases, the exponential in the first term of formula (2.27),
can be eliminated by a passage to the limit as σ → 0+, for instance by assuming
that φ and ψ belong to H1

+(R; H1/2
00 (Γ))⊂Hσ , σ > 0, where

H1
+(R;H1/2

00 (Γ)) = {φ ∈ H1(R;H1/2
00 (Γ)) : φ(t, ·) = 0 for t < 0}.

We recall that H1/2
00 (Γ) is a proper subspace of H1/2(Γ) with strictly finer topology.

The main property of functions in H1/2
00 (Γ) is that their extension to zero out of [0,L]
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belongs to H1/2(R). In what follows, this extension will always be understood.
For φ , ψ ∈H1

+(R;H1/2
00 (Γ)), it is not difficult to see that both the integrals in (2.27)

are dominated uniformly with respect to σ . Thus, by the Lebesgue’s dominated
convergence Theorem, for σ → 0+, we get

∫ L

0

∫ +∞

0
(Dφ)(x, t)ψt(x, t)dtdx =

1
2

∫ +∞

−∞

∫ +∞

−∞

√
ξ 2−ω2 φ̂(ξ ,ω)iω ψ̂(ξ ,ω)dωdξ .

(2.28)

Here the determination of the square root is obtained by continuity form (2.24) and
is given by

√
ξ 2−ω2 =


√

ξ 2−ω2 |ξ | ≥ |ω|,

isign(ω)
√

ω2−ξ 2 |ξ |< |ω|.
(2.29)

This passage to the limit σ → 0+ has been studied by Lebeau and Schatzman in the
paper [Lebeau and Schatzman (1984)], to which we refer for more details.
To obtain a Fourier representation from formula (2.28) of the energy E (T,u), of
the solution u to the problem (2.16) - (2.19), we need: (i) to set ψ = φ ; (ii) to
localize φ to a fixed time interval [0,T ]. We note that the regularity required to
the functions involved, does not allow us to simply truncate to zero φ for t > T ,
unless φ ∈H1

0 ([0,T ]; H1/2
00 (Γ)), that is φ(·,0) = φ(·,T ) = 0. In this case, the trivial

extension of φ out of [0,T ] is still in the functional space H1
+([0,T ]; H1/2

00 (Γ)). Thus
for φ ∈ H1

0 ([0,T ]; H1/2
00 (Γ)), (2.28) provides a formula for the energy E (T,u):

aE (φ ,φ) =
∫ L

0

∫ T

0
(Dφ)(x, t)φt(x, t)dtdx

=
−i
2

∫ +∞

−∞

∫ +∞

−∞

ω

√
ξ 2−ω2 |φ̂(ξ ,ω)|2dωdξ

=
1
2

∫ +∞

−∞

∫
|ω|≥|ξ |

|ω|
√

ω2−ξ 2 |φ̂(ξ ,ω)|2dωdξ (2.30)

where in the last equality we have used (2.29) and the symmetry |φ̂t(ξ ,ω)| =
|φ̂t(ξ ,−ω)| (recall that φ is real-valued).
In the case when φ(·,T ) does not vanish the localization to the interval [0,T ] is a
bit harder and a positive extra term must be added to (2.30). In fact, we need the
following
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Proposition 2.1. The quadratic form aE (φ ,φ) is defined in the space of functions
H1([0,T ];H1/2

00 (Γ)), vanishing for t = 0, and we have

aE (φ ,φ) =
1
2

∫ +∞

−∞

∫
{|ω|≥|ξ |}

√
ω2−ξ 2

|ω|
|φ̂t(ξ ,ω)|2dωdξ

+
1
4

∫ +∞

−∞

|ξ | |φ̃(ξ ,T )|2 dξ . (2.31)

In (2.31), the meaning of φ̂t(ξ ,ω) is the following

φ̂t(ξ ,ω) =
1

2π

∫ L

0

∫ T

0
e−i(xξ+tω)

φt(x, t)dt dx. (2.32)

Proof. We provide only a sketch of the proof. Let us extend φ ∈H1([0,T ];H1/2
00 (Γ))

to the whole time axis, by setting Φ(x, t) = φ(x,T ) for t > T , and Φ(x, t) = 0 for
t < 0. Since φ(·,0) = 0, it not difficult to see that Φ ∈Hσ for every σ > 0. Then
we are allowed to apply formula (2.27), for φ = ψ = Φ. Since Φt(x, t) = 0 for
t > T , we get, (z = ω− iσ , σ > 0)∫ L

0

∫ T

0
e−2σt(Dφ)(x, t)φt(x, t)dtdx =

∫ L

0

∫ +∞

0
e−2σt(DΦ)(x, t)Φt(x, t)dtdx

=
1
2

∫ +∞

−∞

∫ +∞

−∞

√
ξ 2− z2 Φ̂(ξ ,z)Φ̂t(ξ ,z)dωdξ .

Owing to the identity izΦ̂(ξ ,z) = Φ̂t(ξ ,z) and since Φ̂t(ξ ,z) = φ̂t(ξ ,z), we have
also ∫ L

0

∫ T

0
e−2σt(Dφ)(x, t)φt(x, t)dtdx =

1
2

∫ +∞

−∞

∫ +∞

−∞

√
ξ 2− z2

iz
|Φ̂t(ξ ,z)|2 dωdξ

=
1
2

∫ +∞

−∞

∫ +∞

−∞

√
ξ 2− z2

iz
|φ̂t(ξ ,z)|2 dωdξ . (2.33)

Of course, the main difficulty in passing to the limit σ → 0+ in formula (2.33), is
due to the singularity 1/z = 1/(ω − iσ) in the right-hand integral. To overcome
this difficulty one may argue as in the proof of the distributional limit (here p.v.
stands for Cauchy principal value)

lim
σ→0+

1
ω− iσ

= p.v.
(

1
ω

)
+π δ (ω).

First we split the integral (2.33) in two parts:

1
2

∫ +∞

−∞

∫ +∞

−∞

√
ξ 2− z2

iz
|φ̂t(ξ ,z)|2 dωdξ =

1
2

∫ +∞

−∞

∫
|ω|≥ε

... +
1
2

∫ +∞

−∞

∫
|ω|<ε

...
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By applying Lebesgue’s dominated convergence Theorem, one gets

lim
σ→0+

1
2

∫ +∞

−∞

∫
|ω|≥ε

√
ξ 2− z2

iz
|φ̂t(ξ ,z)|2 dωdξ =

1
2

∫ +∞

−∞

∫
|ω|≥ε

√
ξ 2−ω2

iω
|φ̂t(ξ ,ω)|2 dωdξ .

The passage to the limit as ε → 0+ gives rise to

p.v.
1
2

∫ +∞

−∞

∫ +∞

−∞

√
ξ 2−ω2

iω
|φ̂t(ξ ,ω)|2 dω dξ =

1
2

∫
∞

−∞

dξ

∫
|ω|≥|ξ |

√
ω2−ξ 2

|ω|
|φ̂t(ξ ,ω)|2 dω

where we have used the determination of the square root (2.29) and the symmetry
|φ̂t(ξ ,ω)| = |φ̂t(ξ ,−ω)|. The double limit in the second term (the δ (ω) term) is
a bit harder to treat but can be justified with an argument similar to those used in
paper [Lebeau and Schatzman (1984)]. Formally, one gets

π

2

∫ +∞

−∞

δ (ω)dω

∫ +∞

−∞

√
ξ 2−ω2 |φ̂t(ξ ,ω)|2 dξ =

π

2

∫ +∞

−∞

|ξ | |φ̂t(ξ ,0)|2 dξ .

On the other hand for ω = 0, we have

φ̂t(ξ ,0) =
1√
2π

∫ T

0
φ̃t(ξ , t)dt =

1√
2π

φ̃(ξ ,T )

since φ̃(ξ ,0) = 1√
2π

∫ L
0 e−ixξ φ(x,0)dx = 0. It follows that

π

2

∫ +∞

−∞

|ξ | |φ̂t(ξ ,0)|2 dξ =
1
4

∫ +∞

−∞

|ξ | |φ̃(ξ ,T )|2 dξ .

�

We remark that in the case φ ∈H1
0 ([0,T ];H1/2

00 (Γ)) formulae (2.31) and (2.30) agree
since φ̂t(ξ ,ω) = iωφ̂(ξ ,ω) and φ̃(ξ ,T ) = 0.

Now we come to the main question of this section: the coerciveness properties of
the energy functional. Two simple considerations can be drawn by the fact that the
domain of integration in formula (2.31) is the cone C := {(ξ ,ω) : |ω|> |ξ |}. The
first one is that the energy is a strictly positive functional. This follows immediately
from the fact that, owing to the Paley-Wiener Theorem, φ̂t as defined in (2.32) is
an entire analytic function. Therefore it cannot vanish in C unless it vanishes on
the whole R2. The second and more relevant consideration is that most of the
information regarding oscillations in the space variable is not taken into account by
the energy. This remark is made more precise by the fact that the quadratic form
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aE (φ ,φ) cannot be coercive with respect to any Sobolev norm. The proof of this
assertion is very similar to the case of the single layer operator, which has been
given in full details in [Aimi, Diligenti, Guardasoni, Mazzieri and Panizzi (2009)].

A first weak coerciveness property for aE (φ ,φ) can be obtained by the following
considerations. Let us fix P > 0 and consider the following maximum problem:

λ0 = max
{∫ P

−P
| f̂ (ω)|2 dω : f ∈ L2(0,T ),

∫ T

0
| f (t)|2 dt = 1

}
. (2.34)

It is not difficult to see that the following properties hold true: λ0 = λ0(T P) < 1,
λ0(ρ) is an increasing function and that limρ→0+ λ0(ρ) = 0, limρ→+∞ λ0(ρ) = 1.
The number λ0(T P) is the first eigenvalue of the so called time-band limited oper-
ator which has been deeply studied in the sixties by Slepian, Landau and Pollack
(see e.g. [Slepian (1983)]). Let us fix ξ and set P = |ξ |, f = φ̂t(ξ , ·). From (2.31),
we get

aE (φ ,φ) ≥ 1
2
√

2

∫ +∞

−∞

dξ

∫
|ω|>

√
2|ξ |
|φ̂t(ξ ,ω)|2 dω

≥ 1
2
√

2

∫ +∞

−∞

dξ

∫ +∞

−∞

(1−λ0(
√

2|ξ |T )) |φ̂t(ξ ,ω)|2 dω.

Unfortunately, when ρ → +∞, the function 1−λ0(ρ) tends to zero exponentially.
More precisely, Fuchs in [Fuchs (1964)] has shown that

1−λ0(ρ) ∼ 2
√

2π ρ e−ρ , ρ →+∞.

Therefore, by the properties of λ0(ρ), we can only conclude that there exists a
constant C > 0 such that

1−λ0(ρ) ≥ C
√

1+ρ e−ρ (ρ > 0).

As a consequence, we obtain the following estimate

aE (φ ,φ) ≥ C
∫ +∞

−∞

dξ

∫ +∞

−∞

√
1+
√

2|ξ |T e−
√

2|ξ |T |φ̂t(ξ ,ω)|2 dω.

Other more interesting coerciveness properties can be obtained by restricting the
quadratic form aE (·, ·) to suitable infinite-dimensional subspaces of H1((0,T );H1/2

00 (Γ)),
for instance by fixing the space step ∆x for the mesh on the crack Γ and letting the
time step ∆t tend to zero. More precisely, let n≥ 1 be a fixed integer, set ∆x = L/n
and consider the functions

v(x, t) =
n−1

∑
k=0

fk(t)ψk(x).
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Here ψk(x) = ψ(x/∆x−k∆x), k = 0, ...,n−1 and ψ(x) = (1−|x|)H(1−|x|) is the
usual hat function. The functions fk(t), k = 0, ...,n−1, are in H1(0,T ) and vanish
for t = 0 . We denote by Vn the infinite-dimensional space of such functions and
remark that Vn ⊂ H1((0,T );H1/2

00 (Γ)).

Theorem 2.1. For any v ∈ Vn we have

aE (v,v) ≥ 8∆x√
2π4

[
1−λ0(

√
2πT/∆x)

]
‖vt‖2

L2((0,T );L2(Γ)) (2.35)

where λ0 is defined in (2.34).

Proof. By computing the Fourier transform of vt , we get

v̂t(ξ ,ω) =

√
2
π

∆x
1− cos(∆xξ )

(∆xξ )2

n−1

∑
k=1

e−i k∆xξ f̂kt(ω).

Let us set G(∆xξ ) :=
1− cos(∆xξ )

(∆xξ )2 . From (2.31), we have

aE (v,v) ≥ (∆x)2

π

∫ +∞

−∞

∫
{|ω|>|ξ |}

G2(∆xξ )

√
ω2−ξ 2

|ω|

∣∣∣∣∣n−1

∑
k=1

e−i k∆xξ f̂kt(ω)

∣∣∣∣∣
2

dξ dω

≥ (∆x)2
√

2π

∫ +∞

−∞

∫
{|ω|>

√
2|ξ |}

G2(∆xξ )

∣∣∣∣∣n−1

∑
k=1

e−i k∆xξ f̂kt(ω)

∣∣∣∣∣
2

dξ dω

=
∆x√
2π

∫ +∞

−∞

dω

∫
|ξ |≤ ∆x|ω|√

2

G2(ξ )

∣∣∣∣∣n−1

∑
k=1

e−i k ξ f̂kt(ω)

∣∣∣∣∣
2

dξ

≥ ∆x√
2π

∫
|ω|≥ π

√
2

∆x

dω

∫
|ξ |≤ ∆x|ω|√

2

G2(ξ )

∣∣∣∣∣n−1

∑
k=1

e−i k ξ f̂kt(ω)

∣∣∣∣∣
2

dξ

≥ 4∆x√
2π5

∫
|ω|≥ π

√
2

∆x

dω

∫
π

−π

∣∣∣∣∣n−1

∑
k=1

e−i k ξ f̂kt(ω)

∣∣∣∣∣
2

dξ

where in the last inequality we have used that G(ξ ) ≥ 2/π2 for |ξ | ≤ π . On the
other hand, we have for every ω ,

∫
π

−π

∣∣∣∣∣n−1

∑
k=1

e−i k ξ f̂kt(ω)

∣∣∣∣∣
2

dξ = 2π

n−1

∑
k=1
| f̂kt(ω)|2.
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It follows that

aE (v,v) ≥ 8∆x√
2π4

n−1

∑
k=1

∫
|ω|≥(π

√
2)/∆x
| f̂kt(ω)|2 dω.

By definition of λ0 and Parseval identity, we get

aE (v,v) ≥ 8∆x√
2π4

[
1−λ0(

√
2πT/∆x)

] n−1

∑
k=1

∫ +∞

−∞

| f̂kt(ω)|2 dω

=
8∆x√
2π4

[
1−λ0(

√
2πT/∆x)

] n−1

∑
k=1

∫ T

0
| f ′k (t)|2 dt.

The assertion follows since, from a simple computation, we have

‖vt‖2
L2((0,T );L2(Γ)) =

∫ L

0

∫ T

0

∣∣∣∣∣n−1

∑
k=0

f ′k (t)ψk(x)

∣∣∣∣∣
2

dt dx≤ ∆x
n−1

∑
k=1

∫ T

0
| f ′k (t)|2 dt.

�

Remark 1. Since v(x,0) = 0, ‖vt‖L2((0,T );L2(Γ)) is an equivalent H1([0,T ]; L2(Γ))
norm. In particular we have ‖v‖L2((0,T ); L2(Γ)) ≤ T ‖vt‖L2((0,T ); L2(Γ)). Therefore,
(2.35) can be written also with respect to ‖v‖2

L2((0,T ); L2(Γ)) with a T−2 extra factor
(see Tab. 2 in Section 4 for the related numerical tests).

Remark 2. It’s reasonable to expect that the obtained theoretical results still hold for
more general geometries of the open arc Γ, or even in the case when the obstacle is
a convex domain in R2.

Remark 3. In the past years and in different contexts, several authors [Ha Duong
(1990); Lebeau and Schatzman (1984); Miyatake (1993)] have dealt with the prop-
erties of the Dirichlet - Neumann operator

D : [u] 7−→ ∂u
∂n

(x, t) ∈ Γ× (0,+∞), (2.36)

related to the wave equation in the case of a flat boundary Γ. In [Lebeau and
Schatzman (1984)] the authors study the positivity properties of the quadratic form
< Dφ ,φ >. In reference [Ha Duong (1990)], devoted to the transient BIE for the
acoustic equation, Ha Duong performs a detailed analysis of the operator (2.36) by
recurring to the Fourier-Laplace transform with non vanishing imaginary part σ in
the phase variable ω− iσ . Under the restriction σ ≥ σ0 > 0, in [Ha Duong (1990)]
optimal results are obtained in terms of regularity and stability of the associated
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bilinear form. As shown in the same paper, it is possible to obtain coerciveness
passing to the limit σ → 0+, if instead of E (T,u), one considers the functional∫ T

0
E (t,u)dt.

3 Galerkin BEM discretization

We consider for a crack Γ of length L, a boundary mesh constituted by M straight
elements {e1, · · · ,eM}, with length(ei)≤∆x, ei∩e j = /0 if i 6= j and such that

⋃M
i=1 ei

coincides with Γ if the crack is (piece-wise) linear, or is a suitable approximation
of Γ, otherwise. The functional background compels one to choose spatially shape
functions belonging to H1

0 (Γ) for our Neumann problems. Hence we use standard
piece-wise polynomial boundary element functions w j(x), j = 1, · · · ,M∆x, suitably
defined in relation to the introduced mesh over Γ.
For time discretization we consider a uniform decomposition of the time interval
[0,T ] with time step ∆ t = T/N∆t ,N∆t ∈ N+, generated by the N∆t +1 instants

tk = k ∆ t, k = 0, · · · ,N∆t

and we choose temporally piece-wise linear shape functions, although higher de-
gree shape functions can be used. Note that, for this particular choice, shape func-
tions, denoted with vk(t), k = 0, · · · ,N∆t −1, will be defined as

vk(t) = R(t− tk)−2R(t− tk+1)+R(t− tk+2),

where R(t− tk) = t−tk
∆ t H[t− tk] is the ramp function, and they will give contribution

to the second time derivative in (2.8) in terms of Dirac distributions. Hence, the
unknown approximate solution of the problem at hand will be expressed as

N∆t−1

∑
k=0

M∆x

∑
j=1

α
(k)
j w j(x)vk(t). (3.37)

The Galerkin BEM discretization coming from energetic weak formulation pro-
duces the linear system

AE xE = bE . (3.38)

Having set ∆hk = th− tk, matrix elements, after a double analytic integration in the
time variables, are of the form

1

∑
α,β ,δ=0

(−1)α+β+δ

∫
Γ

wi(x)
∫

Γ

H[∆h+α k+β+δ − r]D(r, th+α , tk+β+δ )w j(ξξξ )dγξξξ dγx,
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(3.39)

where

D(r, th, tk) =
1

2π ∆ t2

{r ·nx r ·nξξξ

r2

∆hk

√
∆2

hk− r2

r2 +

(nx ·nξξξ )
2

[
log(∆hk +

√
∆2

hk− r2)− logr−
∆hk

√
∆2

hk− r2

r2

]}
.(3.40)

Anyway, the above elements depend on the difference th− tk and in particular they
vanish if th ≤ tk. Hence, matrix AE has a block lower triangular Toeplitz structure.
Each block has dimension M∆x. If we indicate with A(`)

E the block obtained when
th− tk = (`+1)∆t, ` = 0, . . . ,N∆t −1, the linear system can be written as


A(0)

E 0 0 · · · 0
A(1)

E A(0)
E 0 · · · 0

A(2)
E A(1)

E A(0)
E · · · 0

· · · · · · · · · · · · 0
A(N∆t−1)

E A(N∆t−2)
E · · · A(1)

E A(0)
E




α(0)

α(1)

α(2)

...
α(N∆t−1)

=


b(0)

E

b(1)
E

b(2)
E
...

b(N∆t−1)
E


(3.41)

where

α
(`) =

(
α

(`)
j

)
and b(`)

E =
(

b(`)
E , j

)
, with ` = 0, . . . ,N∆t −1; j = 1, . . . ,M∆x.

(3.42)

The solution of (3.41) is obtained with a block forward substitution, i.e. at every
time instant t` = (`+1)∆t, ` = 0, · · · ,N∆t −1, we solve a reduced linear system of
the type:

A(0)
E α

(`) = b(`)
E − (A(1)

E α
(`−1) + · · ·+A(`)

E α
(0)). (3.43)

Procedure (3.43) is a time-marching technique, where the only matrix to be inverted
is the positive definite A(0)

E diagonal block, while all the other blocks are used to
update at every time step the right-hand side. Owing to this procedure we can con-
struct and store only the blocks A(0)

E , · · · ,A(N∆t−1)
E with a considerable reduction of

computational cost and memory requirement.
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Further, the energetic matrix AE has an interesting property: for a fixed space dis-
cretization ∆x and for vanishing ∆ t, blocks ∆ t A(0)

E tend to the mass matrix M(0) of
order M∆x, with elements

M(0)
i j =

1
2

∫
Γ

wi(x)w j(x)dγx , (3.44)

blocks ∆ t A(1)
E tend to −M(0) and blocks ∆ t A(`)

E , ` = 2, . . . ,N∆t −1 tend to the zero
matrix of order M∆x. Hence ∆ t AE tends to a limit matrix which has the following
lower block bidiagonal structure, with N∆t blocks:

M(0) 0 0 0 · · · 0
−M(0) M(0) 0 0 · · · 0

0 −M(0) M(0) 0 · · · 0
0 0 −M(0) M(0) · · · 0
· · · · · · · · · · · · · · · 0
0 0 · · · 0 −M(0) M(0)


. (3.45)

Let us prove this result for the case of a straight crack of length L. Having set
r = |x−ξ |, the generic element of the block ∆ t A(0)

E is of the form

∆ t
∫ L

0
wi(x)

∫ L

0
H[∆ t− r]D(r, t1, t0)w j(ξ )dξ dx

=
1

4π ∆ t

∫ L

0
wi(x)

∫ L

0
H[∆ t− r]

[
log(

∆ t +
√

∆ t2− r2

r
)− ∆ t

√
∆ t2− r2

r2

]
w j(ξ )dξ dx

=
1

4π ∆ t

∫ L

0
wi(x)

∫
[0,L]∩{ r

∆ t <1}

[
log
(1+

√
1−
(

r
∆ t

)2

r
∆ t

)
−
( r

∆ t

)−2
√

1−
( r

∆ t

)2]
w j(ξ )dξ dx .

Now, with the change of variable in the inner integration η = ξ−x
∆ t , we obtain

1
4π

∫ L

0
wi(x)

∫ min{1, L−x
∆ t }

max{−1,−x
∆ t }

[
log
(1+

√
1−η2

|η |

)
−η

−2
√

1−η2
]

w j(x+η ∆ t)dη dx .

For vanishing ∆ t, the above integral can be rewritten as

1
4π

∫ L

0
wi(x)w j(x)

∫ 1

−1

[
log
(1+

√
1−η2

|η |

)
−η

−2
√

1−η2
]

dη dx
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and evaluating analytically the hypersingular inner integral in the Hadamard Finite
Part sense, one finally gets (3.44).
For the other blocks ∆ t A(`)

E , ` = 1, · · · ,N∆t − 1 one can proceed in the same way,
obtaining the whole limit matrix (3.45).

For what concerns the effective evaluation of the elements of matrix AE , in the
sequel, we will refer to one of the double integrals in (3.39), indicated by∫

Γ

wi(x)
∫

Γ

H[∆hk− r]D(r, th, tk)w j(ξξξ )dγξξξ dγx . (3.46)

Using the standard element by element technique, the evaluation of every double
integral of the form (3.46) is reduced to the assembling of local contributions of the
type∫

ei

w̃(di)
i (x)

∫
e j

H[∆hk− r]D(r, th, tk) w̃(d j)
j (ξξξ )dγξξξ dγx , (3.47)

where w̃(di)
i , w̃(d j)

j define one of the local lagrangian basis function in the space
variable of degree di, d j defined over the elements ei, e j of the boundary mesh, re-
spectively.
Looking at (3.40), we observe space singularities of type log r and O(r−2) as r→ 0,
which are typical of weakly singular and hypersingular kernels related to two-
dimensional elliptic problems. Hence, efficient evaluation of double integrals of
type (3.47) is particularly required when ei ≡ e j and when ei ,e j are consecutive.
Note that when the kernel is hypersingular and ei ≡ e j we have to define both the
inner and the outer integrals as Hadamard finite parts, while if ei and e j are con-
secutive, only the outer integral must be understood in the finite part sense: the
correct interpretation of double integrals is the key point for any efficient numerical
approach based on element by element technique (see [Aimi, Diligenti and Mon-
egato (1997)]). Further, we observe that the Heaviside function H[∆hk−r] in (3.47)

and the function
√

∆2
hk− r2 in the kernel D(r, th, tk), give rise to other different type

of troubles, which have to be properly faced, as described in [Aimi, Diligenti and
Guardasoni (2009)]. Hence, the numerical treatment of (3.47) has been operated
through quadrature schemes widely used in the context of Galerkin BEM com-
ing from elliptic problems [Aimi, Diligenti and Monegato (1997)], coupled with
a suitable regularization technique [Monegato and Scuderi (1999)], after a careful
subdivision of the integration domain due to the presence of the Heaviside function.
A detailed illustration of the efficient numerical integrations employed for the dis-
cretization of hypersingular BIEs related to wave propagation problems and which
represent a valid alternative to those proposed in [Gallego and Dominguez (1996);
Zhang (2002)], can be found in [Aimi, Diligenti and Guardasoni (2010)].
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4 Numerical results

In this section, we present several of numerical results related to two-dimensional
Neumann exterior problem (2.1)-(2.3): some of them can be found also in [Aimi,
Diligenti, Guardasoni, Mazzieri and Panizzi (2009)], but they have been reported
here for the sake of completeness and with a deeper numerical study. In fact, the
first part of examples is devoted to a numerical analysis of the obtained results,
while the aim of the second part is to give a qualitative analysis of the simulations.
We start with the rectilinear obstacle Γ = {(x,0) : x ∈ [0,1]}. The incident wave
uI(x, t) is a plane wave propagating in direction k with unitary amplitude:

uI(x, t) = f (t−k ·x), with k = (cosθ ,sinθ). (4.48)

Hence, the Neumann datum on Γ in (2.3) will be:

g(x, t) =− ∂

∂nx
f (t−k ·x)

∣∣∣
Γ

. (4.49)

We show the results obtained for two different functions, that have been chosen
for the known asymptotic behavior of the solution, which allows us to validate the
approximate solution, in the sequel indicated with φ(x, t).
Plane linear wave. The first example is taken from [Becache (1993)], where the
Neumann boundary conditions comes from this choice of f :

f (t) = t H[t].

In this case, the Neumann datum (4.49) tends to the constant value gθ = sinθ when
t tends to infinity. The solution u tends to the solution of the static problem −4u∞ = 0 in R2 \Γ , u(x) = O(‖x‖−1

2 ) for ‖x‖2→ ∞

∂u∞

∂n
= gθ on Γ

(4.50)

and the associated jump φ ∞
θ

(x) = [u∞] across Γ can be computed explicitly:

φ
∞
θ (x) = sinθ

√
x(1− x).

Hence, we can compare the solution φ(x, t) with the static solution φ ∞
θ

(x).
The crack Γ has been uniformly decomposed with discretization parameters ∆x =
0.1,0.05,0.025 and equipped with spatial linear shape and test functions; the obser-
vation time interval [0,T ] = [0,10] has been uniformly subdivided with time steps
∆ t = 0.05,0.025. In Fig. 1, we present the numerical solution obtained for large
times in some points of Γ, for θ = π

3 , ∆x = 0.05 and ∆ t = 0.025: it appears in
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Figure 1: Density φ(x, t) evaluated in some points of Γ for θ = π/3.

perfect agreement with the corresponding one reported in [Becache (1993)]. Note
that points of Γ, symmetric with respect to x = 0.5 behaves in different ways at the
beginning of the simulation, since the incident wave does not strike simultaneously
the crack; then they assume a symmetric behavior for sufficiently large times. Fur-
ther, to show that the whole numerical solution φ(x, t) stabilizes itself, we report in
Fig. 2 the COD on Γ in different time instants t ≥ 4.

To better specify this issue, in Fig. 3, we show the graph of time functions

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Γ

φ(
⋅,t

)

t=4
t=5
t=10

Figure 2: Solution φ(x, t) in different time instants, for θ = π/3.

‖φ(·, t)−φ ∞
θ

(·)‖L1(Γ) evaluated for different parameters ∆x, having fixed ∆t = 0.05.
As one can observe, for large times the transient numerical solution stabilizes
itself producing an error, w.r.t. the analytical static solution, which decreases
linearly w.r.t. ∆x. This feature is evident in Tab. 1, where |φ(x, t)− φ ∞

θ
(x)|
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Figure 3: Time function ‖φ(·, t)− φ ∞
θ

(·)‖L1(Γ) evaluated for some parameters ∆x,
for θ = π/3.

has been evaluated in some nodes of the crack and in different time instants, for
∆x = 0.1,0.05,0.025 and ∆t = 0.05.
In Fig. 4, we show numerical results obtained for θ = π

4 , ∆x = 0.05, ∆ t = 0.025,
analogous to those in Fig. 1, and in Fig. 5 we present the approximate COD for
T = 4,5,10 together with the analytical solution of the corresponding static prob-
lem: the four curves overlap each other. Similar figures have been obtained varying

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

t  (∆ t=0.025)

φ(
x i,t)

x=0.4;0.6

x=0.2;0.8

x=0.1;0.9

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

t  (∆ t=0.025)

φ(
x i,t)

x=0.4;0.6

x=0.2;0.8

x=0.1;0.9

Figure 4: Density φ(x, t) evaluated in some points of Γ for θ = π/4.

discretization parameters ∆ t, ∆x. In any case, numerical results appear in agree-
ment with those reported in [Becache (1993)], but differently from what is said in
that paper, they are stable regardless of the ratio ∆ t

∆x .
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∆x = 0.1
t = 6 t = 7 t = 8 t = 9 t = 10

x = 0.1 6.435110−3 6.405910−3 6.301710−3 6.250510−3 6.212810−3

x = 0.2 1.013610−2 1.017310−2 1.030610−2 1.037010−2 1.041710−2

x = 0.3 7.649410−3 7.691610−3 7.846810−3 7.920410−3 7.975510−3

x = 0.4 7.756210−3 7.800510−3 7.967210−3 8.045510−3 8.104610−3

x = 0.5 7.618610−3 7.662210−3 7.832610−3 7.912510−3 7.972810−3

∆x = 0.05
t = 6 t = 7 t = 8 t = 9 t = 10

x = 0.1 6.899310−3 6.913210−3 7.014110−3 7.065210−3 7.101410−3

x = 0.2 4.840710−3 4.858210−3 4.996210−3 5.064610−3 5.113510−3

x = 0.3 4.300710−3 4.319110−3 4.479310−3 4.557410−3 4.613610−3

x = 0.4 4.034510−3 4.052510−3 4.225010−3 4.308210−3 4.368410−3

x = 0.5 3.953410−3 3.970210−3 4.146510−3 4.231410−3 4.292810−3

∆x = 0.025
t = 6 t = 7 t = 8 t = 9 t = 10

x = 0.1 3.217710−3 3.225010−3 3.327810−3 3.381010−3 3.417910−3

x = 0.2 2.401010−3 2.408710−3 2.548710−3 2.619310−3 2.668810−3

x = 0.3 2.019310−3 2.026110−3 2.188510−3 2.269010−3 2.325810−3

x = 0.4 1.836010−3 1.841210−3 2.016110−3 2.101910−3 2.162710−3

x = 0.5 1.781510−3 1.785110−3 1.964110−3 2.051610−3 2.113710−3

Table 1: Absolute errors |φ(x, t)−φ ∞
θ

(x)| evaluated for ∆t = 0.05.

Remark 4. In Tab. 2, for different values of ∆ t, some computed values of (λmin/∆ t)T 2,
where λmin is the minimum eigenvalue of (AE +A>E )/2 (i.e. the symmetric part of
matrix AE ) are reported. The problem taken into account is the Neumann wave
propagation outside rectilinear obstacles of length L = 0.2, L = 0.4, respectively.
We have fixed ∆x = 0.1 for the spatial discretization and space-time piece-wise lin-
ear shape and test functions; the final observation times are T = 10−3 and T = 10−4.
The obtained results are in agreement with what is stated in Remark 1 and Theo-
rem 2.1. In fact, they represent the approximated coerciveness constant of the dis-
cretized energetic bilinear form for fixed ∆x and vanishing ∆ t (λmin must be divided
by ∆ t in order to compare the discrete coerciveness constant with the theoretical
one, with respect to the L2 norm). This can be deduced also from the comparison
between Tab. 2 and Tab. 3, where, for L = 0.2, L = 0.4 respectively, some com-
puted values of the minimum eigenvalue of the symmetric part of the limit matrix
(3.45), multiplied by N2

∆t = (T/∆t)2, are reported.
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Figure 5: COD at t = 4,5,10 compared with static solution for θ = π/4.

Due to all the above considerations, from a numerical point of view we can con-
jecture that also the coerciveness constant of the discretized energetic bilinear form
behaves like O(T−2), depending on the fixed crack length L.

Table 2: Behavior of (λmin/∆ t)T 2, where λmin is the minimum eigenvalue of (AE +
A>E )/2, for two different crack lengths

T = 10−4 T = 10−3

∆ t L = 0.2 L = 0.4 ∆ t L = 0.2 L = 0.4
10−5 1.350210−1 8.728610−2 10−4 1.350410−1 8.731910−2

10−6 1.612410−1 1.042410−1 10−5 1.614410−1 1.045810−1

10−7 1.641910−1 1.061610−1 10−6 1.661910−1 1.095710−1

Plane harmonic wave. As second example, we consider a wave which becomes
harmonic after a fixed time (see [Becache (1993)]):

f (t) =



0 if t < 0,

1
2
(1− cosωt) if 0≤ t ≤ π

ω
,

sin
(

ωt
2

)
if t ≥ π

ω
,

(4.51)
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Table 3: Behavior of the minimum eigenvalue of the symmetric part of the limit
matrix (3.45), multiplied by N2

∆t , for two different crack lengths

N∆t L = 0.2 L = 0.4
10 1.350210−1 8.728510−2

100 1.612410−1 1.042310−1

1000 1.641610−1 1.061210−1

where ω represents the frequency. In this case the solution has to become harmonic
too, with the same period as the incident wave, i.e. P = 2π/ω̃ , where ω̃ = ω/2.
The fixed circular frequency ω = 8π is such that the wave length λ = 2π/ω is
equal to a quarter the crack length.
We choose a uniform decomposition of the crack Γ in 20 subintervals (∆x = 0.05)
and we decompose the observation time interval [0,10] in 400 equal parts (∆t =
0.025). For this numerical simulation we choose spatial linear shape and test func-
tions.
In Fig. 6 we show the time harmonic behavior for θ = π

2 of the crack opening
displacement (COD) φ at x = 0.4, obtained starting from the energetic weak for-
mulation. Note that the solution becomes immediately not trivial since the incident
wave strikes the whole crack simultaneously. In Fig. 7 we present the approx-
imated COD at instants 2,4,5,10; the four curves overlap each other since the
period is P = 0.5. In Fig. 8 we show the time harmonic behavior for θ = π

3 of the
crack opening displacement φ at x = 0.4. Note that the COD is zero till the time
instant t∗ = cos(θ)x = x/2, since the incident wave, differently from the previous
case, doesn’t invest the whole crack simultaneously.

In order to verify that the period of φ coincides with the period of the incident
wave, we show in Fig. 9 the approximate solution φ on Γ in time instants separated
by multiples of the time period. Note that, after the first time instant taken under
consideration, the three successive curves perfectly match each other.

Now, we present some results involving the total displacement field u(x, t) obtained
by the superposition of the incident wave uI(x, t) and the reflected and diffracted
waves caused by the presence of a crack Γ ⊂ R2. The temporal profile of the
incident wave, that strikes the crack and from which we have deduced the Neu-
mann datum on Γ, is shown in Fig. 10 and it is similar to that one considered in
[Iturraran-Viveros, Vai and Sanchez-Sesma (2005); Sanchez-Sesma and Iturraran-
Viveros (2001)].

In the first simulation we deal with the crack Γ = {(x,0),x ∈ [−1,1]} struck per-
pendicularly by the incident wave. The observation time interval is [0,4]. For the
discretization, we fix a uniform subdivision of Γ in 40 elements (∆x = 0.05), the
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Figure 6: Density φ(0.4, t) for θ = π/2.
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Figure 7: COD at t = 2,4,5,10 for θ = π/2.
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Figure 8: Density φ(x, t) calculated in x = 0.4 for θ = π/3, with a zoom.
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Figure 9: Solution φ(x, t) on Γ in different time instants separated by 5P.

time step ∆ t = 0.1 and spatial linear shape and test functions.
In Fig. 11 we show the total recovered displacement in a square around the crack
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Figure 10: Temporal profile of the incident wave in the last five examples.

for different time instants. These results show how the plane wave reaches the crack
and how the diffraction caused at the edges of the crack degenerates the wavefront.
The effect of the diffraction on the upper half of the square creates a shadow. On
the other hand, diffraction can be observed on the lower half of the square, too.
Note that at the beginning of the simulation, the reflected wave on the upper half
of the square cancel out with the incident wave. As time increases, the wavefront
recovers and the scattering effect caused by the crack on the plane wave diminishes.
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Figure 11: Total recovered displacement u(x, t) around the straight crack.

In the second simulation we consider the semi-circular arc

Γ =
{

x ∈ R2 : x = (cosα,sinα),α ∈ [0,π]
}

,

depending on the clockwise angle α , struck by the plane wave with an incident
angle of amplitude π

3 . The observation time interval is [0,4]. As uniform temporal
discretization step we use ∆ t = 0.1 and Γ is uniformly approximated by 40 straight
boundary elements where we adopt spatial linear shape and test functions. In Fig.
12 we show the total recovered displacement in a square around the crack for dif-
ferent time instants. We are able to identify at t = 0.1 the incident wave, at t = 1.0
the reflected wave, at t = 1.6 the first circular diffracted wave generated at the left
edge of the crack, at t = 2.5 the first diffracted wave generated at the right edge of
the crack.
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Figure 12: Total recovered displacement u(x, t) around the semicircular crack.

In the third simulation we consider the curvilinear crack

Γ = {x∈R2 : x =(0.5(cosα−1),0.5 sinα)∨(0.5(cos(α +π)+1),0.5 sin(α +π))},

depending on the clockwise angle α ∈ [0,π], struck perpendicularly by the plane
wave. The observation time interval is [0,4]. As uniform temporal discretization
step we use ∆ t = 0.1 and Γ is uniformly approximated by 80 straight boundary
elements where we adopt spatial linear shape and test functions. Several snapshots
related to the total recovered displacement in a square around the crack for different
time instants are shown in Fig. 13. The interesting part of the simulation is related
to the incident wave "captured" by the right part of the crack and then reflected
when the wavefront has already left the obstacle.
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Figure 13: Total recovered displacement u(x, t) around the curvilinear obstacle.

Energetic Galerkin BEM is now applied to two obstacles of different type with re-
spect to the previous one. At first, the incident plane wave, shown in Fig. 10, strikes
perpendicularly a breakwater obstacle, made by five disjoint aligned or parallel seg-
ments of length 0.5. The observation time interval is [0,3]. As uniform temporal
discretization step we use ∆ t = 0.1 and every segment is uniformly approximated
by 10 boundary elements (∆x = 0.05), where we adopt spatial linear shape and test
functions. The total recovered displacement in a square around the obstacle for dif-
ferent time instants is shown in Fig. 14. As one can see, the adopted approximation
technique furnishes satisfactory results also in the case of disconnected obstacles.

At last, the same incident plane wave strikes a unitary circle. The observation time
interval is [0,4]. As uniform temporal discretization step we use ∆ t = 0.1 and the
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Figure 14: Total recovered displacement u(x, t) around the brakewater obstacle.

boundary of the circle is uniformly approximated by 80 straight boundary elements
where we adopt spatial linear shape and test functions. Several snapshots related
to the total recovered displacement in a square around the plane convex domain for
different time instants are shown in Fig. 15.

5 Conclusions

In this paper we have considered 2D wave propagation Neumann problems, exte-
rior to different types of scatterers, reformulated in terms of a hypersingular BIE
with retarded potential, which has been set in a suitable space-time energetic weak
form. Galerkin BEM, applied to the energetic weak problem, has proved to be an
efficient tool to obtained accurate approximate solutions. The analysis of the pro-
posed technique has been conducted from both an analytical and a numerical point
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Figure 15: Total recovered displacement u(x, t) around the circular obstacle.

of view, giving very satisfactory results.
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