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A Spectral Boundary Element Method for Scattering
Problems

J. Tausch1 and J. Xiao2

Abstract: A fast method for the computation of layer potentials that arise in
acoustic scattering is introduced. The principal idea is to split the singular kernel
into a smooth and a local part. The potential due to the smooth part is discretized by
a Nyström method and is evaluated efficiently using a sequence of FFTs. The po-
tential due to the local part is approximated by a truncated series in the mollification
parameter. The smooth approximation of the kernel is obtained by multiplication of
its Fourier transform with a filter. We will show that for a rational filter the smooth
part and the expansion coefficients of the local part can be found in closed form.
The accuracy of the method is determined by the number of Fourier modes, the
mollification parameter and the mesh width of discretization. We will investigate
how to choose the parameters as a function of the wave number. The effectiveness
of the method is illustrated for medium-sized scatterers (50–100 wavelengths) that
may have complicated geometry.

Keywords: Boundary Element Method, Helmholtz Equation, Fast Method, Scat-
tering

1 Introduction

It is commonly accepted that the boundary element method (BEM) is an effec-
tive approach to solve the Helmholtz equation in the exterior of a scatterer. It has
the advantage that only the finite boundary surface has to be discretized and that
the radiation condition is automatically satisfied. However, the conventional BEM
typically leads to dense matrices, which makes the computational complexity pro-
hibitive for large scale practical problems. In the recent past a variety of methods
have been developed to handle this problem. These can be roughly classified into
two groups, namely methods that are based on a hierarchical subdivision of space
and grid-based methods.
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Examples of hierarchical methods are the fast multipole methodGreengard and
Rokhlin (1987), hierarchical matricesBörm (2002); Bebendorf (2008), adap-
tive cross approximationBrancati and Aliabadi (2009) and waveletsBeylkin et al
(1991). These methods place sources and evaluation points into a hierarchy of
clusters. The efficiency and accuracy of these methods depends critically on how
the cluster interactions can be approximated by low-rank matrices. In the case of
boundary integral operators associated with the Laplace, Stokes or Lamé equations
asymptotically optimal schemes have been developed. That is, the complexity of a
matrix-vector multiplication is order O(N loga N) for some a≥ 0 (N is the degrees
of freedom in the discretization), while the convergence rate of the discretization
scheme is preserved, see, e.g. Sauter (2000); Tausch (2004).

In the case of the Helmholtz equation, the size of the scatterer, measured in wave-
lengths, is the dominant factor that influences computational cost and accuracy. It is
well known that in the high-frequency regime large clusters in the coarse levels are
no longer approximated by low-rank matrices, and therefore the efficiency of the
aforementioned methods breaks down. To overcome this problem it has been pro-
posed to use the fast multipole method with diagonal translation operators, Rokhlin
(1990). This technique has been extended in Song et al (1998); Cheng et al (2005).

A different approach that avoids large clusters is to replace the surface distribution
by equivalent sources on a uniform grid. The fast Fourier transform (FFT) can be
employed to compute grid potentials efficiently. Since the grid is only accurate
when the source and the evaluation point are well separated, the nearby interac-
tions must be computed directly, by adding up contributions of individual sources.
Grid-based methods are quite popular even though it appears that the asymptotic
complexity is generally higher than what can be achieved with hierarchical meth-
ods. However, in many engineering applications the geometry is complicated and
the mesh is relatively coarse, therefore small constant factors often play an impor-
tant role Bespalov (2000). Applications of grid-based methods for the Laplace,
Lamé and Helmholtz equations can be found in Hockney and Eastwood (1988);
Phillips and White (1997); Fata (2008); Peirce and Napier (1995); Bruno and
Kunyansky (2001).

If the scatterer is smooth and isomorphic to a sphere, spectral element methods,
based on expansion of the solution into spherical harmonics have been shown to
be successful Ganesh and Graham (2004). Papers for the efficient solution of
multifrequency problems are Köhl and Rjasanow (2003); von Estorff et al (2005).

The approach described in this paper is more close to grid-based methods in that
FFTs are used to accelerate the matrix-vector product. However, there is no uniform
grid with equivalent charges. The idea here is to split the Green’s function into a
smooth approximation and a singular, essentially local part. The smooth part of the
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Green’s function is replaced by a rapidly converging Fourier series. We will show
how a sequence of FFTs can be used to compute layer potentials with such a kernel
effectively.

The local part is evaluated using a truncated Taylor series expansion with respect
to the mollification parameter. Thus the computation of the local part amounts to
multiplying with a diagonal matrix. Unlike the hierarchical or grid-based meth-
ods there is no need to compute and store singular surface integrals to account for
nearby interactions of sources. Our numerical results demonstrate that the pre-
sented approach has short setup times and has low memory requirements. We be-
lieve that this is the main advantage of the presented method over the fast methods
that appeared previously, because the computation of the nearfield interactions is
usually a significant fraction of the overall solution cost.

For the heat equation the splitting of the Green’s function into a smooth and a local
part is obvious in that interactions with time steps in the past are smooth. Thus
the history part can be expanded in a rapidly converging Fourier series. Further-
more, the recent time steps have a local kernel and allow an expansion in time. An
algorithm based on such ideas was first discussed in Greengard and Strain (1990).

For the Helmholtz equation the way the Green’s function is split into a smooth
and a local part is not so clear: In Bespalov (2000) the singular part is replaced
by a polynomial such that the resulting composite function is sufficiently smooth.
The remainder is singular but local and is accounted for by computing individual
panel interactions. This approach computes the distant interactions rapidly, but the
treatment of the nearfield still involves the computation of weakly singular integrals
which still contributes to a large constant in the complexity estimates.

In this paper we consider multiplying the Fourier transform of the kernel by a fil-
ter to obtain a smooth approximation. For the Laplace operator (i.e., vanishing
wavenumber), a Gaussian filter results in a smooth part that can be expressed in
closed form in spatial coordinates Tausch (2005). When the wavenumber is non-
zero, this filter does not lead to closed-form expressions and is therefore not useful
for numerical computations. In this article we show that a filter in the form of a
rational function leads to a closed-form smooth part. We will discuss how the mol-
lification parameter must depend on the wavenumber to ensure approximation. We
will describe an algorithm that exploits the Fourier series expansion of the smooth
part to compute the potential of a layer operator in order N + s3 logs operations,
where s is the number of Fourier modes. We conclude with several examples that
illustrate the behavior of the method.
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2 Problem Formulation

For simplicity of exposition, the focus of this paper will be on the sound-soft acous-
tic scattering of an incoming field uinc of a smooth obstacle D ⊂ R3. The reflected
field u is described by the Dirichlet problem to the Helmholtz equation with the
Sommerfeld radiation condition

∆u(x)+κ2u(x) = 0, x ∈ R3 \D
u(x) = −uinc(x), x ∈ Γ := ∂D

∂u
∂ r − iκu = O( 1

|r|2
).

(1)

Here, κ is the wave number, |·| denotes the Euclidean norm. We assume that the
problem is scaled such that the scatterer is located inside a cube of side length 1−d,
that is

Γ ⊂ [0,1−d]3 (2)

where 0 < d� 1 is a constant whose meaning will become clear in section 5.1.

A classical approach to treat the Helmholtz problem (1) is the combined layer
ansatz of Brakhage and Werner Brakhage and Werner (1965), where the scattered
field is represented by a combination of a single- and double layer potential

u(x) = (K − iηV )σ(x), x ∈ R3 \D, (3)

where η > 0 is the coupling parameter, σ an unknown surface density and

V σ(x) :=
∫

Γ

exp(iκ|x− y|)
4π|x− y|

σ(y)dΓy, (4)

K σ(x) :=
∫

Γ

∂

∂ny

exp(iκ|x− y|)
4π|x− y|

σ(y)dΓy (5)

are the single and double layer operator, respectively. By letting x→ Γ from the
exterior of the scatterer, and taking the jump relations of layer potentials under
consideration, the following boundary integral equation for σ can be derived

1
2

σ(x)+(K − iηV )σ(x) =−uinc(x), x ∈ Γ . (6)

It is well known that (6) is a well posed problem when η > 0, see, e.g., Colton and
Kress (1983).
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3 Splitting of the Helmholtz Kernel

The method is based on splitting of the Helmholtz kernel

G = GS
δ
+GL

δ
(7)

into a smooth part GS
δ

and a singular, local part GL
δ
. Here, δ is the mollification

parameter that controls the smoothness of GS
δ
. Thus the single-layer potential is

decomposed into
V = V S

δ
+V L

δ
,

where the smooth and the local part of the single layer operator are

V S
δ

g(x) :=
∫

Γ

GS
δ
(x− y)g(y)dΓy, (8)

V L
δ

g(x) :=
∫

Γ

GL
δ
(x− y)g(y)dΓy. (9)

The splitting of the double layer potential K = K S
δ

+K L
δ

is defined analogously.

To obtain the smooth part, we start with the following integral transform represen-
tation of the Helmholtz kernel

G(r) =
exp(iκ|r|)

4π|r|
=

1
2π2

∫
∞

0

ρ2

ρ2−κ2 j0(ρ|r|)dρ. (10)

Here j0(z) = sin(z)/z is the spherical Bessel function of order zero. The integral in
(10) is understood in the sense that the singularity at ρ = κ is circumvented in the
lower complex half-plane, thereby enforcing the Sommerfeld radiation condition.
The imaginary part in the left hand side of (10) comes from integration along a
complex path. Details of the derivation of (10) can be found in, e.g., Duffy (2001).

The decay rate of the integral transform at infinity determines the regularity of the
kernel. The integrand in (10) decreases slowly as ρ → ∞ which explains that the
Green’s function is singular in the origin. A smooth approximation of the kernel
can be obtained by multiplying the transform with a filter which has a rapid decay
rate at infinity. The resulting mollified Green’s function is

GS
δ
(r) =

1
2π2

∫
∞

0
H
(

δ (ρ2−κ
2)
)

ρ2

ρ2−κ2 j0(ρ|r|)dρ (11)

where H denotes the filter and δ is the mollification parameter. Since the integrand
is singular for ρ = κ it is more convenient to write the filter in the form as it
appears in (11) and not as H(δρ2). A natural choice of a filter a Gaussian, i.e.,
H(z) = exp(−z). For the Laplace equation (i.e., κ = 0) this was considered in
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our previous work, see Tausch (2005). Unfortunately, for a nonzero frequency the
mollified Green’s function does not appear to have a closed form if a Gaussian filter
is selected, and therefore we will consider a rational filter in the following.

To that end, write the filter in partial fractions decomposition

H(z) =
q

∑
k=1

ck

z+w2
k
, (12)

where the coefficients wk > 0, ck ∈ C and the regularity parameter q are at our
disposition. To find a closed form of the integral in (11) we also need the partial
fractions decomposition

H(z)
z

=
q

∑
k=0

dk

z+w2
k
. (13)

Basic complex variable arguments show that w0 = 0 and

d0 = H(0) and dk =− ck

w2
k
. (14)

Substitution of (13) into (11) leads to

GS
δ
(r) =

1
2π2

q

∑
k=0

dk

∫
∞

0

ρ2

ρ2− ŵ2
k

j0(ρ|r|)dρ,

where

ŵk =

√
κ2−

w2
k

δ
, k = 0, · · · ,q. (15)

The integrals in the last expression are of the same form as (10). Therefore the
mollified Green’s is given by

GS
δ
(r) = d0

exp(iκ|r|)
4π|r|

+
q

∑
k=1

dk
exp(iŵk|r|)

4π|r|
. (16)

Equation (16) represents a decomposition of G(r) in a smooth and local part pro-
vided that d0 = 1 and that the ŵk’s have positive imaginary part. In this case the
mollified Green’s function consists of the original Green’s function with some ex-
ponentially decreasing terms that remove the singularity at r = 0. Thus equations
(14) and (15) imply the conditions on the filter,

H(0) = 1, (17)

wk >
√

δκ, k = 1, . . . ,q. (18)
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Furthermore, it can be seen from (11) that if the filter satisfies

|H(t)| ≤ cmin
(
1, |t|−q) , for −δκ

2 ≤ t < ∞ (19)

for some constant c > 0, then GS
δ
∈C2q+2.

If the filter satisfies (17), the local part is, up to a sign, the second term in (16). In
the discussion below, it will be convenient to write GL

δ
(r) in the form

GL
δ
(r) =−

q

∑
k=1

dk
exp(iŵk|r|)

4π|r|
=

1√
δ

E
(
|r|√

δ

)
(20)

where function E is given by

E(z) =−
q

∑
k=1

dk
exp(iw̃kz)

4πz
, (21)

and w̃k =
√

δ ŵk.

Filters that satisfy (17) and (19) can be found easily: choose real and mutually
different roots wk 6= 0, k = 0, . . .q, and let

H(z) = ∏
k=1

w2
k

z+w2
k
. (22)

Computing the partial fractions decomposition of the product shows that this filter
is indeed of the form (12), with coefficients given by

ck = w2
k ∏

l 6=k

w2
l

w2
l −w2

k
. (23)

Figure 1 illustrates the behavior of the mollified Green’s functions for various val-
ues of δ . The roots are wk = k and q = 8.

4 Expansion of the local operator

Since E(z) is an exponentially decreasing function it is clear from (20) that GL
δ
(r)

becomes more peaked and more rapidly decaying as δ decreases. Thus the poten-
tials of the local operators V L

δ
g(x) and K L

δ
g(x) can be approximated using only

the density at the evaluation point. In fact, we will show in this section that the
expansions

V L
δ

g(x) = δ
1
2 Φ0g(x)+O(δ

3
2 ), (24)

K L
δ

g(x) = δ
1
2 Ψ0(x)g(x)+O(δ

3
2 ) (25)
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Figure 1: The graph of the functions y = ReG(r) and y = ReGS
δ
(r) for κ = 10π .

The largest value δ=2e-3 does not satisfy condition (18) and therefore does not
approximate G for large arguments.

hold for δ → 0+. We will also determine the values for the coefficients Φ0 and
Ψ0. To numerically compute the local potentials one can simply neglect the O(δ

3
2 )

remainder. Then the evaluation of the local part reduces to a multiplication with
a diagonal matrix. It is also possible to obtain higher-order terms in the above
expansions , using techniques developed for thermal layer potentials, see Tausch
(2009). However, the discussion is technical and therefore we limit ourselves here
to the first term.

To derive (24) and (25) for some point x∈Γ we introduce a smooth cut-off function
χ̃ν which is unity in the ball Bν(x), centered at x, and vanishes outside B2ν(x).
The radius ν is chosen to be small enough such that the piece of the surface inside
B2ν(x) has a parameterization of the form y(t) = x +Yt + nxh(t) . Here nx is the
normal of the surface at the point x, Y ∈ R3×2 has two orthogonal columns that
span the tangent plane at x and h(t) = O(|t|2) is some scalar function in t ∈ R2.
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The local single-layer potential V L
δ

in (9) can be written in the form

V L
δ

g(x) =
∫

S
GL

δ
(x− y)g(y)dΓy

=
1√
δ

∫
S

E
(
|x− y|√

δ

)
χ̃ν(x− y)g(y)dΓy +Rδ (x)

=
1√
δ

∫
R2

E
(
|x− y(t)|√

δ

)
g̃(t)d2t +Rδ (x). (26)

Here, E(·) is defined in (21), g̃(t) = χ̃ν(x−y(t))g(t)J(t) where J(t) is the Jacobian
of the parameterization. The remainder Rδ (x) is the contribution from the exte-
rior of Bν(x) which decays exponentially in 1/δ . Hence the remainder does not
contribute to the series expansion at δ = 0.

We assume that the function h(t) in the parameterization of the surface is analytic,
that is,

h(t) = ∑
|α|≥2

hαtα . (27)

Thus there are C∞-functions Hn such that

|x− y(t)|= |t|
∞

∑
n=0
|t|nHn(̂t) (28)

where t̂ := t/|t| and H0(̂t) = 1 and H1(̂t) = 0. Substituting (28) into (26) and chang-
ing variables t 7→ t/

√
δ leads to

V L
δ

g(x) =
√

δ

∫
R2

E

(
|t|

∞

∑
n=0

(
√

δ |t|)nHn(̂t)

)
g̃(
√

δ t)d2t +Rδ (x).

The integral is an analytic function in
√

δ and can therefore be expanded in a
Maclaurin series in

√
δ . Substitution of

√
δ = 0 into V L

δ
and ∂

∂
√

δ
V L

δ
gives the

first two terms in the series. We see that the zero-th order term is

Φ0 =
∫

R2
E(|t|)d2t =

1
2i

q

∑
k=1

dk

w̃k
.

and that the first order term vanishes because of the symmetry in the integrand.
This establishes the validity of (24).

The local double layer potential is given by

K L
δ

g(x) =
∫

S

∂

∂ny
GL

δ
(x− y)g(y)dΓy

=− 1
δ

∫
Γ

E ′
(
|x− y|√

δ

)
(x− y) ·ny

|x− y|
g(y)dΓy.
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The second factor of the kernel can be expanded in a similar manner as (28), we
find that

(x− y) ·ny

|x− y|
= |t|

(
h02 cos2

θ +h11 cosθ sinθ +h20 sin2
θ
)
+O(|t|2)

where θ is the angular coordinate of t and the h’s are from expansion (27). Pro-
ceeding in a similar manner as for the single layer operator leads to the expansion
(25), where

Ψ0(x) = (h02 +h20)
1
2i

q

∑
k=1

dk

w̃k
.

The expression (h02 +h20) is the mean curvature of the surface at the point x.

If the surface is only piecewise smooth, and x is on an edge or vertex of the surface,
the parameterization y(t) must be defined for every face that contains x, which will
lead to expansions similar to (24) and (25).

5 Fast algorithm for the smooth part

If the higher order terms in the expansion of the local part are truncated, integral
equation (6) becomes

λδ (x)σδ (x)+(K S
δ
− iηV S

δ
)σδ (x) =−uinc(x), x ∈ Γ . (29)

where

λδ (x) =
1
2

+δ
1
2

(
Ψ0(x)− iηΦ0

)
Since the integral operators have smooth kernels the Nyström method is the sim-
plest discretization option. Here, the integral is replaced by a surface quadrature
rule of the form ∫

Γ

f (y)dΓy ≈
N

∑
j=1

f (x j)w j,

where xi ∈ Γ are the nodes and wi are the weights of the quadrature rule. The
construction of such a quadrature rule begins with a subdivision of the surface in
triangular patches of maximal diameter h. The nodes and weights are chosen such
that the quadrature rule is exact for polynomials of a given degree. Since the domain
of integration is a two-dimensional manifold the number of nodes scales like N =
O(h−2). Details can be found in many references, such as Atkinson (1997). The
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discretization of the layer potentials is

V S
δ ,hg(x) :=

N

∑
j=1

GS
δ
(x− x j)g(x j)w j, (30)

K S
δ ,hg(x) :=

N

∑
j=1

∂

∂n j
GS

δ
(x− x j)g(x j)w j. (31)

The Nyström discretization replaces the integral operators by their discrete coun-
terparts and enforces equation (29) at the node points of the quadrature. The result
is the linear system

λδ (xi)σδ ,h(xi)+(K S
δ ,h− iηV S

δ ,h)σδ ,h(xi) =−uinc(xi), i = 1, . . . ,N. (32)

We describe a fast algorithm for evaluating the smooth part of the combined layer
operator, which is based on replacing the smooth kernel GS

δ
by a truncated Fourier

series. For rapid convergence it is necessary to multiply this kernel with a suffi-
ciently smooth cut-off function χ that is unity inside the cube [−1+d,1−d]3 and
vanishes outside [−1,1]3. Since we assumed in (2) that the surface is contained in
[0,1−d]3, the cut-off function has no effect on the integral, thus the smooth part of
the combined layer is given by

uS(x) :=
(
K S

δ ,h− iηV S
δ ,h

)
g(x)

=
N

∑
j=1

(
∂

∂ny
− iη

)(
χGS

δ

)
(x− x j)g(x j)w j, x ∈ Γ .

(33)

In the fast algorithm the kernel χGS
δ

is approximated by the truncated Fourier series
Gs

Gs(r) := ∑
‖ω‖

∞
≤s

Ĝω exp(iπω · r) , r ∈ [−1,1]3 (34)

where the summation index ω is in Z3 and Ĝω is a Fourier coefficient of χGS
δ
,

given by

Ĝω =
1
8

∫
[−1,1]3

exp(−iπω · r)
(
χGS

δ

)
(r)d3r. (35)

The resulting approximate potential is a truncated Fourier series

uS
s (x) :=

N

∑
j=1

(
∂

∂n j
− iη

)
Gs(x− x j)g(x j)w j = ∑

‖ω‖
∞
≤s

exp(iπω · x)d̂ω (36)
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where d̂ω = Ĝω ĝω and

ĝω =
N

∑
j=1

(
∂

∂ny
− iη

)
exp(−iπω · x j)g(x j)w j. (37)

In summary, the potential computation of the potential due to the smooth parts
consists of three stages.

1. Compute the Fourier coefficients ĝω in (37).

2. Multiply d̂ω := Ĝω ĝω for ‖ω‖
∞
≤ s.

3. Evaluate the Fourier series (36) for x ∈ Γ .

The Fourier coefficients in Stage 1 are computed by a sequence of FFTs, which will
be described in Section 5.1 . Stage 3 consists of another sequence of FFTs which
will be discussed in Section 5.2. Stage 2 obviously involves O(s3) operations. The
choice of s and the other parameters will be discussed in Section 6.

5.1 Computation of the ĝω ’s

In this section we describe how FFTs can be used to efficiently compute the Fourier
coefficients of the function g. To that end, the three-space is divided into cubes Cl ,
l = (l1, l2, l3) ∈ Z3. These cubes have centers x̄l = (l1, l2, l3)/s and side length
1/s. Note that s is the same as in (34) and therefore the cubes get smaller if more
terms in the Fourier series expansion of the Green’s function are retained. Because
of assumption (2) Γ is contained in the union the cubes with indices 0 ≤ l j < s,
provided that d ≥ 1/(2s). The piece of the surface that intersects with the l-th cube
is denoted by Γl = Cl ∩Γ and the set of quadrature nodes that is located on Γl is
denoted by Il , c.f. Figure 2.

From (37) it follows that the Fourier coefficients of g can be written as

ĝω = ∑
‖l‖

∞
≤s

exp
(
−iπω · l

s

)
∑

j∈Il

(
∂

∂n j
− iη

)
exp(−iπω · (x j− x̄l))g(x j)w j. (38)

The frequency and the spatial variable in the sum can be separated using the Jacobi-
Anger expansion, which is normally stated as

exp(−iξ t) =
∞

∑
ν=0

(−i)ν(2ν +1) jν(ξ )Pν(t), −1≤ t ≤ 1,

see, e.g., Nédélec (2001). Here, jν(·) is the spherical Bessel function of order ν

and Pν(·) is the Legendre polynomial of degree ν . This formula generalizes to the
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Figure 2: Two dimensional illustration of the geometry. The cube C11 is high-
lighted.

three-variate case and can be applied to the exponential in the sum of (38)

exp(−iπω · (x j− x̄l))≈ ∑
|α|≤p

(−i)|α|(2α +1) jα(π s̃ω)Pα

(
x j− x̄l

s̃

)
(39)

where p is the expansion order, s̃ = 1/(2s) is the half-length of a small cube, α =
(α1,α2,α3) is a multi-index, |α|= α1 +α2 +α3, jα(x) = jα1(x1) jα2(x2) jα3(x3) and
Pα(x) is defined similarly. Substitution of (39) into (38) leads to the approximation

ĝω ≈ ∑
|α|≤p

(−i)α(2α +1) jα(π s̃ω) ∑
‖l‖

∞
≤s

exp
(
−iπω · l

s

)
mα

l (g),

where mα
l (g) is the moment

mα
l (g) = ∑

j∈Il

(
∂

∂ny
− iη

)
Pα

(
x j− x̄l

s̃

)
g(x j)w j . (40)

To write the above computation in matrix form, we define the matrices Mr(α) for
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r ∈ {0,1} by their coefficients

[Mr(α)]l, j =

{ (
∂

∂ny
− iη

)r
Pα

(
x j−x̄l

s̃

)
if x j ∈Il,

0 otherwise.
(41)

Furthermore, K(α) denotes the diagonal matrix

K(α) = diag
(
(−i)|α|(2α +1) jα(π s̃ω),‖ω‖

∞
≤ s
)

. (42)

Using these notations, the (approximate) coefficient vector ĝ, consisting of ĝω ’s, is
given by

ĝ = ∑
|α|≤p

K(α)F M1(α)~g, (43)

where F is the 2s-long three-dimensional discrete Fourier transform and~g the vec-
tor with components g(x j)w j. There are (p+1)(p+2)(p+3)/6 terms in the above
sum. The choice of p is determined by convergence of the Jacobi-Anger expansion.
Since by design of the algorithm

s̃‖ω‖
∞
≤ 1

2
,

hence the argument to the Bessel function in (39) is small and independent of all
parameters. Therefore a small value of p will suffice.

5.2 Evaluation of the Fourier series

We now turn to the evaluation of the potentials uS
s (xi) in (36), assuming that the

coefficients d̂ω have been computed. In order to evaluate this potential efficiently,
the Jacobi-Anger approximation (39) is used again, in a very similar manner as in
the previous section. Specifically, let l be the index of the cube Cl that contains the
node point x j, then

uS
s (x j) = ∑

‖ω‖
∞
≤s

exp
(

πiω · l
s

)
exp(iπω(x j− x̄l)) d̂ω

≈ ∑
|α|≤p

∑
‖k‖

∞
≤s

exp
(

iπω · l
s

)
i|α|(2α +1) jα(π s̃ω)Pα

(
x j− x̄l

s̃

)
d̂ω ,

In matrix notation, the evaluation of the Fourier series is

~u = ∑
|α|≤p

M0(α)T F∗K∗(α)~d, (44)

where M0(α) and K(α) are the matrices defined in (41) and (42), respectively, and
~d consisting of d̂ω ’s.
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5.3 Evaluation the Fourier coefficients of the Kernel

The Fourier coefficients of the smooth kernel are computed just like the coefficients
of the density. From (35) it follows that

Ĝω =
1
8 ∑
‖l‖

∞
≤s

exp
(
−iπω · l

s

)∫
Cl

exp(−iπω · (y− xl))(χGS
δ
)(y)dΓy. (45)

The Jacobi-Anger expansion leads to

Ĝ = ∑
|α|≤p

K(α)F m̌α (46)

where the moments

m̌α
l =

1
8

∫
Cl

Pα

(
y− xl

s̃

)
(χGS

δ
)(y)d3y

are computed using high-order Gauss quadratures.

6 Choice of parameters and Complexity

This section presents a rationale for choosing the mollification parameter δ , the
number of Fourier modes s in (36) and the mesh width of the Nyström quadrature
rule as a function of the wavenumber κ .

Recall that condition (18) is necessary to ensure that GL
δ
(r) is indeed a local func-

tion. If the filter (and therefore, wk) is fixed as κ → ∞, then the relationship

δκ
2 = κ̃

2 (47)

must hold for a fixed κ̃ < mink wk. After the change of variables ρ̃ =
√

δρ the
integral representation of the smooth part (11) is

GS
δ
(r) =

1

2π2
√

δ

∫
∞

0
H(ρ̃2− κ̃

2)
ρ̃2

ρ̃2− κ̃2 j0

(
ρ̃
|r|√

δ

)
dρ̃ =

1√
δ

G̃S
δ

(
r√
δ

)
,

where G̃S
δ

is a fixed function, independent of the wave number. Because of the
scaling in the last equation, the mesh width in the Nyström discretization must
be proportional to

√
δ in order to resolve the peak of GS

δ
(r) near r = 0. For the

same reason, the number of Fourier modes in (36) must be proportional to 1/
√

δ .
Because of (47) we see that

N ∼ h−2 ∼ κ
2 and s∼ κ. (48)
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The computation of the vectors ĝ in (43) involves the application of the matrices
M1(α) and K(α) at a cost of N and (2s)3 operations, repectively. Furthermore
the cost of an FFT is 3

2 log(s)(2s)3. Since there are (p + 1)(p + 2)(p + 3)/6 terms

in the sum of (43) the total cost of computing the vector ĝ is p3

6 (12log(s)s3 + N)
operations (neglecting the lower order terms). The matrix for the computation of
the vector ~u in (44) is the adjoint of the matrix in (43), hence the computational
cost is the same. The cost of the multiplication with the Ĝω ’s is of lower order.

As discussed in section 5.1, the parameter p is a constant, thus the cost of a matrix-
vector product under the assumption of (48) is O(κ3 logκ).

7 Numerical Examples

We have implemented the method and tested its effectiveness on various scatterers.
For the smooth part, we use filter (22) with q = 8, wk = k and ck given by (23).
Increasing q or replacing the filter by another one that satisfies the assumptions had
little effect on the overall performance of the algorithm. The truncation parameter
of the Jacobi-Anger expansion in (39) is always set to p = 4. The quadrature rule in
the Nyström method is the midpoint rule for surface integrals. That is, the surface
is triangulated by flat triangles, the quadrature nodes are the centers of the triangles
and the weights are their areas. The FFTs are done by FFTW Johnson (2005),
the code is compiled with gcc with optimization turned on. The CPU is a 2.4 Ghz
AMD Opteron processor. The system’s eight gigabyte memory was sufficient to
run all examples in core.

7.1 Sphere

In the first example involves computing the farfield pattern when the unit sphere is
hit with a plane wave. The farfield is computed from the density using the formula

α(x̂) = i
∫

Γ

exp(−iκ x̂ · y)(η +κ x̂ ·ny)σ(y)dΓy, x̂ ∈ S,

see, e.g., Nédélec (2001). Since Γ is a sphere, the solution σ as well as the farfield
can be expressed in closed form. The coupling parameter in (3) is η = κ/2 and
the linear system is solved with GMRES without any preconditioning. In these
experiments the sphere is initially triangulated by a coarse mesh, then the mesh is
uniformly refined each time the frequency is doubled. Likewise, the order of the
highest Fourier mode s in (34) is doubled each time the frequency is doubled. The
mesh width is proportional to the wavelength and the number of panels N is quadru-
pled with every mesh refinement. With a given combination of κ , N and s there is a
trade-off when choosing the parameter δ . If δ is small the mollified Green’s func-
tion is more peaked which implies that the truncation error of the Fourier series is
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large. If δ is large, the expansion error of the local part in (24) and (25) is large.
This is illustrated in Figure 3 which plots the error for the discretization parameters
in Table 1.

Figure 3: Relative L2(S)-error of the farfield of the sphere as a function of δ for the
parameters given in Table 1

.

The results shown in the figure are in good agreement with (47), that is, δ ∼ 1/κ2.
In fact, when the frequency is doubled, the optimal value of δ is reduced by the
factor four. Furthermore, the error stays about the same when κ is increased and
s∼ κ and δ ∼ 1/κ2.

The timings displayed in Table 1 are the time per iteration and the total time, which
also includes the time to compute the Fourier coefficients Ĝk. Since the time per
iteration and setup are independent of δ , we only list the time for the optimal δ .
The number of GMRES iterations is somewhat dependent on κ and δ , we display
iteration counts only for the optimal δ . The time per iteration increases by a fac-
tor somewhat larger than eight when doubling the wavenumber, which agrees well
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Label N s size in its mem time/itr time
wavelengths (MB) (sec) (sec)

1a 5120 16 3.13 9 8.3 0.1 3
2a 20480 32 6.25 11 34.2 1.6 27
3a 81920 64 12.5 13 145.4 15.3 288
4a 327680 128 25 15 623.9 127.4 2523
5a 1310720 256 50 18 3071 1189 26161
1b 1280 16 6.25 11 2.3 0.1 3
2b 5120 32 12.5 13 9.7 0.8 25
3b 20480 64 25 16 45.0 13.2 290
4b 81920 128 50 19 230.6 116.8 2829
5b 327680 256 100 23 1323 1130 30755

Table 1: Parameters and timings for the sphere. Top: Lower frequency with higher
accuracy. Bottom: Higher frequency with lower accuracy.

with the κ3 logκ complexity estimate. The code stores the Fourier coefficients Ĝk
and ĝk, the moments mα(g), as well as the orthogonal basis of the Krylov sub-
space generated by GMRES. For the size of problems computed, the Krylov basis
consumes the largest portion of the overall memory usage. Since this part grows
roughly like κ2, the growth rate of the overall storage appears slower in the table
than the actual asymptotic estimate.

7.2 Disk backed by a Ground plane

We now test the performance of the algorithm on an infinitely thin disk, {(x,y,0.1),x2 +
y2 ≤ 0.25}, which is backed by an infinite plane at z = 0. The incoming field

uinc(x,y,z) = exp
(
iκ(cos(ϕ)x)

)
sin(κ sin(ϕ)z)

represents a plane wave that approaches the plane z = 0 at an angle ϕ and its re-
flected wave. The source density of this problem are shown in Figure 4 and the
scattered fields in Figure 5. To compute the field that is scattered from the disk we
use the method of images, i.e., we place an identical disk at z = −0.1. Since the
scatterer has no interior, there are no spurious resonances, and therefore it is suf-
ficient to solve the problem with the single layer potential equation V σ = −uinc.
Since the resulting charge density is singular on the edges of the disk, we use a
graded mesh that is refined where we expect the singularity.

Since this problem has no analytical solution we investigate the convergence of the
solution when refining the discretization parameters. Figures 4 display the real part
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Figure 4: Three refinements (left: coarse, right: finer, bottom: finest) of the real
part of the source density for the disk, 17 wavelenghts

of the source density on the disk for the discretization parameters shown in Table 2.
There are some apparent differences between the first and second mesh, but it is
hard to see differences between the second and third mesh. The singular behavior
is hard to spot in the figures, because the density grows large only very close to the
edge.

While we observed rapid convergence of the iterative solver in the sphere example,
the convergence in the disk example is much slower. A side effect is the increased
memory allocation to store the orthogonal basis of the Krylov subspace in the GM-
RES algorithm, since we do no restarts. This accounted for approximately sixty
percent of the overall memory allocation. We did not precondition the linear sys-
tem, but note that there are numerous preconditioners that are effective for integral
formulations of scattering problems, see Carpentieri (2006), which could be used
here.
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Figure 5: Scattered field of the disk. Low Frequency(left, 8.5 wavelenghts) and
high Frequency, (34 wavelenghts right)

N s size in δ its mem time/itr time
wavelengths (MB) (sec) (sec)

130048 64 17 1.25×10−5 64 310 15.3 1072
520192 128 17 3.125×10−6 67 1286 126 9172
2080768 256 17 7.8125×10−7 82 5528 1102 95871
32512 32 8.5 5.0×10−5 68 76 1.6 123
520192 128 34 3.125×10−6 100 1286 126 13296

Table 2: Disk example. Top: Parameters used to obtain the densities shown in
Fig. 4. Bottom: Parameters used to obtain the fields shown in Fig. 5

7.3 Airplane

To illustrate that the technique discussed in this paper can be used for very general
scatterers we include the Boeing 747 example shown in Figure 6. The surface of
the airplane is assumed to be sound soft. The geometry is discretized into 556552
triangular panels, and no further information, such as parameterizations, are known.

Figure ?? compares the scattering amplitude for s = 128 and s = 256 Fourier
modes. Since it is hard to spot differences in the two solutions, it appears that
already the smaller value of s will give an acceptable accuracy in many applica-
tions. The size of the scatterer in this problem is about 45 wavelengths, the memory
allocation of the smaller problem is 906MB and the CPU time is 4355 seconds.

Figure 8 displays the density for 90 wavelengths and s = 256. The memory alloca-
tion is 1583 MB and the CPU time is 36361 seconds.
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Figure 6: 3D rendering of the airplane.

8 Conclusions

We have presented a method for the computation of scattered fields that has order
κ3 logκ complexity when the mesh width is proportional to the wavelength. Since
N ∼ κ2 the asymptotic estimate is not optimal, but because of small constants we
have been able to solve scatterers of one hunderd wavelenghts in eight to nine
hours. Most of the CPU time is spent evaluating the sums in (43) and (44). Since
this part is embarrassingly parallel one can expect almost optimal speed up on
distributed memory multiprocessor machines. In our implementation the surface
of the scatterer is given in terms of a triangulation, and the curvature in (24) is
approximated by finite differences. If more information about the surface is known,
e.g., if it is given by parameterizations, then one could compute more terms in the
expansion of the local part and obtain higher order schemes. However, in many
realistic situations the surface is not known to such precision, such as in the case
of a triangulation. The point of the airplane expample is to demonstrate that the
presented algorithm is robust in this situation. In the case of sound-hard scattering
the combined integral equation involves the hypersingular integral. This operator
can be treated with our methodology if it is rewritten in the curl-curl form, see
e.g. ?. However, the details are somewhat technical and we will consider this in our
future work.



242 Copyright © 2010 Tech Science Press CMES, vol.58, no.3, pp.221-244, 2010

Figure 7: Comparison of the scattering amplitude as a function of θ (setting ϕ = 0
for two different discretizations. 45 wavelengths

9 Acknowledgment

The author obtained the panel description file of the airplane from the website
www.3dcafe.com. This work was in part funded by the National Science Foun-
dation under grant DMS-091522.

References

Atkinson, K. E. (1997): The Numerical Solution of Integral Equations of the Sec-
ond Kind, Cambridge University Press.

Bebendorf, M. (2008): Hierarchical Matrices: A Means to Efficiently Solve Ellip-
tic Boundary Value Problems, Springer.

Bespalov, A. (2000): On the use of a regular grid for implementation of boundary
integral methods for wave problems, Russ. J. Numer. Anal. Math. Modelling 15 (6),
469–488.

Beylkin, G.; Coifman, R.; Rokhlin, V. (1991): Fast wavelet transforms and nu-
merical algorithms, Comm. Pure Appl. Math. XLIV, 141–183.

Börm, S.; Grasedyck, L.; Hackbusch, W. (2002): Introduction to hierarchical
matrices with applications, Engrg. Anal. Boundary Elements, 405–422.



Spectral BEM for Scattering 243

Figure 8: The density (imaginary part) for 90 wavelengths

Brakhage, H.; Werner, P. (1965): über das Dirichletsche Aussenraumproblem
für die Helmholtzsche Schwingungsgleichung, Arch. Math. 16, 325–329.

Brancati, I. B. A.; Aliabadi, M. H. (2009): Hierarchical adaptive cross approxi-
mation gmres technique for solution of acoustic problems using the boundary ele-
ment method, CMES: Comput. Model. Engrg Sci. 43 (2), 149–172.

Bruno, O.; Kunyansky, L. (2001): A fast, high-order algorithm for the solution
of surface scattering problems: Basic implementation, tests, and applications, J.
Comput. Phys. 169 (1), 80–110.

Carpentieri, B. (2006): Combining fast multipole techniques and an approximate
inverse preconditioner for large electromagnetism calculations, SIAM J. Sci. Statist.
Comput. 27, 774–792.

Cheng, H.; Crutchfield, W. Y.; Gimbutas, Z.; Greengard, L.; Ethridge, J.;
Huang, J. (2005): A wideband fast multipole method for the helmholtz equation
in three dimensions, J. Comput. Phys. 216, 300–325.



244 Copyright © 2010 Tech Science Press CMES, vol.58, no.3, pp.221-244, 2010

Colton, D.; Kress, R. (1983): Integral Equation Methods in Scattering Theory,
Wiley, New York.

Duffy, D. (2001): Green’s Functions with Applications, Chapman and Hall/CRC.

Fata, S. (2008): Fast Galerkin BEM for 3D potential theory, Comput. Mech. 42,
417–429.

Ganesh, M.; Graham, I. (2004): A high-order algorithm for obstacle scattering in
three dimensions, J. Comput. Phys. 198, 211–242.

Greengard, L.; Rokhlin, V. (1987): A fast algorithm for particle simulations, J.
Comput. Phys. 73, 325–348.

Greengard, L.; Strain, J. (1990): A fast algorithm for the evaluation of heat
potentials, Comm. Pure Appl. Math. XLIII, 949–963.

Hockney, R. W.; Eastwood, J. W. (1988): Computer Simulations using Particles,
McGraw-Hill, New York.

Johnson, M. F. S. (2005): The design and implementation of FFTW3, Proceedings
of the IEEE 93 (2), 216—231, special issue on “Program Generation, Optimization,
and Adaptation”.

Köhl, M.; Rjasanow, S. (2003): Multifrequency analysis for the helmholtz equa-
tion, Comput. Mech. 32 (4–6), 234–239.

Nédélec, J.-C. (2001):Acoustic and Electromagnetic Equations, Springer.

Peirce, A.; Napier, J. (1995): A spectral multipole method for efficient solution of
large-scale boundary element models in elastostatics, Internat. J. Numer. Methods
Engrg. 38, 4009–4034.

Phillips, J.; White, J. (1997): A precorrected-FFT method for electrostatic analy-
sis of complicated 3-D structures, IEEE Trans. Circuits and Systems 16 (10) 1059–
1073.

Rokhlin, V. (1990): Rapid solution of integral equations of scattering theory in two
dimensions, J. Comput. Phys. 86, 414–439.

Sauter, S. (2000): Variable order panel clustering, Computing 64 (3), 223–277.

Song, J.; Lu, C.; Chew, W.; Lee, S. (1998): Fast Illinois solver code FISC, IEEE
Antennas Propag. Mag. 40, 27–34.

Tausch, J. (2004): The variable order fast multipole method for boundary integral
equations of the second kind, Computing 72 (3), 267–291.

Tausch, J. (2005): A spectral method for the fast solution of boundary integral
formulations of elliptic problems, in: Constanda, C.; Nashed, Z.; D. Rollins (Eds.),
Integral Methods in Science and Engineering, Birkhauser, pp. 289–297.



Spectral BEM for Scattering 245

Tausch, J. (2009): Nystrom discretization of parabolic boundary integral equa-
tions, Appl. Numer. Math. 59 (11), 2843–2856.

von Estorff, O.; Rjasanow, S.; Stolper, M.; Zaleski, O. (2005): Two efficient
methods for a multifrequency solution of the helmholtz equation, Comput. Vis. Sci
8 (3-4), 159–167.




