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Analysis of a Crack in a Thin Adhesive Layer between
Orthotropic Materials: An Application to Composite

Interlaminar Fracture Toughness Test

L. Távara,1 V. Mantič,1 E. Graciani,1 J. Cañas1 and F. París1

Abstract: The problem of a crack in a thin adhesive layer is considered. The ad-
herents may have orthotropic elastic behavior which allows composite laminates to
be modeled. In the present work a linear elastic-brittle constitutive law of the thin
adhesive layer, called weak interface model, is adopted, allowing an easy modeling
of crack propagation along it. In this law, the normal and tangential stresses across
the undamaged interface are proportional to the relative normal and tangential dis-
placements, respectively. Interface crack propagation is modeled by successive
breaking of the springs used to discretize the weak interface. An important feature
of the BEM approach developed is that the behavior of the springs is independent
of the boundary element mesh, (i.e. distance between springs and boundary ele-
ment types used). This fact allows, for example, an easy mesh refinement to be
performed. The present model allows not only the crack propagation but also the
crack initiation to be studied. The problem of two linear elastic half-planes bonded
by a cracked thin adhesive layer is considered first. A formulation of the new gov-
erning integral equation for two identical orthotropic half-planes bonded along a
straight weak interface including a finite interface crack under constant pressure is
presented, introducing a new dimensionless characteristic structural parameter δ . A
parametric study of this problem by BEM is presented, verifying the correct imple-
mentation of the weak interface model. Then, the Interlaminar Fracture Toughness
(GIc) Test is analyzed by the BEM code developed. The crack propagation is stud-
ied by a new Energy Release Rate criterion. It is shown that the weak interface
model of the adhesive layer, used in the 2D Boundary Element Method (BEM)
code developed, provides a good representation of the actual adhesive behavior by
comparing numerical and experimental results.
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1 Introduction

The majority of methods used to simulate crack propagation, based on the classical
Linear Elastic Fracture Mechanics (LEFM), made difficult the study of crack initi-
ation occurring in the first step of fracture process, since they assume the presence
of a crack. Recently, other models have been intensively developed, like energeti-
cally based delamination model [Kočvara, Mielke, and Roubíček (2006); Roubíček,
Scardia, and Zanini (2009)] or cohesive crack models [Hilleborg, Modeer, and Pe-
tersson (1976); Needleman (1987); Carpinteri (1989a); Carpinteri (1989b); Cama-
cho and Ortiz (1996); Maier and Frangi (1998); Camanho, Dávila, and de Moura
(2003)]. In particular, cohesive crack models assume hypotheses different to those
adopted in LEFM avoiding the presence of stress singularity at the crack tip. These
models are suitable to study both the crack initiation and crack propagation, and
also to estimate the fracture energy by suitable tests, and subsequently the maxi-
mum allowable load of a structure.

In many practical situations, the behavior of adhesive joints can be described mod-
eling the thin adhesive layer as a continous distribution of linear elastic springs
[Erdogan (1997)] with appropriate stiffness parameters. This model of adhesive
layer is usually called weak interface or elastic interface [Geymonat, Krasucki, and
Lenci (1999); Lenci (2001)]. In the present work a linear elastic-brittle consti-
tutive law is adopted for the springs representing the weak interface in order to
allow an easy modeling of crack propagation along the interface. This weak inter-
face model has been implemented in a 2D BEM code [París and Cañas (1997);
Graciani, Mantič, París, and Blázquez (2005)], whose original version allowed
isotropic axisymmetric and anisotropic plane problems to be modeled, including
multiple solids with strong interfaces (perfectly bonded) or contact zones between
them. The new feature incorporated in this code is the possibility of defining weak
interfaces between the elastic solids. It is noteworthy that the BEM is a suitable tool
for modeling a crack growing along the weak interface because the non-linearity
introduced is associated only to the interface boundary. Another feature of the code
is that the equilibrium and compatibility conditions, along contact zones and along
strong or weak interfaces, are imposed in a weak form allowing an easy use of non-
conforming discretizations [Blázquez, París, and Mantič (1998); Graciani, Mantič,
París, and Blázquez (2005)].

A good understanding and characterization of the adhesive layer behavior is very
important in the quality evaluation of adhesively bonded joints, and particularly in
determining the parameters that characterize their resistance to fracture and fail-
ure. These parameters can then be used in the design and quality control of the
production processes. The quality of an adhesive joint between composite lami-
nates is usually evaluated by an Interlaminar Fracture Toughness Test, where an
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estimation of the critical interlaminar fracture energy (GIc) is obtained. Extensive
experimental and numerical studies by Finite Element Method of this test (using
different adhesives) have recently been carried out by the present authors and their
co-workers, see [Távara, Mantič, Graciani, Cañas, and París (2008); Távara, Man-
tič, Graciani, Cañas, and París (2009)] and references therein.

2 Weak interface

2.1 Constitutive law of spring distribution

According to [Erdogan (1997); Geymonat, Krasucki, and Lenci (1999); Lenci
(2001); Carpinteri, Cornetti, and Pugno (2009)], a weak interface is considered
as a simple and useful model of a thin linear elastic adhesive layer between two
surfaces. The undamaged adhesive layer, considered as a linear elastic solid of
Young modulus Eadh of width w and small thickness h, can be modeled by a spring
distribution.

It is useful to clarify relations between the adhesive layer parameters (Eadh,h,w)
and the spring stiffness parameters used when the spring constitutive law is written
in terms of a force-displacement law, F−δn, (typically in an FEM model the rela-
tion between the nodal forces and displacements) or in terms of a normal traction-
displacement law, σ − δn, (typically in a BEM model). Considering a portion of
the adhesive layer given by a prismatic block of section Lw and height h, see Fig. 1,
with L being the distance between the springs, the following form of the force-
displacement constitutive law is easily obtained as:

F = Kadhδn, where Kadh =
EadhLw

h
, (1)

and of the normal traction-displacement law as:

σ = knδn, where kn =
Kadh

Lw
=

Eadh

h
. (2)

According to Eq. 1, the stiffness parameter in the force-displacement law depends
on the distance L between springs, whereas the stiffness parameter kn in the traction-
displacement law, in Eq. 2, is independent of this distance. Thus, an application of
non-uniform meshes, and in particular an adaptive mesh refinement, is much easier
to implemented for a spring distribution governed by a traction-displacement law
(where the parameter kn is not affected by the mesh size) than for that governed
by a force-displacement law (where the parameter Kadh depends on the adjacent
element sizes). It is noteworthy to notice that considering very thin adhesive layers
with vanishing thickness, h→ 0, a constant value of kn implies, view Eq. 2, vanish-
ing values of the Young modulus, Eadh→ 0, whereas constant values of Eadh imply
increasing values of kn, kn→ ∞.
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Figure 1: (a) Portion of the adhesive layer, (b) spring distribution (distance L be-
tween springs, FEM model)

2.2 Linear-elastic brittle law of the interface

In the present work, adhesive damage and/or rupture of the thin linear elastic ad-
hesive layer have been modeled as an abrupt free separation of both surfaces when
a threshold normal stress, σc, is achieved in the layer. Thus, the continuous spring
distribution that models the adhesive layer is governed by the following simple
linear elastic-brittle law, shown also in Fig. 2:

Linear elastic
interface

{
σ(x) = knδn(x)
τ(x) = ktδt(x)

δ ∗n (x)≤ δnc

Broken
interface

{
σ(x) = 0
τ(x) = 0

δ ∗n (x) > δnc

(3)

where δ ∗n is the maximum normal relative displacement achieved in the spring
(which corresponds to an interface point) up to the considered instant of the prob-
lem evolution, σ and τ are the normal and tangential stresses respectively in the
spring, and δn and δt are the normal and tangential relative displacements between
the spring ends. Sometimes δn and δt are referred to as the value of the opening
and sliding between the interface sides. kn is the above defined normal stiffness,
kt is the tangential stiffness of the continuous spring distribution, which can be ob-
tained by a similar analysis to that shown above for kn. Finally σc and δnc are,
respectively, the critical normal tension and opening displacement reached when
the spring breaks in mode I.

Notice that the springs break when the normal opening δn reaches its critical value,
δnc. Therefore, if δ ∗n (x) ≤ δnc loading and unloading takes place following the
linear elastic law in Eq. 3. When δ ∗n (x) > δnc both normal and tangential stiffness
are set to zero (during loading and unloading). This is due to the interface failure
criteria assumed herein and explained in the following.
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Figure 2: Normal and tangential linear elastic-brittle law

The interface failure criterion, proposed here, is based on the Energy Release Rate
(ERR) concept. The ERR is defined as the stored energy in the unbroken spring
situated at the crack tip as shown by [Lenci (2001)] and recently independently
also by [Carpinteri, Cornetti, and Pugno (2009)]. Thus, the ERR of a crack in a
weak interface is defined as:

G = GI +GII =
σδn

2
+

τδt

2
, (4)

where σ and τ are stresses at the crack tip and δn and δt are relative displacements
at the crack tip. This spring breaks when the crack propagates across it. The total
ERR of a crack growing in mixed mode can be defined as:

G = GI +GII = GI(1+ tan2
ψG), (5)

where

tan2
ψG =

GII

GI
, (6)

with ψG being the angle that defines fracture mode mixity. Thus ψG = 0◦ de-
fines a pure fracture mode I (opening mode) and ψG = 90◦ defines a pure fracture
mode II (shear mode) [Evans, Rühle, Dalgleish, and Charalambides (1990); Man-
tič, Blázquez, Correa, and París (2006)].

In this work a single mode I fracture criterion is adopted. It is assumed that a crack
propagates when the ERR associated to mode I, GI , reaches the mode I fracture
energy, that is:

GI = GIc, where GIc =
σcδnc

2
=

σ2
c

2kn
=

knδ 2
nc

2
. (7)
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Writing the crack propagation criterion along a weak interface as G = Gc(ψG) and
making use of Eq. 5 and Eq. 7, the following expression of the fracture energy
(representing the fracture toughness) as a function of the angle ψG is obtained:

Gc = GIc(1+ tan2
ψG). (8)

This expression reminds the fracture toughness law at interfaces studied by [Bank-
Sills and Ashkenazi (2000)], although it has been used in a different framework.
It is a simple approximation of the experimentally observed behavior of Gc in
interface cracks [Liang and Liechti (2005); Swadener, Liechti, and de Lozanne
(1999); Bank-Sills and Ashkenazi (2000); Dollhofer, Beckert, Lauke, and Schnei-
der (2001); Agrawal and Karlsson (2007); Mantič (2008)]. The growth of Gc with
the increasing angle ψG, i.e. increasing participation of shear mode seems to be in-
duced by several phenomena, e.g. localized plasticity at the crack tip and roughness
at the crack faces.

As mentioned before, in the present work we use a single mode I fracture criterion.
Nevertheless the variables δtc and τtc, shown in Fig. 2, can be expressed in terms of
δnc, σc and ψG, with the following relations:

δtc = tanψG

√
kn

kt
δnc, (9)

τc = tanψG

√
kt

kn
σc. (10)

A numerical analysis of a mixed mode propagation is presented in Section 5, in
order to see the capability of the criterion proposed herein.

3 Weak interface model in the 2D BEM code

3.1 Incremental formulation

The numerical solution of the non-linear problem formulated is based on a gradual
application of the loads and displacements imposed, by means of a load factor,
0 ≤ λ ≤ 1. The solution procedure is given by a series of lineal stages, "load
steps". At the beginning of each load step an actual adhesive layer bonded zone
is established, which defines the actual linear system of equations. By solving this
system the corresponding elastic solution is obtained. Thus, the solution of the
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problem will be divided into a number M (a priori unknown) of load steps where
the values of the problem variables vary linearly:

φ(x,λ ) = λ4mφ(x), (11)

with λm−1≤ λ ≤ λm, m = 1, ...,M, and λ0 = 0, and where φ(x,λ ) is the value of any
problem variable at a point x after a λ fraction of the load is applied. 4mφ(x) is the
value of the increment of the variable φ(x) corresponding to the unit increment of
the load factor λ , and it is obtained in the solution of the linear system of equations
corresponding to the m-th load step. This solution fulfills all the conditions of the
weak interface formulation (and also of the contact formulation) up to a certain
maximum value λm of the load factor λ associated to this load step. A further
increment of the load factor leads to rupture of some springs (or to a change in
contact conditions). Consequently values of variable φ at the end of each load step
are defined as φ(x,λm) = λm4mφ(x) for m = 1, ...,M. This procedure is illustrated
in Fig. 3.

λ

f

0

f(x,λ1
 

)
f(x,λ2

 

)

f(x,λ3
 

)

f(x,λm
 

)

Curve representing 
the approximated 
evolution of f(x,λ)

Figure 3: Example of evolution of a variable φ(x,λ )

3.2 Linear boundary conditions

The boundary conditions corresponding to the m-th load step are imposed at the
nodes of one side of the undamaged weak interface (denoted as A boundary) in the
following form (see Eq. 3):

4mtA
n (x) = kn4mδ

A
n (x), 4mtA

t (x) = kt4mδ
A
t (x), (12)

where tA
n (x) are the normal tractions, δ A

n (x) are the relative normal displacements
(separations of the boundary A with respect to the other boundary denoted as B),
tA
t (x) are the tangential tractions, and δ A

t (x) are the relative tangential displace-
ments (slidings of the boundary A with respect to the boundary B). The tangential
tractions tA

t (x) can be taken as zero if a pure mode I problem is considered.
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3.3 Non-linear boundary conditions

When solving the m-th load step, the values λ ∗m(x) of the load factor that leads to
the violation of the condition G > Gc are determined at each interface node, and
subsequently the limit load factor of the current step, λm = minλ ∗m(x), is defined.
In the next load step the linear system is defined by replacing in the first node that
failed the boundary conditions defined in Eq. 12 by the conditions:

4m+1tA
n (x) = 0, 4m+1tA

t (x) = 0. (13)

This procedure can be repeated as many times as necessary to reach equilibrium
after the whole load is applied.

4 Pressurized crack at a weak interface between identical orthotropic half
planes

4.1 Governing integral equations

To solve the problem of two isotropic half-planes bonded by a thin adherent layer
modeled by a weak interface including a crack and subjected to a far field tension,
see Fig. 4(b), Lenci deduced a governing integral equation for the problem of pres-
surized cracks, see Fig. 4(b), related to the original problem by superposition with a
constant stress solution [Lenci (2001)]. The integral equation obtained was solved
by a specific numerical procedure.

x

2a

y

kn

N

Ω+

Ω-

(a)

2a

x
y

k

N

Ω-
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Figure 4: (a) Crack at a weak interface under far field tension, (b) simplified prob-
lem of a pressurized crack at a weak interface.

In this section Lenci’s approach will be generalized to the case of identical or-
thotropic half-planes bonded by a weak interface including a crack and subjected
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to far field tension, see Fig. 4(a). Orthotropic axes of adherents are considered
parallel and perpendicular to the interface.

Let σy(x) = σy(x,y = 0) and v(x) = v(x,y = 0) be the normal stress and the vertical
displacement of the lower half-plane at the interface, respectively. By superposition
with the constant stress solution σy = N constant tension (N > 0), and by symmetry
with respect to the x-axis we can limit the present analysis to Ω− subjected to
σy(x) = −N in |x| < a, σy(x) = −kv(x) in |x| > a and τxy(x,y = 0) = 0, defining
the pressurized crack problem shown in Fig. 4(b); k = 2kn is defined to simplify the
notation.

In the case of an isotropic material, by using the Flamant solution as a Green func-
tion, the normal stress and the vertical displacement at the upper boundary (y = 0)
of Ω− can be related by [Lenci (2001)]:

v(x) =−κ +1
4µπ

+∞∫
−∞

σy(t) ln |t− x|dt, (14)

where κ = 3−4ν in the case of plane strain and κ = (3−ν)/(1+ν) in the case of
generalized plane stress. The function σy(x) is even and given by

σy =

{
−N, 0 < x < a,

G(x), x > a,
(15)

where G(x) is the unknown interface stress. The notation introduced by [Lenci
(2001)] has been kept in the present paper for an easy comparison of the deduction
introduced therein and the present analysis.

In the present case of orthotropic half planes, the strain-stress law for a generalized
plane strain state can be expressed in the following way: εxx

εyy

2εxy

=

s′11 s′12 0
s′12 s′22 0
0 0 s′66

 .

σxx

σyy

σxy

 , s′IJ = sIJ−
sI3s3J

s33
, (16)

where s′IJ are the reduced elastic compliances. Applying the concept of the Airy
stress function and using Eq. 16, the strain compatibility equation yields the fol-
lowing characteristic equation of an orthotropic material [Lekhnitskii (1981); Ting
(1996)].

`4(p) = s′11 p4 +(2s′12 + s′66)p2 + s′22 = 0, (17)
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whose complex conjugate roots pα and pα (α = 1,2) can be expressed as [Mantič
and París (1995); Blázquez, Mantič, París, and McCartney (2008)]:

pα =
±s−+ is+√

2s′11
, s± =

√√
s′11s′22± (s′12 +0.5s′66). (18)

By particularizing a general expression for displacement solution in an orthotropic
half-plane (y≤ 0) subjected to a normal point force (Py) at its boundary, at the origin
of cartesian coordinates (x = y = 0), deduced in [Wen (1992)], see also [Lekhnit-
skii (1981);Ting (1996)], the following simple expression of normal displacements
along the half-plane boundary (y = 0) originated by this force can be obtained:

v(x) =−
s+
√

s′22Py

π
ln |x|. (19)

Thus, in a similar way as in Eq. 14, we can define for the case of an orthotropic half-
plane bonded by a weak interface, as shown in Fig. 4(b), the vertical displacement
of the bottom side of the interface as

v(x) =−
s+
√

s′22

π

+∞∫
−∞

σy(t) ln |t− x|dt. (20)

Then, using Eq. 15 and Eq. 20 and introducing dimensionless coordinates r = t/a
and ξ = x/a yields:

v(ξ ) =−
s+
√

s′22

π
aN

2lna
∞∫

1

g(r)dr +
∞∫

1

g(r) ln |r2−ξ
2|dr−2lna+h(ξ )

 ,

(21)

where

h(ξ ) =− ln
∣∣ξ 2−1

∣∣+ξ ln
∣∣∣∣ξ −1
ξ +1

∣∣∣∣+2, (22)

and g(r) = G(ar)/N = G(t)/N is the unknown dimensionless stress along the
bonded interface part. In the problem illustrated in Fig. 4(b), the vertical displace-
ment v(x) vanishes when x→ ∞ and the sum of the forces applied to Ω− is zero.
Consequently, the global equilibrium condition takes the form:

∞∫
1

g(r)dr = 1. (23)
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Eq. 21 can be simplified, by substituting Eq. 23, into the following form:

v(ξ ) =−
s+
√

s′22

π
aN


∞∫

1

g(r) ln |r2−ξ
2|dr +h(ξ )

 . (24)

In the joined part ξ > 1, the vertical displacement satisfies the weak interface condi-
tion σy(ξ ) =−kv(ξ ). This relationship and Eq. 24 finally give the integral equation
which governs the problem:

g(ξ ) = δ


∞∫

1

g(r) ln |r2−ξ
2|dr +h(ξ )

 , ξ > 1, (25)

where

δ =
s+
√

s′22ka
π

(26)

is a new dimensionless parameter governing the pressurized crack solution at a
weak interface between orthotropic materials. It is a structural parameter because
it relates adhesive-layer stiffness to the adherent stiffness, taking into account the
crack length (the unique characteristic length of the geometry of the present prob-
lem).

Note that the present dimensionless form of the governing integral equation in
Eq. 25 coincides with that obtained by [Lenci (2001)] except for the present def-
inition of δ for orthotropic half-planes bonded by a cracked weak interface. The
present definition of δ is in fact a generalization of Lenci’s original isotropic defi-
nition to the general orthotropic case. It can be shown that Eq. 26 when written for
isotropic materials reduces to Lenci’s expression δ = ka(κ +1)/(4πµ).

4.2 Numerical solution

The numerical solution of the problem defined in the previous section (Fig. 4) is
obtained here by using a collocational BEM code [París and Cañas (1997); Gra-
ciani, Mantič, París, and Blázquez (2005)], solving the Somigliana displacements
identity for orthotropic materials. This code uses linear continous elements [París
and Cañas (1997)] for both elastic plane and axisymmetric problems.

To solve the problem of pressurized cracks in a weak interface between two or-
thotropic half-planes, the problem symmetry with respect to the y-axis has been
used. Each half-plane has been modeled by a square domain much larger than the
crack size, trying to simulate a finite crack between infinite half-planes. The mesh



258 Copyright © 2010 Tech Science Press CMES, vol.58, no.3, pp.247-270, 2010

used for each square domain has 518 elements. The height and width of each square
domain is 100 times the size of the crack half-length a (taken as 1mm herein), see
Fig. 4(a).

According to Section 4.1 the dimensionless form of the solutions of a pressur-
ized crack at a weak interface between orthotropic and isotropic half planes coin-
cides. The orthotropic material properties used in BEM calculations are those of an
8552/AS4 carbon fiber - epoxy composite that will be defined in Section 5. Never-
theless, as the numerical results obtained are presented in dimensionless form, they
are valid for any orthotropic material. Then, in order to obtain the different values
of the dimensionless parameter δ shown, the value k was varied from 109.8 x 109

Pa/m to 109.8 x 1013 Pa/m.

The numerical results for orthotropic materials obtained by the BEM code (when
changed to dimensionless form and using the new characteristic parameter δ , de-
fined in Eq. 26) are in excellent agreement with those obtained for isotropic ma-
terials in [Lenci (2001)] by a different numerical procedure, solving the equation
corresponding to Eq. 25 herein.

The function g(ξ ) is reported in Fig. 5(a) for different values of δ . For relatively
"soft" interfaces (i.e., low values of δ ) g(ξ ) achieves very small and almost con-
stant values, while in the opposite case of "stiff" interfaces the stresses are mostly
different from zero only in the neighborhood of the crack tip. To better visualize
the shape of the solution, the normalized function g(ξ )/g(1) is shown in Fig. 5(b),
which illustrates for example how slowy the solution spreads over the whole inter-
face when δ tends to zero.

An important feature of the solution shown in [Lenci (2001)] is its behavior near the
crack tip, where interface tractions are bounded at the tip of a crack situated along
a weak interface, in contrast with the singular (unbounded) tractions at the tip of an
interface crack situated along a perfect interface (also called strong interface, where
no relative displacements of bonded surfaces are allowed). Thus, during crack
growth along a weak interface, tractions are kept bounded. It appears that local
normal tractions in the zone close to the interface crack tip follow the asymptotic
law [Lenci (2001)]:

σ ∼= σ0 +σ1ξ [ln(ξ )−1] , for ξ → 0+. (27)

The vertical displacement v(ξ ) at the bottom side of the interface is depicted in
Fig. 5(c). It has a minimum in the midpoint of the crack and it monotonically tends
to zero when ξ → ∞. For "soft" interfaces the displacement is large (tending to
infinity as δ → 0), while for "stiff" interfaces it rapidly converges to the Griffith
crack displacements. From observation it can be concluded that for δ > 100 the
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Figure 5: Pressurized crack at a weak interface between identical orthotropic half-
planes. BEM solution for various values of the parameter δ : (a) function g(ξ ), (b)
normalized solution g(ξ )/g(1), and (c) normalized vertical displacement v(ξ ).
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weak interface can be considered as a perfect bonding for practical purposes. An
excellent agreement of the present results for orthotropic materials in their dimen-
sionless form with those presented by [Lenci (2001)] for isotropic materials has
been obtained. Recall that Lenci solved Eq. 25 for isotropic materials by a special
numerical procedure, whereas in the present work the two Somigliana displacement
identities for the upper and bottom orthotropic adherents have been solved by the
collocational BEM.

5 Interlaminar fracture toughness tests

5.1 Laboratory test description

The tests used in the aeronautical industry to evaluate the interlaminar fracture
toughness in composite-composite joints are performed by well-known standard
procedures [Airbus (2006); ISO (2001)].

L = 250 ± 5 mm

L1 = 25 ± 1 mm

w = 25.0 ± 0.2 mm

t = 3.0 ± 0.2 mm

w

L

L1

t

0º

(a)

P,u

P,u

17mm

9mm
13mm

x
y

a

Bonded interface

Crack

(b)

d = 2u

P,u

P,u

(c)

Figure 6: (a) Scheme of the DCB specimen, (b) DCB specimen with bonded tabs,
(c) test configuration.

The specimen used is the Double Cantilever Beam (DCB) shown in Fig. 6(a). The
DCB specimen is formed by two laminates joined by a thin adhesive layer. The
laminates are processed according to EN 2565 standard, and the specimens are cut
after the panel has been cured. The specimen is connected to the grips of a universal
testing machine through small tabs bonded to laminates as shown in Fig. 6(b).
The load (P) and the relative displacement (d) of the wedge grips are continuously
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registered during crack propagation, Fig. 6(c).

In a study of the experimental results obtained from GIc tests and fractographic
analysis, using different kinds of adhesive, it was observed that some adhesives
like FM 300K0.5 and EA 9695 K.05 presented jumps (non-smooth behavior) in the
experimental load-displacement curve. This behavior seems to be explained by the
presence of a polyester support in these adhesives [Jiménez, Cañas, Mantič, and
Ortiz (2007); Távara, Mantič, Graciani, Cañas, and París (2008); Távara, Mantič,
Graciani, Cañas, and París (2009)].

Figure 7: Fracture surface of a GIc-specimen tested with EA 9695 K.05 adhesive.

Figure 8: Detail of the polyester support of the EA 9695 K.05 adhesive, outer and
inner dimensions of the rhombus-like mesh. Picture taken at 50x zoom.

In Fig. 7 the fracture surface of a tested GIc specimen with EA 9695 K.05 adhesive
is shown. Worthy of note are observe the clearly visible marks on the specimen
fracture surface that are related to the jumps appearing in the experimental load -
displacement curve. At initial stages, the distance between marks is shorter than at
further stages, resulting in larger jumps. In Fig. 8 a detailed picture, taken at 50x
zoom, of the polyester support of the adhesive is shown.

5.2 Numerical results

In the present numerical study, a plane strain model has been solved using the BEM
code described above, assuming the hypothesis of small strains. The laminate con-
sidered is an 8552/AS4 carbon fiber - epoxy composite (having only 0º plies), with
the following orthotropic properties: Ex=135GPa, Ey=10GPa, Ez=10GPa, Gxy=5GPa,
Gxz=5GPa, νxy=0.3, νyz=0.4 and νxz=0.3. The adhesive used is EA 9695 K.05, an
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epoxy adhesive with a polyester mesh support. The estimated properties of the
adhesive spring model are: kn=150GPa/m, σc =15MPa and δnc=0.1mm, see Fig. 2.

A load P was progressively applied at both laminates in the direction normal to the
specimen boundary at a distance 13mm from the extreme where the initial crack is
situated, see Fig. 6(b). Two point supports were defined at the left-hand extreme
of the specimen, Fig. 6(b,c), to remove the rigid body motion in the displacement
solution by the use of the method described in [Blázquez, Mantič, París, and Cañas
(1996)]

The normal stresses along the bonded zone obtained in a load step corresponding to
the decreasing part of the load-displacement curve with P=29.7N, d=0.0354m and
a=146.6mm (using two different meshes), are shown in Fig. 9. The initial length of
the adhesive layer (225 mm) is discretized by means of 468 (coarse mesh) or 936
(fine mesh) springs placed between the nodes of the conforming boundary element
meshes on the upper and bottom sides of the weak interface. As can be observed in
Fig. 9, a very accurate solution has already been obtained by the coarse mesh. The
corresponding analytical solution of Strength of Materials for a beam on Winkler
elastic-foundation deduced in [Kanninen (1973)]1 (Eq. 4 therein) has also been
included in Fig. 9. The agreement between this analytic solution and the present
BEM solution is good, significant differences being observed only in the zone close
to the crack tip, as could be expected.
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Figure 9: Normal stresses σ near the crack tip along the bonded zone, for a load
step with P=29.7N, d=35.4mm and a=146.6mm.

In view of Lenci’s expression, Eq. 27, for the local normal stresses along the bonded
interface part close to the crack tip in a particular problem, and taking into account
a general singularity analysis of a crack in presence of spring boundary conditions

1 In the present orthotropic case the parameter λ in [Kanninen (1973)] is defined as λ 4 = 6kn
Ex(t/2)3 .
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in [Sinclair (1996)], it appears that the first terms in the asymptotic expansion of
the normal stresses take the form:
σ

σc
= c0 + c1ξ [ln(ξ )+ c2] . (28)

Thus, these stresses are bounded, but their gradient has a logarithmic singularity at
the crack tip. In this sense, it is noteworthy that the local numerical BEM solution
for normal stresses in the present GIc specimen near the crack tip fits this expression
very well. In Fig. 10, the normalized stresses σ/σc represented as a function of ξ

are compared with the following fitted expression:

σ

σc
= 1.0038+9.9132ξ [ln(ξ )−1.0991] (29)

obtained from Eq. 28 by applying the least square method to the first nodes with ξ <
0.012. An excellent agreement between the BEM solution and the fitted asymptotic
expression can be observed, and in addition to c0 ∼= 1 also c2 ∼= −1 in agreement
with Eq. 27. Notice that this asymptotic behavior is applicable for the local solution
near the crack tip only.
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Figure 10: Fitting of the BEM normalized local stress solution by an analytic ex-
pression (Eq. 29), for a load step with P=29.7N, d=35.4mm and a=146.6mm.

The deformed shape obtained for the same load step as defined before is depicted in
Fig. 11(a). A detailed view of the deformed shape obtained with the BEM code is
shown in Fig. 11(b). The different zones where the springs are broken, and where
the springs are in traction or in compression, are clearly indicated in the plot.

5.3 Experimental and numerical load - displacement diagrams

As can be observed in Fig. 12, the numerical results obtained provide a good ap-
proximation of the experimental results. Therefore, the use of the weak interface
formulation seems to be a promising approach to model composite adhesive joints.
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Figure 11: (a) Numerical deformed shape obtained, (b) Detail of the deformed
shape at the vicinity of the crack tip.

It is important to mention that in the experimental curve an unloading and a reload-
ing are done because the laboratory standard required them; this behavior was not
simulated due to its irrelevant effect on the numerical solution.
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Figure 12: Comparison between the experimental and numerical load - displace-
ment diagrams and a detail of the polyester support of the adhesive used.

Changing the non-linear conditions node by node can make the crack propaga-
tion very smooth (especially for fine meshes), in contrast with the experimental
evidence found in some industrial adhesives that show crack growth by small but
clearly finite jumps. For this specific kind of adhesive (especially the ones that
have a "knife" kind support, see Fig. 12) the end of a load step can be defined by
a situation where the normal and tangential stiffnesses of a fixed number of con-
secutive nodes are set to zero. This number of nodes are related to the size of the
rhombus-like mesh support of the adhesive, Fig. 8, and the marks observed in the
experimental results, Fig. 7. In the results shown in Fig. 12, in the jump-like curve
obtained, 15 nodes were opened in each load step, which corresponds to approx-
imately 5 times half of the width of a rhombus and also corresponds to the first
distances between marks, Fig. 7. As can be seen from the BEM results, the jumps
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remain constant while the jumps in the experimental results become larger. Nev-
ertheless, the most important result is that the model is able to catch the failure
load as well as the energy dissipated during the debonding process, by means of
a unique critical parameter (σc or, equivalently, GIc see Eq. 7) together with the
stiffness parameter kn.

5.4 Non-symmetric DCB specimen

In order to see the capability of the mixed mode failure criterion proposed in Sec-
tion 2.2, a non-symmetric DCB specimen has been studied numerically. The com-
posite laminate and adhesive layer are assumed to have the same properties as in the
previous section. The geometry of the specimen is almost the same as that depicted
in Fig. 6, except for the thickness of the laminates taken as t/2 and t (one laminate
two times thicker than the other). In Fig. 13 the global load - displacement response
is shown, and compared with the previously studied symmetric DCB specimen. As
can be seen, the failure load necessary to start the crack growth is a little higher.
Another important effect is the presence of tangential stresses along the interface,
leading to values of the fracture mode mixity angle ψG in the following interval
7.15◦ < ψG < 9.01◦ for 12mm< a < 208mm respectively.
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Figure 13: Numerical load - displacement diagrams for a symmetric and non-
symmetric DCB specimen (bonded joint).
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Figure 14: Numerical deformed shape obtained for a non-symmetric DCB speci-
men (bonded joint).
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In Fig. 14 the deformed shape obtained is shown for a load step with P=46.48N,
d=45.8mm and a=134.6mm.

6 Conclusions

The presence of a crack at a weak interface, which represents a simple model of
a thin adhesive layer, is analyzed in the present work. First the governing integral
equation for a pressurized crack at the weak interface between identical orthotropic
half planes has been deduced. A new dimensionless characteristic structural param-
eter δ was introduced in this governing integral equation . It relates adhesive-layer
stiffness to the adherent stiffness, taking into account crack length. Then, the prob-
lem of a pressurized crack has been solved by the collocational BEM. An excellent
agreement has been obtained between the numerical results by the present BEM
code and those shown in [Lenci (2001)].

An important novelty is that in the present work not only is stress and displacement
numerical solution for a crack at a weak interface presented (Section 4), but also
the crack growth along the weak interface is modeled using a mixed mode frac-
ture criterion for an adhesive thin layer modeled by linear-elastic brittle traction-
displacement law.

Noteworthy, in accordance with the model used, is the bounded character of stresses
along the weak interface, the maximum value of stresses being achieved at the crack
tip. The spring constitutive law introduced and included in the incremental algo-
rithm of the BEM code has the advantage of being independent of the number of
springs used in the interface. An analytic expression for the local solution of normal
tractions at the crack tip, deduced in the singularity analysis of the weak interface
by Lenci in a particular problem for isotropic half-planes, has been successfully
compared with the present numerical solution for orthotropic laminates.

As shown by the numerical results presented in Section 5, the weak interface formu-
lation modeled by a spring distribution correctly describes the behavior of adhesive
joints used in the aeronautical industry. From laboratory tests and fractographic
analysis it has been concluded that the jumps appearing in the experimental load
- displacement curve are caused by the polyester support of the adhesive resin.
The experimental and numerical comparison presented in Section 5 corresponds to
opening mode I due to symmetry configuration of the specimen. Nevertheless, the
present implementation of the weak interface model allows for a similar analysis of
non-symmetric configurations of bonded adhesive joints leading to a mixed frac-
ture mode as studied numerically in Section 5.4. It has been proved that the real
behavior of an adhesive layer with a polyester support that joins two unidirectional
laminates can be approximated very well by means of BEM and a distribution of
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springs which follow a linear elastic-brittle constitutive law, by adjusting the pa-
rameters of the discrete model (kn, σc, and the number springs that break in a load
step). This fact will make it possible to predict the real behavior of structures that
include similar adhesive joints by the model developed here. The formulation in-
troduced here for the mixed mode crack growth along a weak interface will be
useful for analysis of the fiber-matrix debonding under transversal load that will be
presented in a forthcoming paper. It can be also useful for analysis of interlaminar
fracture toughness test of non-symmetric adhesively bonded joints with different
laminas, due to different stacking sequence and/or lamina thickness or analysis of
delamination cracks in cross ply laminates [Blázquez, Mantič, París, and McCart-
ney (2008)]. The results obtained in this work can also be considered a starting
point for a study of adhesively bonded joints used in the aeronautics industry in-
cluding adhesive supports of different kinds.
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Blázquez, A.; Mantič, V.; París, F.; Cañas, J. (1996): On the removal of rigid
body motions in the solution of elastostatic problems by direct BEM. International
Journal for Numerical Methods in Engineering, vol. 39, pp. 4021–4038.
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