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Multi-field Coupling of Particulate Systems
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Abstract: A computational framework is established for effective modelling of
fluid-thermal-particle interactions. The numerical procedures comprise the Dis-
crete Element Method for simulating particle dynamics; the Lattice Boltzmann
Method for modelling the mass and velocity field of the fluid flow; and the Dis-
crete Thermal Element Method and the Thermal Lattice Boltzmann Method for
solving the temperature field. The coupling of the three fields is realised through
hydrodynamic interaction force terms. Selected numerical examples are provided
to illustrate the applicability of the proposed approach.
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1 Introduction

In recent years the modelling of coupled field problems, in which two or more
physical fields contribute to the system response, has become a focus of major re-
search activity. Among them, the quantitative study of fluid-thermal-particle inter-
action problems encountered in many engineering applications is of fundamental
importance. For instance, the mineral recovery operation in the mining industry
employs a suction process to extract rock fragments from the ocean or river bed.
The computational modelling of this particle transport problem requires a fluid-
particle interaction simulation. The motion of the particles is driven collectively
by the gravity and the hydrodynamic forces exerted by the fluid, and may also be
altered by the interaction between the particles. On the other hand, the fluid flow
pattern can be greatly affected by the presence of the particles, and is often of a tur-
bulent nature. In the nuclear industry, the process of a pebble bed nuclear reactor
essentially involves the forced flow of gas through uranium enriched spheres that
are cyclically fed through a concentric column in order to extract thermal energy.
In this situation, the introduction of additional field, thermal (heat transfer between
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the moving particles in the form of conduction, convection, and radiation, as well
as transfer of heat to the gas stream), poses even more computational challenges.

The fundamental physical phenomena involved in these systems are generally not
well understood and often described in an empirical fashion, mainly due to the in-
tricate complexity of the hydrodynamic and thermodynamic interactions exhibited
and the non-existence of high-fidelity modelling capability.

Although the Finite Element Method has a powerful capability of modelling the
nonlinear response of continua, and significant progress has also been made in the
modelling of contact of deformable bodies, the continuum nature of its algorithmic
framework imposes restrictions when dealing with discontinuous media. Firstly,
it is not efficient with the finite element representation of a large number of dis-
crete objects whose deformation is of secondary importance. Secondly, the contact
detection procedures available in the Finite Element Method are not adequate to
handle contact with constantly changing and evolving configurations in an unpre-
dictable manner. Consequently an alternative numerical approach within a discon-
tinuous framework has been exploited. The Discrete Element Method, among other
discontinuous methodologies such as Discontinuous Deformation Analysis and the
Manifold Method, has become a promising numerical tool capable of simulating
problems of a discrete or discontinuous nature. In the framework of the Discrete
Element Method, a discrete system is considered as an assembly of individual dis-
crete objects which are treated as rigid and represented by discrete elements as
simple geometric entities. The dynamic response of discrete elements depends
on the interaction forces which can be short-ranged, such as mechanical contact,
and/or medium-ranged, such as attraction forces in liquid bridges, and obey New-
ton¡¯s second law of motion. By tracking the motion of individual discrete elements
and handling their interactions, the dynamic behaviour of a discrete system can be
simulated.

Conventional computational fluid dynamic methods have limited success in sim-
ulating particulate flows with a high number of particles due to the need to gen-
erate new, geometrically adapted grids, which is a very time-consuming task es-
pecially in three-dimensional situations (Feng et al 2004). In contrast, the Lattice
Boltzmann Method (LBM) overcomes the limitations of the conventional numeri-
cal methods by using a fixed, non-adaptive (Eulerian) grid system to represent the
flow field. In particular, it can efficiently model fluid flows in complex geometries,
as is the case of particulate flow under consideration. A rich publication in recent
years (see for instance, Aidun et al 1998, Cook et al 2004, Feng et al 2007, Feng
et al 2009, Feng et al 2004, Han et al 2007a, Ho et al 2009, Ladd 1994, Ladd et al
2001, Mishra et al 2009, Qi et al 2003, and the references therein) has proved the
effectiveness of the method.
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In our previous studies (Feng et al 2007, Feng et al 2009, Han et al 2007a), the Lat-
tice Boltzmann Method and the Discrete Element Method have been successfully
coupled for the simulation of fluid-particle interaction problems, where the fluid
field is solved by the extended lattice Boltzmann equation with the incorporation of
the Smagorinsky turbulence model, while the particle dynamics is simulated by the
Discrete Element Method. The hydrodynamic interactions between the fluid and
particles are realised through an immersed boundary condition.

If an additional field, thermal, is introduced to a particulate system, the Thermal
Lattice Boltzmann Method may be employed to model heat transfer between par-
ticles and between particles and the surrounding fluid. Our numerical tests show,
however, that the Thermal Lattice Boltzmann Method is not efficient for simulating
heat conduction in particles. For this reason, a novel numerical scheme, termed
the Discrete Thermal Element Method (Feng et al 2008), is put forward. In this
approach, each particle is treated as an individual element with the number of (tem-
perature) unknowns equal to the number of particles that it is in contact with. The
element thermal conductivity matrix can be very effectively evaluated and is en-
tirely dependent on the contact characteristics. This new element shares the same
form and properties with its conventional thermal finite element counterpart. In
particular, the entire solution procedure can follow exactly the same steps as those
involved in the finite element analysis. Unlike finite elements or other numerical
techniques, no discretisation errors are involved in the Discrete Thermal Element
Method. The numerical validation against the finite element solution indicates that
the solution accuracy of this scheme is reasonable and highly efficient in particular.

The fluid-thermal-particle interaction problems is often of a dynamic and transient
nature. Although the Discrete Thermal Element Method is capable of modelling the
steady-state heat conduction in large particulate systems efficiently, it is not trivial
to be extended to transient situations. Meanwhile, its formulation is not compatible
with that of the Discrete Element Method which accounts for particle-particle in-
teractions. Therefore the Discrete Thermal Element Method needs to be modified
to realise thermal-particle coupling. The pipe-network model is such a modifica-
tion, in which each particle is replaced by a thermal pipe-network connecting the
particle’s centre with each contact zone associated with the particle.

The objective of this work is to present essential computational procedures for the
effective coupling of fluid-thermal-particle interaction problems. In what follows,
the basic formulations of the Discrete Element Method, the Lattice Boltzmann
Method, the Discrete Thermal Element Method, and the coupling techniques, will
be outlined. Selected numerical examples are provided to illustrate the applicability
of the proposed approach.
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2 Particle-Particle Interactions

Interactions between the moving particles are modelled by the Discrete Element
Method, in which each discrete object is treated as a geometrically simplified en-
tity that interacts with other discrete objects through boundary contact. At each
time step, objects in contact are identified with a contact detection algorithm; and
the contact forces are evaluated based on appropriate interaction laws. The mo-
tion of each discrete object is governed by Newton’s second law of motion. A set
of governing equations is built up and integrated with respect to time, to update
each object’s position, velocity and acceleration. The main building blocks of the
discrete element procedure are described as follows.

2.1 Representation of discrete objects

In the Discrete Element Method, discrete objects are treated as rigid and repre-
sented either by regular geometric shapes, such as disks, spheres and superquadrics,
or by irregular geometric shapes, such as polygons, polyhedrons, clustering or
clumping of regular shapes to form compound shapes.

Circular and spherical elements are the most used discrerete elements due to their
geometric simplicity, smooth and continuous boundary. Contact resolution for this
type of element is therefore trivial and computationally efficient. However, ideal-
ising materials such as grains and concrete aggregates as perfect disks (or spheres)
is not always realistic and may not produce correct dynamic behaviour. One of the
reasons is that circular and spherical elements cannot provide resistance to rolling
motion. This has led to the introduction of more sophisticated elements to represent
the discrete system more realistically.

Contrary to the circular and spherical elements where only the radius can be mod-
ified, polygonal elements (polygons or polyhedrons) offer increased flexibility in
terms of shape variation. Since the boundary of this type of element is not smooth,
some complex situations such as corner/corner contact, often arise in the contact
resolution.

Higher order discrete elements can be used, such as superquadrics and hyper-
quadrics as proposed in (William et al 1995), which may represent many sim-
ple geometric entities (for instance, disk, sphere, ellipse and ellipsoid) within the
framework. However, this mathematical elegancy may be offset by the expensive
computation involved in the contact resolution.

2.2 Contact detection

In the discrete element simulation of problems involving a large number of discrete
objects, as much as 60-70% of the computational time could be spent in detecting
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and tracking the contact between discrete objects. Due to a large diversity of object
shapes, many efficient contact processing algorithms often adopt a two-phase solu-
tion strategy. The first phase, termed contact detection or global search, identifies
the discrete objects which are considered as potential contactors of a given object.
The second phase, termed contact resolution or local search, resolves the details of
the contact pairs based on their actual geometric shapes.

Some search algorithms used in general computing technology and computer graph-
ics have been adopted for this purpose. Algorithms such as bucket sorting, heap
sorting, quick sorting, binary tree and quadrant tree data structure all originated
from general computing algorithms. However, applications of these algorithms in
discrete element codes need modifications to meet the needs of particular discrete
element body representations and the kinematic resolution.

For the detection of potential contact between a large number of discrete elements,
a spatial search algorithm based on space-cell subdivision and incorporating a tree
data storage structure possesses significant computational advantages. For instance,
the augmented spatial digital tree (Feng et al 2002) is a spatial binary tree based
contact detection algorithm. It uses the lower corner vertex to represent a rectangle
in a binary spatial tree, with the upper corner vertex serving as the augmented infor-
mation. The algorithm is insensitive to the size distributions of the discrete objects.
Numerical experiments in (Feng et al 2002) indicate that this search algorithm can
reduce the CPU requirement of a contact detection from an originally demanding
level down to a more acceptable proportion of the computing time.

Another type of the contact detection algorithms is the so-called cell based search
(Munjiza et al 1998, Perkins et al 1995). The main procedures in these algorithms
involve: (1) dividing the domain that the discrete objects occupy into regular grid
cells; (2) mapping each discrete object to one of the grid cells; and (3) for each
discrete object in a cell, checking for possible contacts with other objects in the
same cell and in the neighbouring cells. Provided the number of cell columns and
rows is significantly less than the number of discrete objects, it can be proved that
the memory requirement for the dynamic cell search algorithm is O(N). Also for a
fixed cell size the computational time Top may be expressed as

Top = O(N + ε)

where ε represents the costs associated with the maintenance of various lists used
in the algorithm. Numerical tests conducted in (Han et al 2007b) show that the
dynamic cell search algorithm is even more efficient than the tree based search
algorithms for large scale problems.
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2.3 Contact resolution

The identified pairs with potential contact are then kinematically resolved based on
their actual shapes. The contact forces are evaluated according to certain constitu-
tive relationship or appropriate physically based interaction laws. In general, the
interaction laws describe the relationship between the overlap and the correspond-
ing repulsive force of a contact pair. For rigid discrete elements, the interaction
laws may be developed on the basis of the physical phenomena involved. The
Hertz normal contact model that governs elastic contact of two spheres (assumed
rigid in discrete element modelling) in the normal direction is such an example, in
which the normal contact force, Fn, and the contact overlap, δ , has the following
relation

Fn =
4E∗

√
(R∗)

3
δ

3/2 (1)

where

1
E∗

=
1−ν2

1
E1

+
1−ν2

2
E2

1
R∗

=
1

R1
+

1
R2

with R1 and R2 being the radii; E1,E2, and ν1,ν2 are the elastic properties (Young’s
modulus and Poisson’s ratio) of the two spheres.

For ’wet’ particles the interaction laws may include the effects of a liquid bridge.
In other cases, adhesion may be considered.

Energy dissipation due to plastic deformation, heat loss and material damping etc
during contact is taken into account by adding a viscous damping term in the gov-
erning equation.

Friction is one of the fundamental physical phenomena involved in particulate sys-
tems. Although the search for a quantitative understanding of the features of fric-
tion has been in progress for several centuries, a universally accepted friction model
has not yet been achieved. One difficulty is associated with the nature of the friction
force near zero relative velocity, where a strong nonlinear behaviour is exhibited.
The classic Coulomb friction law is usually employed in engineering applications
for its simplicity. The discontinuous nature of the friction force in this model,
however, imposes some numerical difficulties when the relative sliding velocity
reverses its direction and/or during the transition from sliding (sticking) to stick-
ing (sliding). The difficulties are usually circumvented by artificially introducing
a ’transition zone–which smears the discontinuity in the numerical computation.
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Nevertheless, the suitability of any friction model should be carefully examined
and the associated numerical issues fully investigated in order to correctly capture
the physical phenomena involved.

A comprehensive study of the contact interaction laws can be found in (Han et al
2000a, Han et al 2000b).

2.4 Governing equations and time stepping

The motion of the discrete objects is governed by Newton’s second law of motion
as{

Mü+Cd u̇ = Fc

Jθ̈ = Tc
(2)

where M and Cd are respectively the mass and damping matrices of the system,
u, u̇ and ü are respectively the displacement, velocity and acceleration vectors, J
is the moment of inertia, θ̈ the angular acceleration, Fc and Tc denote the contact
force and torque, respectively.

The configuration of the entire discrete system is evolved by employing an ex-
plicit time integration scheme. With this scheme, no global stiffness matrix needs
to be formed and inverted, which makes the operations at each time step far less
computationally intensive. However, any explicit time integration scheme is only
conditionally stable. For a linear system the critical time step can be evaluated as
(Belytschko et al 2000)

∆tcr =
2

ωmax
(3)

where ωmax is the maximum eigenvalue of the system. However, the above result
may not be valid since a contact system is generally nonlinear, as is demonstrated
in (Feng 2005). To ensure a stable and reasonably accurate solution, the critical
time step chosen should be much smaller than the value given in Eq.(3).

3 Fluid-Particle Interactions

As pointed out earlier, the interaction between fluid and particles is solved by a
coupled technique: using the Lattice Boltzmann Method to simulate the fluid field,
and the Discrete Element Method to model particle dynamics. The hydrodynamic
interactions between fluid and particles are realised through an immersed boundary
condition. The solution procedures are outlined as follows.
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3.1 The Lattice Boltzmann Method

In the Lattice Boltzmann Method, the problem domain is divided into regular lat-
tice nodes. The fluid is modelled as a group of fluid particles that are allowed to
move between lattice nodes or stay at rest. During each discrete time step of the
simulation, fluid particles move to the nearest lattice node along their directions of
motion, where they ’collide’ with other fluid particles that arrive at the same node.
By tracking the evolution of fluid particle distributions, the macroscopic variables,
such as velocity and pressure, of the fluid field can be conveniently calculated from
its first two moments.

The lattice Boltzmann equation with a single relaxation time for the collision oper-
ator is expressed as

fi(x+ ei∆t, t +∆t)− fi(x, t) =−1
τ

[
fi(x, t)− f eq

i (x, t)
]

(4)

where fi is the density distribution function of the fluid particles with discrete ve-
locity ei along the i-th direction; f eq

i is the equilibrium distribution function; and
τ is the relaxation time which controls the rate of approach to equilibrium. The
left-hand side of Eq.(4) denotes a streaming process for fluid particles while the
right-hand side models collisions through relaxation.

In the widely used D2Q9 model (Qian et al 1992), the fluid particles at each
node move to their eight immediate neighbouring nodes with discrete velocities
ei,(i = 1, · · · ,8). The equilibrium distribution functions f eq

i depend only on the
fluid density, ρ , and velocity, v, which are defined in D2Q9 model as

f eq
0 = ρ

(
1− 3

2c2 v ·v
)

f eq
i = wi ρ

(
1+

3
c2 ei ·v+

9
2c4 (ei ·v)2− 3

2c2 v ·v
)

(i = 1, · · · ,8)
(5)

in which c = ∆x/∆t is the lattice speed with ∆x and ∆t being the lattice spacing and
time step, respectively; wi is the weighting factor with w0 = 4

9 , w1−4 = 1
9 , w5−8 =

1
36 .

The macroscopic fluid variables, density ρ and velocity v, can be recovered from
the distribution functions as

ρ =
8

∑
i=0

fi ρv =
8

∑
i=1

fi ei (6)

The fluid pressure field p is determined by the following equation of state

p = c2
s ρ (7)
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where cs is termed the fluid speed of sound and is related to the lattice speed c by

cs = c/
√

3 (8)

The kinematic viscosity, ν , of the fluid is implicitly determined by the model pa-
rameters, ∆x,∆t and τ as

ν =
1
3

(
τ− 1

2

)
∆x2

∆t
=

1
3

(
τ− 1

2

)
c∆x (9)

which indicates that the selection of these three parameters should be correlated to
achieve a correct fluid viscosity.

It can be proved that the lattice Boltzmann equation (4) recovers the incompressible
Navier-Stokes equations to the second order in both space and time (Chen et al
1998), which is the theoretical foundation for the success of the Lattice Boltzmann
Method for modelling general fluid flow problems. However, since it is obtained by
the linearised expansion of the original kinetic theory based Boltzmann equation,
Eq. (4) is only valid for small velocities, or small ’computational’ Mach number
defined by

Ma =
vmax

c
(10)

where vmax is the maximum simulated velocity in the flow.

Generally smaller Mach number implies more accurate solution. It is therefore
required that

Ma� 1 (11)

i.e., the lattice speed c should be sufficiently larger than the maximum fluid velocity
to ensure a reasonably accurate solution.

3.2 Incorporating turbulence model in the lattice Boltzmann equation

As many fluid-particle interaction problems are turbulent in nature, a turbulence
model should be incorporated into the lattice Boltzmann equation (4).

The Large Eddy Simulation, amongst various turbulence models, solves large scale
turbulent eddies directly but the smaller scale eddies using a sub-grid model. The
separation of these scales is achieved through the filtering of the Navier-Stokes
equations, from which the solutions to the resolved scales are directly obtained. Un-
resolved scales can be modelled by, for instance, the Smagorinsky sub-grid model
(Smagorinsky 1963) that assumes that the Reynolds stress tensor is dependent only
on the local strain rate.
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Yu et al proposed to incorporate the Large Eddy Simulation in the lattice Boltzmann
equation by including the eddy viscosity as

f̃i(x+ ei∆t, t +∆t) = f̃i(x, t)− 1
τ∗

[
f̃i(x, t)− f̃ eq

i (x, t)
]

(12)

where f̃i and f̃ eq
i denote the distribution function and the equilibrium distribution

function at the resolved scale, respectively. The effect of the unresolved scale mo-
tion is modelled through an effective collision relaxation time scale τt . Thus in
Eq.(12) the total relaxation time equals

τ∗ = τ + τt

where τ and τt are respectively the relaxation times corresponding to the true fluid
viscosity ν and the turbulence viscosity ν∗ defined by a sub-grid turbulence model.
Accordingly, ν∗ is given by

ν∗ = ν +νt =
1
3
(τ∗−

1
2
)c2

∆t =
1
3
(τ + τt −

1
2
)c2

∆t

νt =
1
3

τtc2
∆t

With the Smagorinsky model, the turbulence viscosity νt is explicitly calculated
from the filtered strain rate tensor S̃i j = (∂ jũi + ∂iũ j)/2 and a filter length scale
(which is equal to the lattice spacing ∆x) as

νt = (Sc ∆x)2Ŝ (13)

where Sc is the Smagorinsky constant; and Ŝ the characteristic value of the filtered
strain rate tensor S̃

Ŝ =
√

∑
i, j

S̃i jS̃i j

An attractive feature of the model is that S̃ can be obtained directly from the second-
order moments, Q̃, of the non-equilibrium distribution function

S̃ =
Q̃

2ρScτ∗
(14)

in which Q̃ can be simply computed by the filtered density functions at the lattice
nodes

Q̃i j =
8

∑
k=1

ekiek j( f̃k− f̃ eq
k ) (15)
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where eki is the k-th component of the lattice velocity ei. Consequently

Ŝ =
Q̂

2ρScτ∗
(16)

with Q̂ the filtered mean momentum flux computed from Q̃

Q̂ =
√

2∑
i, j

Q̃i jQ̃i j (17)

3.3 Hydrodynamic forces for fluid-particle interactions

The modelling of the interaction between fluid and particles requires a physically
correct ’no-slip’ velocity condition imposed on their interface. In other words, the
fluid adjacent to the particle surface should have identical velocity as that of the
particle surface.

Ladd (Ladd 1994) proposes a modification to the bounce-back rule so that the
movement of a solid particle can be accommodated. This approach provides a
relationship of the exchange of momentum between the fluid and the solid bound-
ary nodes. It also assumes that the fluid fills the entire volume of the solid particle,
or in other words, the particle is modelled as a ’shell’ filled with fluid. As a result,
both solid and fluid nodes on either side of the boundary surface are treated in an
identical fashion. It has been observed, however, that the computed hydrodynamic
forces may suffer from severe fluctuations when the particle moves across the grid
with a large velocity. This is mainly caused by the stepwise representation of the
solid particle boundary and the constant changing boundary configurations.

To circumvent the fluctuation of the computed hydrodynamic forces with the mod-
ified bounce-back rule, Noble and Torczynski (Noble et al 1998) proposed an im-
mersed moving boundary method. In this approach, a control volume is introduced
for each lattice node that is a ∆x×∆x square around the node, as illustrated by the
shadow area in Fig. 1a. Meanwhile, a local fluid to solid ratio γ is defined, which
is the volume fraction of the nodal cell covered by the particle as shown in Fig. 1b.

The lattice Boltzmann equation for those lattice nodes (fully or partially) covered
by a particle is modified to enforce the ’no-slip’ velocity condition as

fi(x+ ei∆t, t +∆t) = fi(x, t)− 1
τ
(1−β )

[
fi(x, t)− f eq

i

]
+β f m

i (18)

where β is a weighting function depending on the local fluid/solid ratio γ; and f m
i

is an additional term that accounts for the bounce back of the non-equilibrium part
of the distribution function, computed by the following expressions{

β = γ(τ−0.5)
(1−γ)+(τ−0.5)

f m
i = f−i(x, t)− fi(x, t)+ f eq

i (ρ,vb)− f eq
−i(ρ,v)

(19)
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(a) Control area of a node
(b) Nodal solid area fraction

Figure 1: Immersed boundary scheme of Noble and Torczynski

where −i denotes the opposite direction of i.

The total hydrodynamic forces and torque exerted on a particle over n particle-
covered nodes are summed up as

F f = c∆x

[
∑
n

(
βn ∑

i
f m
i ei

)]
(20)

T f = c∆x

[
∑
n

(x−xc)×

(
βn ∑

i
f m
i ei

)]
(21)

where xc is the coordinate of the particle center.

With this approach, the computed hydrodynamic forces are sufficiently smooth,
which is also confirmed in our previous numerical tests (Feng et al 2007, Han et al
2007a).

3.4 Fluid and particle coupling

Fluid and particle coupling at each time step is realised by first computing the fluid
solution, and then updating the particle positions through the integration of the
equations of motion given by{

ma+ cdv = Fc +F f +mg
Jθ̈ = Tc +T f

(22)

where m and J are respectively the mass and the moment of inertia of the particle;
θ̈ the angular acceleration; g the gravitational acceleration if considered; F f and T f
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are respectively the hydrodynamic force and torque; Fc and Tc denote the contact
force and torque from other particles and/or boundary walls; cd is a damping coef-
ficient and the term cdv represents a viscous force that accounts for the effect of all
possible dissipation forces in the system. The static buoyancy force of the fluid is
taken into account by reducing the gravitational acceleration to (1−ρ/ρs)g, where
ρs is the density of a particle.

This dynamic equation governing the evolution of the system can be solved by
the central difference scheme. Some important computational issues regarding the
solution are briefly discussed as follows.

(1). Subcycling time integration. There are two time steps used in the coupled
procedure, ∆t for the fluid flow and ∆tD for the particles. Since ∆tD is generally
smaller than ∆t, it has to be reduced to ∆ts so that the ratio between ∆t and ∆ts is an
integer ns:

∆ts =
∆t
ns

(ns = d∆t/∆tDe+1) (23)

where d·e denotes an integer round-off operator. This basically gives rise to a so-
called subcycling time integration for the discrete element part; in one step of the
fluid computation, ns sub-steps of integration are performed for Eq. (22) using the
time step ∆ts; whilst the hydrodynamic forces F f and T f are kept unchanged during
the subcycling.

(2). The dynamic equation in the lattice coordinate system. Since the lattice
Boltzmann equation is implemented in the lattice coordinate system in this work,
the dynamic equation Eq. (22) should be implemented in the same way. It can be
derived that in the lattice coordinate system Eq. (22) takes the form of

m̄ā+ c̄d v̄ = F̄c + F̄ f + m̄ḡ (24)

where 
m̄ = m/ρs∆x2 v̄ = v/c
ā = a∆t/c; ḡ = g∆t/c
c̄d = c∆xcd ; F̄t = Ft/(ρ0c2

∆x)

3.5 Numerical illustration

To assess the applicability of the combined lattice Boltzmann and discrete element
approach proposed in this section, a vacuum dredging system for mineral recovery
is simulated. This recovery operation employs a suction process to extract rock
fragments. The system consists of a rigid pipe connected to a slurry transport sys-
tem, which is typically powered by a gravel pump. The gravel is transported to the
pipe entrance via hydraulic entrainment.
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Figure 2: Problem description

The problem is illustrated in Fig. 2, where the two inclined lines represent the
pipe boundaries. The fluid domain is divided into a 800× 800 square lattice with
spacing ∆x = 2.5mm. Though the fluid domain should be rectangular in the Lattice
Boltzmann Method, a polygonal fluid domain is taken as the actual computational
domain to reduce the computational cost since both left-top and right-bottom sub-
domains can be excluded from the simulation. To accommodate this irregularity,
the actual domain profile is identified first, and the lattice Boltzmann equation (4)
is applied only to the nodes within the profile. This is a generic approach which
can be extended to any problem with an irregular exterior domain boundary. The
fluid is water with density ρ = 1000kg/m3 and kinematic viscosity ν = 10−6m2/s.

A constant pressure boundary condition with ρin = ρ is imposed to the two (inlet)
boundaries as shown in the figure. A smaller pressure with ρout = 0.97ρ is applied
to the outlet of the pipe. The remaining boundaries are assumed stationary walls.

A total of 70 circular particles with different sizes uniformly distributed in the range
of 30− 80mm are randomly positioned at the bottom of the domain. Full gravity
(g = 9.81m/s2) is applied. The Hertzian contact model is used to model the contact
between the particles and between particles and walls. The following parameters
are chosen: particle density ρs = 5000kg/m3; contact damping ratio ξ = 0.5 and
time step factor λ = 0.1, which gives a time step of ∆tD = 3.37× 10−5 for the
discrete element simulation of the particles.
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(a) (b)

(c) (d)
Figure 3: Total velocity contours of the fluid flow at four time instants

The Smagorinsky turbulence model with the Smagorinsky constant Sc = 0.1 is
adopted. A complete simulation is achieved with τ = 0.501. This gives a time
step ∆t = 4.17× 10−5s and thus the corresponding lattice speed c = 60m/s. The
subcycle number ns is computed as ns = 2. The simulated maximum fluid velocity
is approximately vmax = 5.6m/s at the pipe outlet (with the characteristic length be-
ing the pipe diameter, L = D = 0.5m). The maximum Mach number and Reynolds
number are therefore estimated as

Ma =
vmax

c
= 0.0933; Re =

vmax ∗L
ν

= 2.8×106
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The Mach number indicates that the results obtained are reasonably accurate. The
flow field in terms of the total velocity contour and the evolution of the particles
at four time instants are depicted in Figs.3(a)-(d), from which the complex fluid
flow patterns due to fluid-particle interactions, particle/particle and particle/wall
collisions are clearly observed. The general pattern and behaviour of the entire
system appears realistic.

4 Thermal-Particle Interactions

4.1 Convective heat transfer

If an additional field, thermal, exists, the Thermal Lattice Boltzmann Method is
adopted to account for heat exchange between particles and between particles and
the surrounding fluid. In the double-population model (He et al 1998), in addition
to the evolution equation for fluid flow (Eq.(4)), an internal energy distribution
function is also introduced to solve thermodynamics, as described by the following
evolution equation,

ḡi(x+ ei∆t, t +∆t)− ḡi(x, t) =− 1
τg +0.5

[
ḡi(x, t)−geq

i (x, t)
]
−

τg

τg +0.5
fiZi (25)

where

f̄i = fi +
0.5
τ f

( fi− f eq
i ) (26)

ḡi = gi +
0.5
τg

(gi−geq
i )+

∆t
2

fiZi (27)

in which gi is the internal energy distribution function with discrete velocity ei

along the i-th direction; geq
i is the corresponding equilibrium distribution function;

τg is the internal energy relaxation time which controls the rate of change to equi-
librium.

The term Zi = (ei−v) · [∂v/∂ t +(ei ·∇)v] represents the effect of viscous heating
and can be expressed as

Zi =
(ei−v) · [v(x+ ei∆t, t +∆t)−v(x, t)]

∆t
(28)

For gas flow, the lattice speed c can be defined as

c =
√

3RTm

where R is the gas constant and Tm the average temperature.
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The internal energy equilibrium distribution functions geq
i are defined in the D2Q9

model as
geq

0 = w0 ρε

[
− 3(v ·v)

2c2

]
geq

i = wi ρε

[3
2

+
3(ei ·v)

2c2 +
9(ei ·v)2

2c4 − 3(v ·v)
2c2

]
(i = 1,2,3,4)

geq
i = wi ρε

[
3+

6(ei ·v)
c2 +

9(ei ·v)2

2c4 − 3(v ·v)
2c2

]
(i = 5,6,7,8)

(29)

in which wi are the weighting factors with the same values as defined in Section
3.1; and ρε denotes the internal energy.

The internal energy per unit mass ε and heat flux q can be calculated from the
zeroth and first order moments of the distribution functions as

ρε = ∑ ḡi −
∆t
2 ∑ fiZi; q =

(
∑eiḡi−ρεv− ∆t

2 ∑ei fiZi

)
τg

τg +0.5
(30)

To evaluate the convective heat exchange between a solid particle and the surround-
ing fluid, the following approach is proposed in this work.

Assume that a solid particle is mapped onto the lattice by a set of lattice nodes.
The nodes on the boundary of the solid region are termed boundary nodes. If i is a
link (or direction) between a boundary node and a fluid node, the convective heat
exchange between the solid particle and the surrounding fluid can be evaluated as

q = ∑
i

[
g−i(x, t)−gi(x, t+)

]
(31)

where gi(x, t+) denotes the post collision distribution at the boundary node x, and
−i is the opposite direction of i.

Our numerical tests show that the Thermal Lattice Boltzmann Method can model
natural or forced convection in particulate systems well, but is not efficient to simu-
late heat conduction between particles, particularly for systems comprising a large
number of particles. For this reason, a novel numerical approach, termed the Dis-
crete Thermal Element Method (Feng et al 2008), is proposed, which is outlined in
the following.

4.2 Conductive heat transfer in particles

Consider a circular particle of radius R in a particle assembly that is in contact
with n neighboring particles, as shown in Fig. 4a, in which heat is conducted only
through the n contact zones on the boundary of the particle, and the rest of the
particle boundary is fully insulated. A polar coordinate system (r,θ) is established
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with the origin set at the centre of the particle. Each contact zone (assumed to be
an arc) can be described by the position angle θ and the contact angle α in Fig. 4b.
In general situations the position angles are well spaced along the boundary and the
contact angles αi are small. The position and contact angles of the n contact zones
constitute the local element (contact) configuration of the particle. Furthermore,
if the heat flux along the i-th contact zone is described by a (local) continuous
function qi(θ), then the heat flux on the boundary of the particle can be represented
as

q(θ) =
{

qi(θ −θi) θi−αi ≤ θ ≤ θi +αi (i = 1, ...n)
0 otherwise

(32)

The heat flux equilibrium in the particle requires

∫ 2π

0
q(θ)dθ = 0 (33)

 

q1 

qi 

qn 

qj 

q1 
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Figure 4: Heat conduction in a simple particle system

The temperature distribution T (r,θ) within the particle domain Ω = {(r,θ) : 0 ≤
r ≤ R;0≤ θ ≤ 2π} is governed by the Laplace equation as: κ∆T = 0 in Ω

κ
∂T
∂n

= q(θ) on ∂Ω
(34)
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where κ is the thermal conductivity; ∂Ω denotes the boundary (circumference) of
the particle; and ∂T

∂n is the temperature gradient along the normal direction to the
boundary. Then the temperature at any point (r,θ) ∈Ω can be expressed as

T (r,θ) =− R
2πκ

∫ 2π

0
q(φ) ln

[
1−2

r
R

cos(θ −φ)+
( r

R

)2]
dφ +To (r,θ) ∈Ω

(35)

where To is the temperature at the centre, i.e. To = T (0,0).
The solutions (35) are in integral form which provide an explicit formulation to
evaluate the temperature distribution over the particle when the input heat flux
along the boundary is given.

The temperature distribution along the i-th contact arc is given by

T i
c (θ) =− R

πκ

n

∑
j=1

∫
α j

−α j

q j(φ) ln
∣∣∣sin

θ −φ −θ j

2

∣∣∣dφ +To (θi−αi ≤ θ ≤ θi +αi)

(36)

Define Ti and Qi respectively as the average temperature and the resultant flux on
the i-th arc and further assume that qi(θ) is constant. Then Ti can be obtained as

Ti =
n

∑
j=1

[
−

Q j

4πκαiα j

∫
αi

−αi

∫
α j

−α j

ln
∣∣∣sin

∆θi j +θ −φ

2

∣∣∣dφdθ

]
+To (37)

or

Ti =
n

∑
j=1

hi jQ j +To (i = 1, ...,n) (38)

where

hi j = h ji =− 1
4πκαiα j

∫
αi

−αi

∫
α j

−α j

ln
∣∣∣sin

∆θi j +θ −φ

2

∣∣∣dφdθ > 0 (39)

With the introduction of the particle (element) temperature vector Te = {T1, ...,Tn}T ,
the heat flux vector Qe = {Q1, ...,Qn}T , the particle (element) thermal resistance
matrix He = {hi j}n×n, and e = {1, ...,1}T , Eq. (38) can be expressed in matrix form
as

Te− eTo = HeQe (40)
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This is the heat conduction equation of the particle in terms of thermal resistance:
the temperatures at the n contact zones, relative to the average temperature T0, can
be obtained when the fluxes Qe are known. The inverse form of Eq. (40) reads

K̂e(Te− eTo) = Qe (K̂e = H−1
e ) (41)

In both Eqs.(40) and (41), the average temperature To can be treated as a unknown
internal variable which can be obtained by a linear combination of the discrete
boundary temperature Te as

To = gT
e Te/κe (ge = K̂ee, κe = eT K̂ee) (42)

Eliminating To from Eq. (41) based on relation (42), we have

KeTe = Qe (43)

where
Ke = K̂e−gegT

e /κe

is the heat conductivity matrix of the particle.

Eq. (43) is the heat conduction equation in discrete form for the particle, which is
termed the discrete thermal element. It has an identical form as a thermal finite
element. Thus the subsequent procedure to model heat conduction in the particle
system can follow the same procedure as those of the conventional finite element
analysis.

This discrete thermal element approach provides a simple and accurate heat con-
duction model for a circular particle in which the temperature field within the par-
ticle is fully resolved, which is a distinct advantage over the existing isothermal
models.

In the discrete thermal element, the temperature distribution in a particle is a lin-
ear superposition of the contributions from all the heat fluxes at the thermal contact
zones. Specifically, the temperature at the i-th zone, Ti, depends not only on the flux
Qi of the zone, but also on other fluxes Q j. This coupling effect is accounted for
by the off-diagonal terms, hi j, in the thermal resistance matrix He. The numerical
evaluation conducted in (Feng et al 2008) shows that a typical value of hi j is about
10 times smaller than that of the diagonal terms hii, which implies that the coupling
effect between different zones is fairly weak. This observation promotes the devel-
opment of a simplified version of the discrete thermal element formulation, termed
the pipe-network model.

In the pipe-network model, the off-diagonal terms in the thermal resistance matrix
He is neglected such that

H̄e = diag{hii}
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Then the original equations (40) are fully decoupled:

Ti−To = hiiQi (i = 1, . . . ,n) (44)

The resulting decoupled thermal equations can be conceptually represented by a
simple star-shaped ’pipe’ network model, as shown in Fig. 5. For an individual
pipe i, the corresponding thermal resistance Ri and conductivity ki are given by

Ri = hii; ki = 1/Ri = 1/hii (45)

and Eq. (44) can be rewritten as

ki(Ti−To) = Qi (i = 1, . . . ,n) (46)

In this model, To plays a central role. If no external heat source is applied, the
net flux at the centre must equal zero due to the heat flux equilibrium requirement
∑Qi = 0. Then Eq. (42) can be further simplified as

To =
n

∑
i=1

(
kiTi
)
/

n

∑
i=1

ki (47)

Qn

Qm

Qi

Tn

Tm

Tj

Ti

Q j

oT

R i

ik

R j

jk

mk
nk

R n
Rm

Figure 5: Pipe-network model

With the pipe-network model, the transient analysis can be readily performed.

The governing equation for the transient heat conduct analysis of a solid is ex-
pressed as

ρcpṪ +κ∆T = 0 (48)

where ρ and cp are the density and the specific heat capacity of the solid, respec-
tively; Ṫ = ∂T/∂ t with t being the time.
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Within the pipe-network framework, the corresponding discrete version of the tran-
sient equation (48) for the i-th particle can be expressed as

CiṪ o
i +

n

∑
j=1

Qi j = 0 (49)

where Qi j are the internal heat fluxes associated with the particle defined by

Qi j = ki j(T o
j −T o

i ) (50)

and Ci is the total heat capacity of the particle, given by

Ci = πρcpR2
i

The global system of equations can be assembled as

CṪo(t)+KgTo(t) = Q(t) (51)

where the global heat capacity matrix C = diag{Ci} is a diagonal matrix, Kg is the
global stiffness matrix, and To = {T o

1 , ...,T o
m}T is the average temperature vector of

the particles. The system can be solved either explicitly or implicitly.

The formulation of the pipe-network model is compatible with that of the Discrete
Element Method, which makes the thermal and mechanical coupling possible.

4.3 Numerical illustration

The solution accuracy of the Discrete Thermal Element Method for steady-state
analysis has been assessed in (Feng et al 2008) via a number of numerical tests.
In this subsection, an example is provided to illustrate the capability of the pipe-
network model for thermal transient analysis.

The simulation is performed for a particle assembly with 265 particles. The outer
walls are assumed insulated (achieved by detaching the walls from the particles),
and each particle in the assembly is assigned an initial temperature T 0

i with a ran-
dom value between 0 and 1. The density and the specific heat capacity of the
particles are assumed to be 1 and 10, respectively. A backward Euler scheme is
employed to solve the global equations, with a fixed time step ∆t = 0.1s. The
equilibrium (steady-state) temperature of the system can be found as

T = ∑
i

CiT 0
i /∑

i
Ci

Fig. 6 depicts the average particle temperature distributions at four time instants,
where the temperature convergence to the steady-state is evident. The time evolu-
tion histories of the average temperatures (relative to the final steady-state temper-
ature T ) for two particles randomly chosen from the assembly are plotted in Fig. 7,
again indicating the temperatures approaching to the correct steady-state value.
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(a) t=0s (b) t=1s

(c) t=2s (d) t=10s
Figure 6: Average particle temperature distributions at four time instants

5 Fluid-Thermal-Particle Coupling

The fluid-thermal-particle interaction can be fully coupled by employing the nu-
merical procedures described in the preceding sections: the fluid-particle inter-
action is modelled by the coupled Lattice Boltzmann and the Discrete Element
Methods; while the fluid-thermal and particle-thermal interactions are simulated
jointly by the Thermal Lattice Boltzmann Method and the Discrete Thermal Ele-
ment Method, as schematically illustrated in Fig.8.

The applicability of the solution methodology is illustrated by simulating the ve-
locity and temperature fields of a moving particle system with heat transfer. The
problem considered is a randomly packed particle bed of dimensions 0.5m×1.0m.
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Figure 7: Temperature evolution histories of two particles

Figure 8: Fluid-thermal-particle coupling

The initial temperature of the 512 particles is set in the range of [20,100]◦ C. A
hot gas (100◦ C) flow is introduced from the bottom of the bed throughout the
simulation, while the other boundaries are fully insulated. Full gravity is applied.

The physical properties are chosen as: for particles, radius R = 1− 2mm, den-
sity ρs = 2500kg/m3, heat capacity cs = 150J/kgK, thermal conductivity ks =
35W/mK; whereas for the fluid (gas), density ρ f = 1.0kg/m3, kinematic viscos-
ity ν = 10−5m2/s, heat capacity c f = 1005J/kgK and thermal conductivity k f =
0.024W/mK. The fluid domain is divided into a 250×500 square lattice with lat-
tice spacing ∆x = 2mm. The initial packing of the particles is generated using the
packing algorithm proposed in (Feng et al 2003).

Figs. 9(a)-(d) and Figs. 10(a)-(d) show snapshot images of the velocity and tem-
perature field evolution. It can be seen that the initially motionless particles start to
move upwards when the hydrodynamic forces counteract the gravitational forces
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(a) t=0s (b) t=3s (c) t=5s

(d) t=10s (e) t=13s (f) t=15s
Figure 9: Velocity contours at six time instants
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(a) t=0s (b) t=3s (c) t=5s

(d) t=10s (e) t=13s (f) t=15s
Figure 10: Temperature contours at six time instants
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acting on the particles. when the velocity of the particles is low, most of the parti-
cles are in contacts and the mechanism of conductive heat transfer is significant. As
the the particles moves away from each other, the convective transfer of the parti-
cles with the surrounding gas becomes dominant. Meanwhile, the particles close to
the hot gas inlet (the bottom bed) get heated first and then move upwards, while the
particles with lower temperatures move downwards to pick up heat. The circulation
patterns of the particles and gas can be clearly seen from the pictures.

6 Concluding Remarks

The present work has established a computational framework for the effective cou-
pling of fluid-thermal-particle interaction problems, in which the motion of the par-
ticles is simulated by the Discrete Element Method; the mass and velocity field of
the fluid flow is modelled by the Lattice Boltzmann Method; the temperature field
of the heat transfer is solved jointly by the Discrete Thermal Element Method and
the Thermal Lattice Boltzmann Method. The fluid-thermal-particle interactions are
realised through the hydrodynamic force terms. The applicability of the proposed
approach has been illustrated via selected numerical examples.
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