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A Fractional Order HIV Internal Viral Dynamics Model

Caibin Zeng' and Qigui Yang !

Abstract: In this paper, a fractional order model is established to describe HIV
internal viral dynamics involving HAART effect. First, the model is proved to
possess non-negative solutions as desired in any population dynamics. Then, a de-
tailed analysis is carried out to study the stability of equilibrium points. Numerical
simulations are presented to illustrate the stability analysis.

Keywords: HIV infection, HAART, Stability, Fractional differential equation,
Non-negative solution.

1 Introduction

Since its discovery in 1981, human immunodeficiency virus (HIV) has spread re-
lentlessly throughout the world and now is a major epidemic worldwide. HIV
spreads by attacking the immune system, in particular by depleting the CD4 cells.
The pathogenesis of HIV infection is a function of the virus life cycle, the host cel-
lular environment, and quantity of virus in the infected individual. Factors such as
age or genetic differences among individuals, the level of virulence of an individ-
ual strain of virus, and co-infection with other microbes may influence the rate and
severity of disease progression. Cells with CD4 receptors at the site of HIV entry
become infected and viral replication begins within them. The infected cells can
then release virion or infected cells can undergo lysis to release new virion, which
can then infect additional cells. CD4 cells, the primary targets of HIV, become in-
fected as they encounter HIV. Active replication of HIV occurs at all stages of the
infection. Over a period of years, even when little virus is detectable in the blood,
significant amounts of virus accumulate within infected cells. This interaction be-
tween the virus and the immune system is called HIV internal viral dynamics.

In the literature mathematical and computer modeling has been found numerous
applications in many fields such as finite element modeling of thin layers [Givoli

1'School of Mathematical Sciences, South China University of Technology, Guangzhou 510640,
PR. China



66 Copyright © 2010 Tech Science Press CMES, vol.59, no.1, pp.65-77, 2010

(2004)], multiscale crystal plasticity modeling [Hasebe (2006)], acoustic waveg-
uide modeling [Lu and Zhu (2007)] and so on. Referring to modeling of HIV
infection, mathematical models have been proven valuable in understanding the
dynamics of HIV infection. [Perelson, Kirschner, and De Boer (1993)] proposed
an ordinary differential equation (ODE) model of cell-free viral spread of HIV in a
wellmixed compartment such as the bloodstream. [Perelson, Neumann, Markowitz,
Leonard and Ho (1996)] tried to estimate the length of the life cycle of the virus.
[Korthals Altes, Wodarz and Jansen (2002)] concentrated on the question of whether
it was advisable to stimulate CD4 cell response. They found that only when the
virus has a low basic reproductive number does the number of CD4 cells at the
moment of infection influence the outcome of infection. [Di Mascio, Ribeiro,
Markowitz, Ho and Perelson (2004)] provided a statistical characterization of tran-
sient viraemia observed in 123 patients, suggesting that patients have different
tendencies to show transient viraemia during the period of viral load suppression.
[Ding and Wu (1999)] modeled the effect of Reverse Transcriptase Inhibitor drugs
as inhibition rates of cell infection and Protease Inhibitor drugs as inhibition rates
of infectious virus production based on the biological mechanisms of these two
different types of drugs. They showed that the two viral decay rates are monotone
functions of the treatment effects of these antiviral therapies. [Dalal, Greenhalgh
and Mao (2008)] has proposed a stochastic model of viral dynamics including the
effect of Highly Active Antiretroviral Treatment (HAART). The corresponding de-
terministic model has been analysed by [Tuckwell and Wan (2000)]. Given the
basic reproduction number, Ry, they showed that if Ry < 1 then the disease-free
equilibrium is the unique equilibrium and if Ry > 1 then as well as the disease-
free equilibrium there is a unique endemic equilibrium. Moreover if Ry < 1 the
disease-free equilibrium is locally asymptotically stable, whilst if Ry > 1 then the
disease-free equilibrium is unstable whilst the unique endemic equilibrium is lo-
cally asymptotically stable.

However, modeling the HIV infection has been mostly restricted to use a system
of integer-order ordinary (or delay) differential equations without HAART (for ex-
ample, [Perelson, Kirschner and De Boer (1993); Perelson, Neumann, Markowitz,
Leonard and Ho (1996); Korthals Altes, Wodarz and Jansen (2002); Di Mascio,
Ribeiro, Markowitz, Ho and Perelson (2004); Ding and Wu (1999)] and the refer-
ences cited therein). Recently, fractional calculus has been extensively applied in
many fields [Ahmed and Elgazzar (2007); Hartley, Lorenzo and Qammer (1995);
El-Sayeda, El-Mesiryb and El-Saka (2007); Podlubny (1999); Hilfer (2000)]. Many
mathematicians and applied researchers have tried to model real processes using
the fractional calculus. [Nigmatullin and Nelson (2006)] described in terms of
fractional kinetics in complex systems. [Jesus, Machado and Cunha (2008)] ana-
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lyzed the fractional order dynamics in botanical electrical impedances. [Petrovic,
Spasic and Atanackovic (2005)] developed a fractional-order mathematical model
of a human root dentin. In biology, it has been deduced that the membranes of
cells of biological organism have fractional-order electrical conductance and then
are classified in groups of non-integer order models. Fractional derivatives embody
essential features of cell rheological behavior and have enjoyed greatest success in
the field of rheology [Djordjevié, Jarié, Fabry, Fredberg and Stamenovi¢ (2003)].
Particular emphasis is that a major difference between fractional order models and
integer order models is that fractional order models possess memory [Ahmed and
Elgazzar (2007); Hilfer (2000)], while the main features of immune response in-
volve memory. To model HIV infection involving fractional order, [Ding and Ye
(2009); Ye and Ding (2009)] introduced fractional-order into a model of HIV in-
fection of CD4™" T-cells. They showed that the model possesses non-negative so-
lutions and carried out a detailed analysis on the stability of equilibrium. To our
knowledge, no works are contributed to the analysis for a model of fractional order
differential equations (FODE) of describing the viral dynamics in the presence of
HIV infection and HAART. Motivated by this situation, the idea of modeling HIV
infection involving HAART effect by FODE arises.

This paper is organized as follows. In Section 2, a fractional order model of HIV
internal viral dynamics is deduced. In Section 3, the established FODE model
is proved to possess unique non-negative solutions as desired in any population
dynamics. A detailed analysis on local stability of equilibrium is carried out in
Section 4. Simulations and results are given in Section 5. Conclusions in Section 6
close the paper.

2 Model derivation

We first give the definition of fractional-order integration and fractional-order dif-
ferentiation [Podlubny (1999)]. There are several forms of definitions of frac-
tional integral and derivative, such as, Riemann-Liouville fractional integral and
fractional derivative, Caputo’s fractional derivative, Griinwald-Letnikov fractional
derivative, and so on. It should be pointed out that applied problems require defi-
nitions of fractional derivatives allowing the utilization of physically interpretable
initial conditions. In fact, Caputo’s fractional derivative exactly satisfies these de-
mands. The Caputo’s fractional derivative was introduced [Caputo (1967); Pod-
lubny (1999); Kilbas, Srivastava and Trujillo (2006)] to alleviate some of the diffi-
culties associated with Riemann-Liouville approach to fractional differential equa-
tions when applied to the solution of physical problems. Therefore, in this article,
we will adopt Caputo’s derivative to deal with the systems of FODE.
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Definition 1 The fractional integral of order o > 0 of a function f(t) is given by

1 t
10 = Frg) /O ; f Sfadr, 1)

where f(t) is an arbitrary integrable function.

Definition 2 The fractional derivative of f(t) in Caputo’s sense is defined as

appy L rfm(r)
DEfr) = F(m—oc)/o (t—r)"‘“*mdrj @

wherem—1 < o <m, meN,t>0. In particular, when 0 < a < 1, we have

apn_ L[ (D)
DEri) = F(l—a)/o (t—r)“df' ©)

This process of HIV pathogenesis can be slowed down or reversed to a certain ex-
tent by HAART. Primarily HAART inhibits the process of virus particle formation.
This keeps the viral load down and in turn increases the quantity of CD4 cells.
HAART is generally a combination of reverse transcriptase inhibitor (RTI) drugs
and protease inhibitor (PI) drugs. RTI drugs are designed to prevent the conversion
of HIV RNA to DNA in early stages of HIV replication. Thus RTI drugs block
conversion of uninfected cells to infected cells. PI drugs are designed to intervene
in the last stage of the virus replication cycle to prevent HIV from being properly
assembled, and thus cause the newly produced virus to be noninfectious [Ding and
Wu (1999)]. To describe the viral dynamics in the presence of HIV-1 infection and
HAART, the following system of ODE has been proposed [Dalal, Greenhalgh and
Mao (2008); Tuckwell and Wan (2000)]:

d):l(tt) = A —8x(t) = (1= )Bx(t)z(r),
dfz(zt)z (1=7)Bx(t)z(1) — ay(r), :
dil(tt) = (1 —=m)Nay(t) —uz(t) — (1 - y)Bx(t)z(),

where x(t) represents the concentration of uninfected cells, y(¢) represents the con-
centration of infected cells, z(¢) represents the concentration of virus particles.

Since CD4™" cells posse memory, we now introduce fractional order into the pre-
vious ODE model (4), and obtain a new system described by the following set of
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FODE:
D%x(t) = A — 8x(t) — (1 —y)Bx(t)z(1),
D%y(t) = (1 —y)Bx(t)z(t) —ay(t), )
D%(t) = (1—=m)Nay(t) —uz(t) — (1 - ) Bx(t)z(t),

where A is the total rate of production of healthy cells, § is the nature death rate
of healthy cells, (1 — y) is the reverse transcriptase inhibitor drug effect, B is the
rate uninfected become infected with virus, (1 — 1) is the protease inhibitor drug
effect, a is the nature death rate of infected cells, u is the nature death rate of
infective virus particles, and N is the number of virus produced by infected cells.
Here, 0.5 < o <1 is restricted (see [Ding and Ye (2009)]). When 0 < o« < 0.5,
the solution of Eq.(5) is unbounded by numerical simulations, so we do not think
fractional derivatives can approximately describe the rate of change in number.

3 Non-negative solutions

It is important that we do not have to worry about negative values when dealing with
a model of population dynamics is concerned. Hence we first prove the positivity
of the solutions. Denote R3 = {X € R}|X > 0}, and let X (1) = (x(¢),y(t),z(¢))T.

Theorem 1 Assume that 0 < y,m < 1 and that §,A,a,u,N and B are positive real
numbers. Then for any initial value X (0) > 0, there is a unique solution X (t) to
equation (5) on t > 0 and the solution will remain in R..

Proof. According to Theorem 3.1 and Remark 3.2 of [Lin (2007)], we know the
solution on (0, +e0) solving the equation (5) with any given initial value X (0) > 0 1is
not only existent but also unique. Next, we will show the solution with X (0) > 0 is
always positive whenever the solution exists. Suppose that it is not true, i.e., there
exists #* > 0 at which, at least, one of the elements of the solution becomes “0”” and
until which all elements of the solution are positive. There are three possibilities as
follows.

(i) If x(t*) = 0 holds, then y(r) > 0, z(r) > 0 when ¢ € [0,¢*] and x(z) > O when
t €10,t%). Let m; = tg[loin] z(t), c1 = 8 + (1 —r)Bmy, then it follows, from the first
JgF

equation of Eq.(5), that
D%x(t) > —c1x(1), t €[0,¢*] (6)
which implies

x(t) > x(0)Eq(—c1t%), t €[0,t7], 7
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where
ik

:,;)F(ka—irl)' ®

Since x(0) > 0, one has x(¢*) > 0 which is a contradiction.
(if) If y(t*) = 0 holds, then x(z) > 0, z(t) > 0 when ¢ € [0,¢*] and y(¢) > 0 when
t € 10,£*). Then it follows, from the second equation of Eq.(5), that

Dy(t) > —ay(t), 1€[0,1" ©)
which implies
() > y(0)Eq(—at®), 1 €[0,1"]. (10)

Since y(0) > 0, one has y(¢*) > 0 which is a contradiction.
(iii) If z(#*) = 0 holds, then x(7) > 0, y(¢) > 0 when ¢ € [0,7*] and z(z) > 0 when

t €[0,1%). Letmy = n[loin] x(t), c2 =u—+ (1 —r)Bmy, then it follows, from the third
te[0,e

equation of Eq.(5), that

D%z(t) > —cpz(t), t €10,17] (11)
which implies

z(t) > z(0)Eq(—cat®), 1 €[0,17]. 12)

Since z(0) > 0, one has z(r*) > 0 which is a contradiction.
Therefore, the solution of equation (5) will remain in Ri. The proof is complete.

4 Local stability analysis

It is clear that the above system (5) has a disease-free equilibrium given by Ey =
(1/8,0,0), and in case that the basic reproduction number Ry = % > 1

there is an endemical equilibrium given by E* = (x*,y*,z*), where

u

) B N BA(I=y)-5

Y = BN (13)
_ BAU—pN(I-n)-BA(1—1)~5u

< (T—7)Bu .

Theorem 2 The disease-free equilibrium Ey is locally asymptotically stable if 0 <
Ry < 1 and unstable if Ry > 1.
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Proof. The Jacobian matrix J(Ey) for system (5) evaluated at Ej is given by

J(Eo)=1] 0 —a (-ppa : (14)
0 (1-m)Na —u-— %

Denote

My =ad+ud+(1—y)BA>0, M =4ad(ud+(1—y)(1-N(1—n))BA). (15)

Hence, the eigenvalues of J(Ep) are A} = —0, A3 = 2]—5(—M1 =+ 4 /M12 —M,).
According to stability conditions in [Matignon (1996); Diethelm and Ford (2002)]
the disease-free equilibrium Ej is locally asymptotically stable if all of the eigen-
values A; (i = 1,2,3) satisfy |arg(4;)| > o/2.

If 0 < Ry < 1, then M, > 0 and the above three characteristic roots will have nega-
tive real parts. Thus the disease-free equilibrium Ej is locally asymptotically stable.
If Rp > 1, then M, < 0, and thus at least one eigenvalue will be positive real root.
Thus, the disease-free equilibrium Ej is unstable and the endemical equilibrium E*
emerges. Therefore Theorem 2 is complete.

To discuss the local stability of the endemical equilibrium E* for Ry > 1, we con-
sider the linearized system of (5) at E*. The Jacobican matrix at E* is given by

_§_ BAU=pN(=n)-BA(1—y)~8u 0 _W
u -n)—
J(E*) = BA(U=YN(1—n)—BA(1-y)=bu —a W
u -Nn)—
_ BA(Q=yN(—n)—BA(1-y)—bu (1—n)Na _“_W
u -n)—
(16)
Denote
1— 1—n)— 1—v)—
o BRO-YNO-m)-BAQ-p-bu  w a7
u N(1l-n)-1
Then the characteristic equation of the linearized system of (5) at E* is
®(p) =p’ +aip’ +ayp+a; =0, (18)
where
ay=a+M3;+My+u+9,
a2:M3u—|—(M4—|—u)5—|—a(M3+M4—M4N+M+5+M4NT[), (19)

as :a(M3u+5(M4—M4N—|—u+M4Nn)).

According to stability conditions in [Matignon (1996); Diethelm and Ford (2002)],
we have the following proposition.



72 Copyright © 2010 Tech Science Press CMES, vol.59, no.1, pp.65-77, 2010

Proposition 1 The endemical equilibrium E* is locally asymptotically stable if all
of the eigenvalues p of J(E*) satisfy |arg(p)| > am/2.

Denote
1 aq ar as 0
0 1 a, ay a3
D(@) =—13 2611 ar 0 0
0 3 21 a O (20)

0 0 3 2611 ar

= 18a1a0a3 + (a1a2)* — daza; — 4a3 — 27a§.

Utilizing the results of [Ahmed and Elgazzar (2007); Ahmed, El-Sayed and El-Saka
(2006)], we have

Proposition 2 Assume that E* exists in R>..

(i) If the discriminant of ®(p), D(®), is positive and Routh-Hurwitz conditions are
satisfied, that is,

a; > 0,a3 > 0,a1ap > a3,D(P) > 0, 20

then the endemical equilibrium E* is locally asymptotically stable.

(i) If D(®) <0, a; >0, a, >0, ajar = a3, a € (0.5,1), then the endemical equi-
librium E* is locally asymptotically stable.

(iii) If D(®) <0, a1 >0, a, >0, a3 >0, o € (0.5,2/3), then the endemical equi-
librium E* is locally asymptotically stable.

(iv) If D(®) <0, a; <0, ap <0, o« >2/3, then the endemical equilibrium E* is
unstable.

5 Simulations and results

In this section, we give some numerical simulations of system (5) to illustrate our
results on stability, the values of the parameters are given in Table 1, more details
can be found in [Dalal, Greenhalgh and Mao (2008)].

For the parameter values given in Table 1, we can get that Ry = N /202, thus 0 <
Ro <1if0 <N <202and Ry > 1if N > 202. Experimentally, N has been suggested
to be hundreds and even thousands [Ding and Ye (2009)]. We first take N = 100,
then Rg = 0.49505 < 1, the condition of Theorem 2 is satisfied. Thus we expect the
number of infected cells and infected virus particles to die out and the number of
uninfected cells to approach A /8. Numerical simulations (see Figure 1(A1-A3))
show that the uninfected cells predominate.
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Table 1: Parameters and values of system (5).

Parameters Values
X0 Initial concentration of uninfected cells 10000 dm 3
Yo Initial concentration of infected cells 10000 dm =3
20 Initial concentration of virus particles 10000 dm 3
(1—17) The reverse transcriptase inhibitor drug effect 0.5
(I—-m) The protease inhibitor drug effect 0.5
A The total rate of production of healthy cells 10° day=! dm™3
B Rate uninfected become infected with virus 1 x 1078 day=! dm?
0 Nature death rate of healthy cells 0.1 day™!
a Nature death rate of infected cells 0.5 day™!
u Nature death rate of infective virus particles 5day™!
N Number of virus produced by infected cells Varies

Uninfected cells

I I I I
o 50 100 150 200 250 300 350

Time (days)
A2 x 10* A3
10000 4
3.5
8000 o=0.6 0=0.7 3
@ 8
8 6000 c 25
= & 5
2 o
3 B
£ 4000 § 1.5
P
2000
0.5
(o] o

o 100 200 300 100 200 300
Time (days) Time (days)

o

Figure 1: Fractional order HIV internal viral dynamics model, N=100.

However, we note that in reality it is unlikely that so few cells would survive la-
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Figure 2: Fractional order HIV internal viral dynamics model, N=400.
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Figure 3: Fractional order HIV internal viral dynamics model, N=2000.
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tency. Take N = 205, then D(®) = 6.92092 > 0, and

a; =5.65076,a; = 0.563176,a3 = 0.00375,a1a, —az = 3.17862 > 0. (22)

Thus by Proposition 2(i), the endemical equilibrium E* is locally asymptotically
stable. Take N = 400, then the endemical equilibrium E* is locally asymptotically
stable by Proposition 1 (see Figure 2(B1-B3)). With N = 2000, the steady state E*
is also asymptotically stable (see Figure 3(C1-C3)). With increasing the N value,
it will decrease the numbers of uninfected cells and increase the number of virus
particles substantially, but does not change the stability of the steady state.

The above simulations are obtained by applying the PECE (Predict, Evaluate, Cor-
rect, Evaluate) method [Diethelm, Ford and Freed (2002)], and the approximate
solutions are displayed in Figure 1, Figure 2 and Figure 3 for the step size 0.007
and different 0.6 < o < 1.

6 Conclusions

In this paper, a fractional order model has been proposed to describe the viral dy-
namics in the presence of HIV infection with HAART effect, as a generalization of
an integer order model. First, the positivity of the solutions has been proved, as de-
sired in any population dynamics. Then focus on the stability aspect of the model.
By using stability analysis on a fractional order system, some sufficient conditions
on the parameters for the local stability of equilibria has been given. Numerical
simulations are carried out to confirm the analysis by applying PECE method.

The premise of the proposed model is the fact that fractional order models possess
memory while the main features of immune response involve memory. It is an
attempt to incorporate fractional order into the mathematical model of internal HIV
dynamics. In particular, our work shows that FODE can give another option to
model viral dynamics. Since fractional order models possess memory, FODE gives
us a more realistic way to model viral dynamics. However, it is still an interesting
exercise to determine, mathematically, and what the fractional order serves in the
internal HIV dynamics with HAART. In addition, the global asymptotic behavior
of FODE is still open since the chain rule is not valid in FODE. We will discuss
these questions in our later studies.
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