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Abstract: Despite the advances in computer power and numerical algorithms
over the last decades, solutions to unsteady flow problems remain computing time
intensive.
In previous work [Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)], we have shown
that a Jacobian-free Newton-Krylov (JFNK) algorithm, preconditioned with an ap-
proximate factorization of the Jacobian which approximately matches the target
residual operator, enables a speed up of a factor of 10 compared to nonlinear multi-
grid (NMG) for two-dimensional, large Reynolds number, unsteady flow compu-
tations. Furthermore, in [Lucas, P., Zuijlen, A.H. van, and Bijl, H. (2010)] we
show that this algorithm also greatly outperforms NMG for parameter studies into
the maximum aspect ratio, grid density and physical time step: speeds ups, up to a
factor of 25 are achieved.
The goal of this paper is to demonstrate the wider applicability of the precondi-
tioned JFNK algorithm by studying incompressible flow and an incompressible fluid
structure-interaction (FSI) case. It is shown that the preconditioned JFNK algorithm
is able to tackle the stiffness induced by the low Mach regime, making it possible
to apply a compressible flow solver to nearly incompressible flow. Furthermore,
it is shown that the preconditioned JFNK algorithm can be readily applied to FSI

problems.

Keywords: Jacobian-free Newton-Krylov, low Mach number, unsteady flow, fluid-
structure interaction.

1 Introduction

The vast majority of flow fields encountered in engineering applications is un-
steady. These flow fields may include inherently unsteady flow separation, un-
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steady boundary- and free shear flows, as well as unsteady boundary conditions,
possibly caused by flow actuators. In spite of this, since one is often concerned with
only mean flow quantities and steady flow simulations are far less computation-
ally demanding, unsteady flow simulations have historically been rarer. However,
knowledge of unsteady loads on, for example, wind turbine blades have proved to
be of vital importance for an efficient life cycle design, see [Nijssen, R.P.L. (2006)]
and [Veldkamp, H.F. (2006)]. Nowadays, with advances in computer power and nu-
merical algorithms, it has become feasible to perform unsteady flow simulations.
However, as solutions to unsteady flow problems remain computing time intensive,
efficiency improvements of numerical algorithms remain of great importance.

The solution method used in many aerodynamic production codes, e.g. [Fluent Inc.
(2003)], [FUN3d (2007)] and [Numeca International (2007)], is some basic iterative
method, possibly used as a smoother for (non)linear multigrid and possibly in com-
bination with implicit residual smoothing. As observed by others and shown in our
previous work [Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)], convergence ob-
tained with these solution methods make them impracticable to compute unsteady
flows. Amongst others, the stiffness induced by the Reynolds number, maximum
aspect ratio and Mach number is poorly tackled with this solution method. Further-
more, for complex turbulence models, possibly with wall functions, (non)linear
multigrid might not be consistent over the series of coarser grids.

A more obvious solution method to compute unsteady flows is Newton lineariza-
tion in combination with a Krylov subspace technique. Newton linearization comes
natural for unsteady flow computations, because the initial solution available from
the previous time step is usually accurate enough to avoid nonlinear stall or di-
vergence. Although Newton-Krylov methods have only recently been introduced
in the computational fluid dynamics (CFD) community, promising results for the
computation of unsteady flows have already been obtained, see e.g. [Bijl, H. and
Carpenter, M.H. (2005)], [Isono, S. and Zingg, D.W. (2004)], [Jothiprasad, G.,
Mavriplis, D.J., and Caughey, D.A. (2003)] and [Qin, N., Ludlow, D.K., and Shaw,
S.T. (2000)].

In previous work [Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)], we have shown
that a Jacobian-free Newton-Krylov (JFNK) algorithm, preconditioned with an ap-
proximate factorization (AF) of the Jacobian that approximately matches the target
residual operator, enables a speed up of a factor of 10 compared to nonlinear multi-
grid (NMG) for two-dimensional, large Reynolds number, unsteady flow computa-
tions. Although an AF preconditioner based on the target residual operator closely
resembles A−1, these preconditioners are unpopular because of a possible lack of
robustness [Chow, E. and Saad, Y. (1997)] and a large memory consumption. In
our previous work [Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)], however, we
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have shown that the issue of a large memory consumption is overcome with partly
lumping the Jacobian before computing the AF preconditioner, whereas the issue of
a liable performance is overcome with enhanced diagonal dominance. In [Lucas,
P., Zuijlen, A.H. van, and Bijl, H. (2010)] we show that the preconditioned JFNK

algorithm also greatly outperforms NMG for parameter studies into the maximum
aspect ratio, grid density and physical time step: speed ups of up to a factor 25 are
achieved.

The goal of this paper is to demonstrate the wider applicability of the precondi-
tioned JFNK algorithm. Firstly, it is demonstrated that the preconditioned JFNK

algorithm can tackle the stiffness induced by the low Mach number regime, mak-
ing it possible to apply a compressible flow solver to almost incompressible flow.
Secondly, it is demonstrated that the preconditioned JFNK algorithm can readily
be applied to incompressible fluid-structure interaction (FSI) problems. Because
the preconditioned JFNK algorithm is very efficient in dealing with the stiffness
induced by low Mach numbers, it is a promising solution method for incompress-
ible FSI problems as these problems are typically more difficult to solve with most
common subiteration techniques.

This paper is organized as follows. In Section 2 the original solution method and the
preconditioned JFNK algorithm are discussed. In Section 3 the results are discussed.
Finally, in Section 4 the conclusions are drawn.

2 Solution method

The general purpose, compressible, CFD solver is Hexstream [Numeca Interna-
tional (2007)]. This finite volume code describes conservation of mass, momentum
and energy with the Reynolds averaged Navier-Stokes equations closed with the
turbulence model of [Spalart P.R. and Allmaras S.R. (1992)]. Integrated over a
control volume Ω with boundary dΩ, conservation of mass, momentum and energy
can be written as:

∂

∂ t

∫
Ω

udV +
∫

dΩ

F ·ndS =
∫

dΩ

G ·ndS, (1)

with u the set of conservative variables and F and G the inviscid and viscous tensor
respectively. Spatial discretization is performed with a cell centered finite volume
method with added artificial scalar Jameson dissipation [Jameson, A., Schmidt, W.,
and Turkel, E. (1981)]. The code is designed for unstructured grids, however can
also handle structured grids. See [Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)]
for more information on the spatial discretization operator.

Temporal discretization is performed with a third order implicit ESDIRK (Explicit
first stage, Single Diagonal coefficient, Implicit Runge-Kutta) scheme because of
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a higher efficiency compared to the standard used second order time integration
schemes, see e.g. [Bijl, H., Carpenter, M.H., Vatsa, V.N., and Kennedy, C.A. (2002)],
[Carpenter, M.H., Kennedy, C.A., Bijl, H., Viken, S.A., and Vatsa, V.N. (2005)] and
[Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)]. This scheme consists of three
second order accurate, implicit stages within each time step. After solving the inter-
mediate, nonlinear stages, the high order solution at the next time level is obtained
by combining the solutions at the intermediate stages with certain weigh factors,
see [Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)] for more information.

The original solver uses explicit pseudo time stepping in combination with nonlin-
ear multigrid to solve the system of nonlinear equations. Therefore, in order to be
able to solve unsteady problems, dual time stepping is used. Hence, for unsteady
flow computations, (1) is replaced with:

∂

∂τ

∫
Ω

udV +
∂

∂ t

∫
Ω

udV +
∫

∂Ω

F ·ndS =
∫

∂Ω

G ·ndS, (2)

where τ is the pseudo time step. For nearly incompressible flows, say for a Mach
number smaller than 0.1, pseudo time stepping is inappropriate because of the
large disparity in the convective and acoustic eigenvalues. For example, for a one-
dimensional Euler flow, the convective and acoustic eigenvalues are given by, re-
spectively, v, v−a and v+a, with v the velocity and a the speed of sound. Hence,
for a Mach number that approaches zero, the eigenvalues are given by ≈ 0, −a
and a, which explains the large disparity in eigenvalues and which makes standard
pseudo time stepping inappropriate.

The problem of a large disparity in eigenvalues has long been known and has,
amongst others, motivated the development of a low Mach preconditioner to pro-
vide fast convergence for low Mach number flows, see e.g. [Turkel, E. and Vatsa,
V.N. (2005)], [Potsdam, M.A., Sankaran, V., and Pandya, S.A. (2007)], [Darmofal,
D.L. and Siu, K. (1999)], [Hakimi, N. (1997)], [Vigneron, D., Vaassen, J.-M., and
Essers, J.-A. (2008)] and [Choi, Y.-H. and Merkle, C. L. (1993)]. Note, another
approach to compute low Mach number flows is to use a purely incompressible
flow solver, possibly with correction terms to include some compressibility, see
e.g. [Nicolás, A. and Bermúdez, B. (2007)] and [Nicolás, A. and Bermúdez, B.
(2004)]. However, because we aim at developing a CFD code that can solve flows
in all Mach number regimes, a compressible code is required because the correction
terms are inaccurate when relatively large Mach number flows are computed.

A low Mach preconditioner modifies the pseudo time derivatives (hence the tem-
poral accuracy is not effected by the low Mach preconditioner) in order to remove
the large disparity in eigenvalues and thus to improve convergence. In addition,
also the artificial scalar Jameson dissipation can be modified. The idea is that for
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low Mach number flows less artificial dissipation is required in order to stabilize
the scheme, which improves the accuracy of the computation [Turkel, E. and Vatsa,
V.N. (2005)]. Because the low Mach preconditioner developed by [Hakimi, N.
(1997)] is readily available in our CFD code, we use this low Mach preconditioner
in this paper. In order to introduce the preconditioning parameters the precondi-
tioned version of (2) is given here:

∂

∂τ

∫
Ω

Γ
−1ũdV +

∂

∂ t

∫
Ω

ũdV +
∫

∂Ω

F ·ndS =
∫

∂Ω

G ·ndS, (3)

where the only difference with the regular equations shown in (2) is due to the
preconditioning matrix Γ and a different solution vector ũ. Following [Hakimi, N.
(1997)], for a three dimensional flow with a one-equation turbulence model, Γ−1 is
given by:

Γ
−1 =



1
β 2 0 0 0 0 0

(1+α)u
β 2 ρ 0 0 0 0

(1+α)v
β 2 0 ρ 0 0 0

(1+α)w
β 2 0 0 ρ 0 0

αv2+Hδ−β 2

β 2 0 0 0 ρ 0
0 0 0 0 0 1


, (4)

where α and β are the preconditioning parameters, u,v,w are the velocity com-
ponents and H is the enthalpy. Note that the turbulence transport equation is not
modified. The solution vector ũ is defined by:

ũ = (pδ ,u,v,w,Hδ , ν̃)T (5)

where ν̃ is the Spalart-Allmaras turbulence quantity [Spalart P.R. and Allmaras
S.R. (1992)] and the subscript δ means zero referenced at the undisturbed pressure
or undisturbed enthalpy.

Next, the modification of the artificial dissipation is discussed. In [Turkel, E. and
Vatsa, V.N. (2005)] it is stated that a necessary condition on convergence can be
achieved by scaling the artificial dissipation with a term proportional to the Mach
number squared. In our code the artificial dissipation is modified by scaling the
dissipation term with a factor f (β ). The factor f (β ) satisfies the following condi-
tions:

f (β = a∞) = 1, and f (β < a∞) < 1. (6)
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Hence, for β < a∞, the added artificial dissipation is lower than added without the
low Mach preconditioner. For α = 0 and β 2 = a2 the unpreconditioned equations
are obtained. Finally, the parameter β is locally scaled with the velocity and the
speed of sound as follows:

β = βuser

(
min

(
1,

vuser

a∞

))2

, (7)

where βuser and vuser are user defined parameters and the subscript ∞ refers to the
free stream conditions. The idea of this scaling is that, for vuser < a∞ (it is rec-
ommended to set vuser < v∞) a lower artificial dissipation is achieved in low speed
regions, i.e. in a low speed region there holds: β < a∞, which lowers the added
artificial dissipation with a factor f < 1. From (4) and (7), it follows that the pa-
rameters α , βuser and vuser determine the convergence rate and the pseudo steady
state solution. In [Numeca International (2007)] it is shown that α =−1 yields the
best clustering of eigenvalues and thus optimal convergence rate (unless otherwise
noted, a value of -1 for α will be used throughout this paper). Finally, β should be
chosen dependent on the Reynolds number, ranging from 10 to 1 for a Reynolds
number that ranges from 100 to 1000. For larger Reynolds numbers β should be
chosen equal to 1. In the next sections the various elements of the preconditioned
JFNK algorithm are briefly described.

2.1 Newton linearization

The basis of a JFNK algorithm is Newton linearization. After spatial and temporal
discretization, both (2) and (3) can be casted into the following form:

r
(

uk
)

= 0, (8)

where r
(
uk
)

is the nonlinear residual at stage k. A Taylor expansion of the non-
linear residual r

(
uk
)

around uN (for all stages), neglecting higher order terms and
setting r(uk) = 0, yields Newton’s method:

J
(
uN)

δu =−r
(
uN) , (9)

or, in basic linear algebra notation:

Ax = b, (10)

where uN is the Nth Newton iterate for the solution uk, A = J(uN) is the Jacobian
evaluated at uN and b =−r(uN) is the nonlinear residual at uN . The Jacobian and
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the Newton iterate contain all flow parameters including turbulence. The solution
of (9) is the Newton update, i.e.:

δu = uN+1−uN . (11)

Newton updates are performed until the solution is converged, i.e. until ||r(uN+1)||2 <
tol, where ‘tol’ is an absolute tolerance. The system of equations given in (9) is real,
non-symmetric and typically very ill-conditioned. Typically, the solution variables
are grouped per grid cell. For the regular equations the solution vector u is given
by:

u = (ρ1, ρu1, ρv1, ρw1, ρE1, ν̃1 · · · , ρn, ρun, ρvn, ρwn, ρEn ν̃n)
T , (12)

where ρ is the density, u,v,w are the velocity components, E is the internal energy,
ν̃ is the Spalart-Allmaras turbulence quantity and n is the number of grid cells.
Grouping the solution variables in this way results in a better performance than
grouping the solution variables per aerodynamic quantity (which would imply that
the first n entries are filled with ρ1, · · · , ρn), which is in accordance with results
found in the literature, see e.g. [Chow, E. and Saad, Y. (1997)].

Although more a problem of steady flow problems, nonlinear convergence is not
guaranteed with a Newton-based method. Therefore, a line search algorithm is used
by repacing (11) with:

uN+1 = uN +ζ δu. (13)

Starting with 1.0, ζ is multiplied with 0.75 until the L2 norm of the nonlinear resid-
ual decreases with the computed Newton update. Hence, under relaxation is applied
to the Newton update (δu) until the norm of the new nonlinear residual (r

(
uN+1

)
)

is smaller than the old one (r
(
uN
)
). It is our experience that the line-search algo-

rithm is only required for relatively large time steps (say, less than 8 time steps per
physical period) and few nonlinear multigrid iterations before Newton lineariza-
tion (say, less than 5, see also Section 2.4). See possibly [Knoll, D.A. and Keyes,
D.E. (2004)] for more information and more sophisticated algorithms to guarantee
a decrease in nonlinear residual for each Newton update.

2.2 Linear solver

The system of linear equations of (10) is solved with a Krylov subspace iterative
method (the Newton updates therefore become approximate Newton updates). The
Generalized Minimal RESidual algorithm (GMRES) introduced by [Saad, Y. and
Schultz, M.H. (1986)] is used to solve the system of linear equations. This al-
gorithm uses the modified Gram-Schmidt algorithm to construct an orthonormal
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basis v1, . . . ,vm for the Krylov subspace Km(A;r0). For the sake of completness,
this solution method is summarized below:

y = min
y∈ℜk
||βe1−Hmy||2, (14)

x = x0 +Vmy, (15)

where β is the L2 norm of the initial residual that corresponds to the initial guess
x0, e1 = (1,0, . . . ,0)T , Hm is a Hessenberg matrix which entries are formed by
the modified Gram-Schmidt algorithm and Vm is formed by the vectors v1, . . . ,vm,
see [Saad, Y. and Schultz, M.H. (1986)] for more information. The linear solver is
terminated once the L2 norm of the linear residual has dropped 1.5 orders compared
to its initial value, where a null-solution is used as the initial guess.

As also observed by many others (e.g. [Wong, P. and Zingg, D.W. (2008)], [Syam-
sudhuha and Silvester, D.J. (2003)] and [Blanco, M. and Zingg, D.W. (2006)]) the
GMRES algorithm does not require the matrix A: it only requires the action of A
on a vector. It is, therefore, not necessary to compute the Jacobian given in (9)
which saves significant CPU costs and memory consumption. The Jacobian-vector
products are commonly approximated with the following finite difference:

Jv≈ r(u+ εv)− r(u)
ε

. (16)

The matrix-free approximation can cause an unphysical flow representation as the
density and turbulence quantities are not guaranteed to be positive. It is, how-
ever, our experience that clipping the turbulence quantities (we did not encounter
negative values for the density) in the matrix-free approximation leads to more GM-
RES iterations to convergence. The turbulence quantities for the solution uN+1 are,
however, always clipped such that the solution is physical.

Finally, based on [Chisholm, T.T. and Zingg, D.W. (2009)], we have improved the
accuracy of the Newton updates (compared to the performance reported in [Lucas,
P., Bijl, H., and Zuijlen, A.H. van (2010)]) with the following row scaling:

DrAx = Drb, (17)

where the row scaling Dr is based on the L2 norms of the residuals corresponding
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to the conservation laws:

Dr =



r1 0
r2

. . .
rnvar

r1

0
. . .


, (18)

with

r1 =

√
∑

ncells
i r(u(i−1)nvar+1)

ncells
,

r2 =

√
∑

ncells
i r(u(i−1)nvar+2)

ncells
,

...

rnvar =

√
∑

ncells
i r(u(i−1)nvar+nvar)

ncells
.

This row scaling results in L2 norms of the residuals corresponding to the conserva-
tion laws, that are the same order of magnitude, which yields a more balanced drop
in the linear residual. As the (nonlinear) residuals corresponding to the various con-
servation laws can differ several orders of magnitude, nonlinear convergence can
be poor when not scaled, as the iterative linear solver initially neglects the smaller
residuals.

2.3 Preconditioning

In order to achieve rapid convergence of the linear problem for each Newton up-
date preconditioning is used. We precondition the linear systems with an AF that
approximately matches the target residual operator. In [Lucas, P., Bijl, H., and
Zuijlen, A.H. van (2010)] we have shown that partly lumping the Jacobian before
constructing the AF preconditioner yields a modest memory consumption. Robust-
ness is ensured with enhanced diagonal dominance. Note the difference between
the AF preconditioner used to precondition the linear systems (that arise after New-
ton linearization) and the low Mach preconditioner. The low Mach preconditioner
only tackles the disparity in acoustic and convective eigenvalues, whereas the AF

preconditioner should tackle all sources of stiffness.

The Jacobian is approximately factored with an incomplete lower upper factoriza-
tion [Saad, Y. et al. (2006)] based on the footprint of the Jacobian (ILU(k)), because
incomplete multilevel ILU factorizations [Bollhöfer, M., Saad, Y., and Schenk, O.
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(2006)] and incomplete dual thresholds factorizations [Bollhöfer, M., Saad, Y., and
Schenk, O. (2006)] were found to be much less effective, as also reported and
observed by others [Chow, E. and Saad, Y. (1997)], [Pueyo, A. and Zingg, D.W.
(1998)] and [Wong, P. and Zingg, D.W. (2008)]. ILU(k) implies that a zero entry
in the Jacobian may only become a nonzero in the ILU when it is up to k posi-
tions away from an existing nonzero element in the Jacobian. A level of fill-in of
3 is used because this significantly improves performance for relatively hard cases,
whereas it makes the relatively easy cases only marginally more expensive com-
pared to when a level of fill-in of 1 is used.

Finally, the update frequency of the AF preconditioner is once per physical time
step. This implies that the preconditioner is computed for the first Newton update
of the first Runge-Kutta stage, after which it is recycled for all Runge-Kutta stages
and Newton updates within one physical time step. For temporal errors in the order
of 1 to 5 percent, an update frequency of once per physical time step minimizes
computing time [Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)].

2.4 Successive combination NMG and JFNK

Although unsteady flows are computed and thus a relatively accurate initial solution
is available, Newton’s method is not guaranteed to converge, i.e. when the initial
solution is not in the ball of convergence of the Newton method, nonlinear stall or
divergence may occur. However, once in the ball of convergence, super linear to
quadratic convergence is possible.

Nonlinear multigrid, on the other hand, exhibits a rapid ‘initial’ convergence (the
‘shape’ of the solution is captured in only a few iterations), whereas asymptotic
convergence is slow. In [Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)] and
[Bijl, H. and Carpenter, M.H. (2005)] we have shown that a successive combination
of respectively NMG and JFNK can significantly reduce the computing time. In
[Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)] computing times are reduced with
20% to 40% for a two-dimensional turbulent flow around a wind turbine profile
(Mach number is 0.121, Reynolds number between 1.0 ·104 and 1.0 ·106). It is our
experience that the successive coupling is virtually insensitive to the level of fill-in
used in the preconditioner.

The successive coupling is, unfortunately, sensitive to the test case. For example,
when the number of grid cells is increased, typically more multigrid iterations be-
fore starting JFNK is beneficial, typically because NMG converges slower for the
more difficult cases. As of yet we have not found a suitable norm that indicates
when to switch from NMG to JFNK. Therefore, 5 NMG iterations are performed
before the first Newton update is computed. Five NMG (rather than 1 as reported in
[Lucas, P., Bijl, H., and Zuijlen, A.H. van (2010)]) iterations significantly improves
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performance for relatively hard cases, whereas it makes the relatively easy cases
only marginally more expensive compared to when only 1 NMG iteration is used.

3 Numerical results

In this section the results are discussed for the low Mach number flow over a cir-
cular cylinder and the incompressible FSI case. The solver settings used are the
following: the physical time step is chosen such that engineering order of accuracy
is achieved, the number of NMG iterations before Newton linearization is 5 for the
cylinder flow, whereas it is 25×

(1
2

)nsub for the FSI CASE (nsub is the current id
of the subiteration; this strategy results in relatively many NMG iterations for the
harder subiterations, whereas it minimizes computational costs for the easier subit-
erations), the nonlinear convergence is set such that the iteration error is below the
temporal error (which is obtained by means of temporal convergence study for the
cylinder flow), the linear convergence criterion is set to -1.5, the level of fill-in used
in the AF is 3 (update frequency is once per physical time step). Finally, the grid
spacing is chosen such that engineering order of accuracy is achieved (based on the
experience gained in [Lucas, P., Zuijlen, A.H. van, and Bijl, H. (2009)]).

3.1 Low Mach number flow around a circular cylinder

The performance of the preconditioned JFNK algorithm is investigated by compar-
ing it with NMG. The unsteady, laminar circular cylinder flow has the following
characteristics: the Reynolds number is 1000, approximately 16 points per phys-
ical period are used and the grid contains 43.7k cells. See Fig. 1 for the grid, a
snapshot of pressure, time history of cl and cd and the curl of velocity. A struc-
tured o-grid is used because irregular cells reduce the numerical accuracy for low
Mach flows in the CFD solver [Numeca International (2007)]. The following Mach
numbers are tested: 0.003, 0.01, 0.03 and 0.1.

In order to investigate whether JFNK can tackle the stiffness due to the low Mach
regime, the regular flow equations given in (2) need to be solved. Also the low
Mach preconditioned flow equations are studied because we want to get insight into
the effectiveness of the low Mach preconditioner on the numerical accuracy and on
the performance of NMG and JFNK. First, however, it is investigated whether this
low Mach preconditioner improves the numerical accuracy for low Mach number
flows.

In Tab. 1 the amplitude for lift (acl ) and drag (acd ), the mean value for drag (c̄d) and
the Strouhal (St) number are given for various settings of the preconditioning pa-
rameters. Because compressibility effects can physically be neglected for the given
range of Mach numbers, the aforementioned coefficients should be independent of
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(a) Structured o-grid. (b) Snapshot static pressure.

Time [s]

c l
,c

d
[-

]

cl

cd

0 1 2 3 4
-2

-1

0

1

2

(c) Time history cl and cd . (d) Snapshot curlz of the velocity.

Figure 1: Grid, static pressure, time history cl cd and snapshot curlz velocity lami-
nar, incompressible, two dimensional cylinder flow. Mach number is 0.1, Reynolds
number is 1.0 ·103 and grid contains 43.7k cells.

the Mach number. Table 1 shows that this is only the case for the low Mach pre-
conditioned equations (vuser = v∞) and not for the regular equations (βuser = 1 and
vuser = a∞), e.g. for the regular equations, the amplitude in lift varies between 1.58
and 2.74. This implies that a modification of the artificial dissipation is indispens-
able in order to achieve high numerical accuracy.

Next, the performance of JFNK is investigated for the low Mach preconditioned and
regular equations. For the low Mach preconditioned case we set βuser = 1, because
this leads to the highest numerical accuracy (lowest added artificial dissipation).
In Tab. 2 the average number of NMG and GMRES iterations to solve one nonlinear
system are shown as function of the Mach number and whether or not the equations
are low Mach preconditioned. Nonlinear convergence is judged by comparing the
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Table 1: Amplitude of lift (acl ) and drag (acd ), averaged drag (c̄d) and Strouhal
number as function of the preconditioning settings (βuser = 1 is abbreviated as βu).

M vuser = v∞ vuser = a∞, βu = 1
βu = 1 βu = 3 βu = 30 (regular eqns.)

0.003 acl 2.71 2.76 2.76 1.58
acd 0.447 0.447 0.413 0.0717
c̄d 1.50 1.52 1.52 1.14
St 0.25 0.24 0.24 0.14

0.01 acl 2.71 2.76 2.76 2.27
acd 0.447 0.447 0.413 0.217
c̄d 1.50 1.52 1.52 1.35
St 0.25 0.24 0.24 0.20

0.03 acl 2.71 2.76 2.76 2.59
acd 0.447 0.446 0.413 0.301
c̄d 1.50 1.52 1.52 1.47
St 0.25 0.24 0.24 0.22

0.1 acl 2.71 2.76 2.76 2.74
acd 0.446 0.46 0.413 0.385
c̄d 1.50 1.52 1.52 1.52
St 0.24 0.24 0.24 0.24

iteration error in lift and drag with the temporal error in lift and drag, where the
error is defined as the discrete L2 error over one complete physical period. In order
not to contaminate the time-accurate solution, the iteration error should be smaller
than the temporal error (obtained by means of a temporal convergence study).

From Tab. 2 several observations can be made. Firstly, the number of NMG and
GMRES iterations heavily depends on the Mach number for the regular equations,
while it is virtually constant for the low Mach preconditioned equations. The low
Mach preconditioner, therefore, does what it has been designed for: making the
convergence independent on the Mach number (and enhancing the numerical accu-
racy). Secondly, for a Mach number of 0.03 and 0.1, more NMG iterations are re-
quired for the low Mach preconditioned than for the regular equations. This makes
sense because the low Mach preconditioning results in a lower artificial dissipation.
Thirdly, for the regular equations, both the number of NMG and GMRES increase
significantly for a reduction in Mach number. The increase in GMRES iterations
is, however, less dramatic (factor 5.07) than the increase in NMG iterations (factor
26.4). Finally, for the low Mach preconditioned equations solved with NMG, the
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Table 2: Average number of NMG and GMRES iterations to solve one nonlinear
system as function of the Mach number and it. convergence criterion (it. conv.
crit.), εiter stands for iteration error, εtemp stands for the temporal error.

low Mach it. conv. crit. M = 0.003 M = 0.01 M = 0.03 M = 0.1
precond. NMG GMR NMG GMR NMG GMR NMG GMR

yes εiterL < εtempL
229 20.0 229 20.0 228 20.0 221 19.9

εiterD < εtempD
27 7.69 83 7.58 25 7.50 30 7.73

no εiterL < εtempL
792 105 246 57.6 87 30.5 30 20.7

εiterD < εtempD
605 105 231 57.6 82 30.5 23 20.7

iterative convergence criterion based on the accuracy in lift results in much more
NMG iterations (on average 227) than the iterative convergence criterion based on
the drag. However, because the iterative error may not contaminate the solution,
the comparison in performance is based on the convergence criterion based on the
lift.

In Tab. 3 the performance of JFNK is compared with the performance of NMG. This
table clearly shows that JFNK greatly outperforms NMG for all Mach numbers and
whether or not the flow equations are low Mach preconditioned. On average, the
largest average reduction in CPU time is achieved for the low Mach preconditioned
cases. The largest speed up is, however, achieved for the regular equations and is
as much as a factor of 16.2! Note, for the regular equations and a Mach number
of 0.1, the speed up achieved is ‘only’ a factor 1.48 (approximately 50 percent).
This is because this test case is a rather easy one once the stiffness induced due
to the Mach number is removed. As NMG is much more suited to compute such
flows, the speed up achieved is modest due to a much better performance of NMG.
Finally, Tab. 3 shows that costs for JFNK increase from 837 seconds to 2023 (factor
2.42) seconds when the Mach number is reduced from 0.1 to 0.003. Compared to
the increase in GMRES iterations (factor of 5.07), the increase in total CPU costs is
much lower because the linear solver only partly contributes to the total CPU costs.

To conclude, whether or not low Mach preconditioned, the performance of JFNK is
not severely influenced by the Mach number for Mach numbers as lows as 3.0×
10−3. This makes it possible to set the value for β based solely on numerical
accuracy considerations.

3.2 Incompressible FSI case

In this section the incompressible, strongly coupled, partitioned FSI case is con-
sidered. Such flow problems are difficult to compute because a small change in
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Table 3: CPU costs NMG and JFNK in seconds.

low Mach precond. Mach number NMG JFNK ratio
yes 0.003 9288 639 14.5

0.01 9288 639 14.5
0.03 9287 639 14.5
0.1 8964 639 14.1

no 0.003 32694 2023 16.2
0.01 10155 1331 7.63
0.03 3591 966 3.72
0.1 1238 837 1.48

the flow can cause a strong deformation of the structure and vice versa. In order
to properly solve strongly coupled, partitioned FSI cases typically subiterations are
required. This implies that in order to march forward one physical time step, the
flow and the structure need to be solved multiple times. In this section it is investi-
gated whether NMG, and in particular the preconditioned JFNK algorithm, can cope
with this additional complexity.

The test case discussed in this section is based on the benchmark problem by
[Turek, S. and Hron, J. (2006)]. The original test case as proposed by [Turek,
S. and Hron, J. (2006)] concerns a laminar incompressible channel flow around a
circular cylinder connected to an elastic flap which results in a self-induced oscilla-
tion of the flap. The test case that is considered in this section concerns a turbulent
incompressible channel flow around a square cylinder connected to an elastic flap.
See Fig. 2 for a close up of the grid, the time history of cl and cd and snapshots of
the pressure and curl of velocity and the moment of maximum upward deflection,
no deflection and maximum downward deflection. Turbulent rather than laminar
flow must be considered because this is more challenging for JFNK. Typically, tur-
bulence can cause difficulties for a Newton-based method because turbulence can
cause strong nonlinearities. The flow around a square rather than a circular cylinder
is considered, because this results in larger deflections of the flap which also makes
this problem more challenging as larger deflections imply a greater nonlinearity.
Because we have deviated significantly from the original benchmark problem, it is
not possible to compare the numerical accuracy achieved. However, because the
focus is on the nonlinear solver this is not considered an issue.

The relevant parameters for this two-dimensional, turbulent, incompressible test
case are as follows. The density ratio of the fluid and flap is 1, the Reynolds number
is 1.0×105 and the Mach number is 5.9×10−3. The grid contains 56.7k grid cells,
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(a) Grid wing and mirror plan.
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(b) Time history cl and cd .

(c) curl(V ) at largest positive deflection. (d) Pressure at largest positive deflec-
tion.

(e) curl(V ) at nearly zero deflection. (f) Pressure at nearly zero deflection.

(g) curl(V ) at largest negative deflec-
tion.

(h) Pressure at largest negative deflec-
tion.

Figure 2: Close up grid, time history cl , cd , curl velocity (curl(V )) perpendicular to
mirror plane, and static pressure at different positions in time.
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whereas the ESDIRK-3 scheme with approximately 30 time steps per physical period
is used to march in time. The flow is low-Mach preconditioned with the following
settings: βuser = 3 and vuser = v∞.

Aitken subiterations are performed until the coupling error (L2 norm of pressure)
is reduced below 0.01. This algorithm can be summarized as follows: when the
structure receives the aerodynamic loads fi

a after subiteration i, the actual loads
applied to the structure f̂a for subiteration i+1 yield:

f̂i+1
a = f̂i

a +θ
i+1 (fi

a− f̂i+1
a
)
, (19)

wherein the underrelaxation parameter θ is obtained using the Aitken method

θ
i+1 = θ

i
(

1
(∆ei) · (ei)
(∆ei) · (∆ei)

)
, (20)

wherein ei = fi
a− f̂i

a, the difference between the loads applied to the structure at
the start of the subiteration and the loads computed by the flow solver at the end
of the subiteration and ∆ei = ei− ei−1. At the start of a new time step or stage,
the structure receives the aerodynamic loads from the flow solver and f̂1

a = f0
a. After

the first sub-iteration, underrelaxation is applied using (19) with an underrelaxation
θ = min(θinit,θold), which is the minimum value of a prescribed initial value and
the underrelaxation value obtained at the end of the previous time step or stage. In
this paper we choose θinit = 0.1, which prevents extreme over or undershoots for
the second subiteration. Every next subiteration the underrelaxation parameter is
obtained using (20). Should the obtained value for θ be larger than 1, it is limited
to 1.

In the literature various subiteration techniques are proposed in order to try to limit
the number of required subiterations. In this section the relatively simple Aitken
[Mok, D., Wall, W., and Ramm, E. (2001)] subiteration technique is applied. This
subiteration technique performs well when compressible FSI problems are com-
puted. However, when incompressible FSI problems are computed, typically much
more subiterations are required needed to converge the coupling error [Förster, C.,
Wall, W.A., and Ramm, E. (2007)]. Hence, the Aitken subiteration technique is not
the first choice when simulating an incompressible FSI case. Methods that require
more implementation effort are e.g. interface GMRES Michler, C., Brummelen,
E.H., and Borst, R. de (2005) or reduced order modeling Vierendeels, J., Lanoye,
L., Degroote, J., and Verdonck, P. (2007). They have the advantage over the Aitken
method that they have faster convergence. Recently a quasi Newton method has
been proposed Haelterman, R., Degroote, J., and van and Vierendeels, J. (2009)
and applied to fluid-structure interaction coupling Degroote, J., Bathe, K.-J., and
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Vierendeels, J (2009) that has a similar implementation complexity as the Aitken
method but with superior convergence.

The following two reasons explain why we apply the Aitken subiterations to an
incompressible FSI case. One, we are mainly interested whether JFNK can cope
with the additional complexity caused by the fluid structure interaction. It is our
experience that the Aitken subiteration technique can lead to significant over- and
under shoots. A large overshoot typically implies a relatively complex flow con-
figuration (large deflation flap) and relatively a poor initial solution. Hence, when
the preconditioned JFNK algorithm can deal with this situation, it can probably also
be applied to compressible FSI cases, or to incompressible FSI cases solved with
a more sophisticated subiteration technique. Two, when JFNK can successfully be
applied to this incompressible FSI case, we want to investigate if JFNK compared
to NMG, can help to reduce the number of subiterations required to converge the
coupling error.

In order to study the performance of JFNK and NMG, the following investigations
are carried out. Firstly, we investigate the performance when 10 physical time
steps are computed once a more or less periodic oscillation of the flap is obtained,
see Fig. 2(b). Ten physical time steps should be sufficient to extrapolate the total
CPU costs to compute one physical period, however saves computational resources.
Secondly, we investigate the performance for the very first physical time step. Be-
cause the flow is started from uniform flow conditions, the first physical time step
is relatively difficult due to the high nonlinearities involved (turbulence needs to be
formed which can cause large over and under shoots of the flap). Because JFNK is
based on Newton linearization, which may stall or diverge when the initial solution
is not in the ball of convergence, it is important to consider the start up phase.

3.2.1 Ten physical time steps during periodic oscillation

It has been our experience that, for this test case, the Aitken subiteration technique
leads to a slow convergence of the coupling error, often in an oscillatory manner.
Furthermore, for some solver settings (e.g. by a rather loose criterion on the flow
iteration error) this method does not converge. Therefore, it is first investigated how
the iteration error in the flow solution influences the convergence of the coupling
error.

In Fig. 3 the nonlinear convergence criterion is given on the horizontal axis: going
from left to right the iteration error in the flow solution is reduced. A nonlinear
convergence criterion of -3 implies that the solver is converged once the iteration
error has reduced 3 orders in magnitude, compared with the iteration error corre-
sponding to the uniform flow conditions. The convergence criteria tested are: -2,
-3, -4, -5 and -6. For NMG and a convergence criterion of -2, the solver diverged
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(c) Breakdown CPU costs NMG with a maxi-
mum of 100 iterations.
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(d) Breakdown CPU costs NMG with a maxi-
mum of 4000 iterations.
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(e) Breakdown CPU costs JFNK.
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Figure 3: Average (av.) number of subiterations (subit.) per Runge-Kutta (R-K)
stage as function of the nonlinear residual, average number of NMG and GMRES it-
erations (it.) per subiteration as function of the nonlinear convergence criterion,
average breakdown of the CPU costs NMG and JFNK for one physical time step and
a comparison for the total CPU costs for one physical time step.
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such that no results have been obtained. The other cases are not shown for NMG

because we have terminated these computations due to excessive computing times.

In Fig. 3(a) the average number of subiterations per Runge-Kutta stage is shown as
function of the nonlinear convergence criterion. In Fig. 3(b) the average number of
NMG and GMRES iterations per subiteration are shown as function of the nonlinear
convergence criterion. For NMG two settings for the maximum number of itera-
tions per subiterations are shown: maximal 100 NMG iterations such that the work
is limited and maximal 4000 NMG iterations such that the target for the iteration
error is satisfied. Note, for a maximum of 100 iterations the nonlinear convergence
criterion is satisfied once the coupling error is near convergence.

Figure 3(a) shows a clear trend: the further the flow iteration error is reduced,
the less subiterations are required to converge the coupling error. However, also
Fig. 3(b) shows a clear trend: the further the flow iteration error is reduced, the
more NMG and GMRES iterations are required. Hence, the total CPU costs are the
combined effect of these two phenomena (discussed later). For a relatively loose
convergence criterion more subiterations are required, because the iteration error is
not taken into account in the Aitken subiteration technique. Hence, for a relative
inaccurate flow solution, the structure is deformed based on the flow solution in-
cluding iteration error which explains the slower convergence of the coupling error.
Note that for all nonlinear convergence criteria, JFNK requires less subiterations
than NMG. This is because JFNK convergence in only in a few of Newton updates.
Consequently, the level of convergence is typically higher than the target set. We
do not have a sound explanation for the minimum in the number of subiterations
observed (see Fig. 3(a) for a criterion of -5).

Figures 3(c) to 3(e) show the breakdown of the CPU costs for NMG (maximum of
iterations is 100 or 4000) and JFNK for one physical time step. The breakdown is
for the CPU costs to solve the nonlinear systems and the overhead. The overhead
is mainly due to the grid deformation, rebuilding the agglomerated multigrid levels
and data structure and is approximately constant per subiteration. From Figs. 3(c)
to 3(e) the following observations can be made. Firstly, the CPU costs for NMG

increase rapidly for a reduction in the required flow iteration error. Secondly, the
overhead costs reduce significantly for a reduction in the flow iteration error be-
cause less subiterations are required. Thirdly, for JFNK there is an optimum for the
nonlinear convergence criterion with respect to the total CPU costs. The minimum
in CPU costs is the combined effect of less subiterations for a stricter convergence
criterion and higher CPU costs to achieve the required drop in nonlinear residual.

Finally, in Fig. 3(f) a comparison is made for the total CPU costs of NMG and JFNK

for the various convergence criteria. This figure shows that minimal values for the
CPU costs for NMG and JFNK are approximately the same (717 minutes versus 674
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minutes). However, when the number of iterations is limited to 100 and when is
started from uniform flow conditions, it has not been possible to get to the periodic
oscillation of the flap due to solver divergence. Furthermore, for three-dimensional
computations the overhead is relatively more expensive because deformation of the
mesh is relatively more expensive in three than in two dimensions. Finally, the ro-
bustness increases for a reduction in the number of subiterations (less data transfer
between structure and fluid and smaller under and overshoots). Hence, when the
goal is to minimize the number of subiterations (which requires a nonlinear con-
vergence criterion of at least -5, see Fig. 3(a)), JFNK is a factor 2.5 faster than NMG

(maximum number of iterations limited to 100).

The speed up achieved with JFNK is less impressive than shown in the previous
section. This is because the nonlinear convergence criterion with NMG is not satis-
fied for all subiterations (number of iterations is limited to maximal 100), whereas
it is with JFNK. By limiting the number of NMG iterations the coupling strategy
is significantly improved (only when started from a periodic solution!): for the
first few subiterations the amount of work is limited to 100 iterations, however
for the subiterations with a relatively small coupling error, convergence is satisfied
because the deformation of the structure is on average smaller for each next subiter-
ation. Hence, by setting a strict convergence criterion while limiting the maximum
number of iterations, a relative convergence criterion for the flow is achieved. Con-
sequently, the average number of NMG iterations per subiteration is relatively low,
see Fig. 3(b). A similar strategy for limiting the number of Newton updates should,
therefore, result in a significant saving. This is, however, considered as future work.

3.2.2 First physical time step

The results achieved for the very first physical time step are presented in a sim-
ilar way. Figure 4 shows the average number of subiterations per Runge-Kutta
stage as function of the nonlinear residual, the average number of NMG and GM-
RES iterations per subiteration as function of the nonlinear convergence criterion,
the breakdown of the CPU costs NMG and JFNK for one physical time step and
a comparison of the total CPU costs for one physical time step. In an attempt to
further ‘improve’ the convergence of NMG, the number of multigrid iterations per
subiteration is limited to 25 (in addition to a maximum of 100, a maximum of 4000
is discarded because of excessive CPU costs). Even when the number of NMG it-
erations is limited to 25, the flow solution is converges when the coupling error is
sufficiently reduced.

Figure 4(a) shows the number of subiterations per stage. For JFNK and NMG (max-
imum iterations is 100) a similar trend as in Fig. 3(e) is observed: the stricter the
nonlinear convergence the lower the required number of subiterions. For NMG
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(c) Breakdown CPU costs NMG with a maxi-
mum of 25 iterations.
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(d) Breakdown CPU costs NMG with a maxi-
mum of 100 iterations.
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(e) Breakdown CPU costs JFNK.
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Figure 4: Average (av.) number of subiterations (subit.) per Runge-Kutta (R-K)
stage as function of the nonlinear residual, average number of NMG and GMRES it-
erations (it.) per subiteration as function of the nonlinear convergence criterion,
average breakdown of the CPU costs NMG and JFNK for one physical time step and
a comparison for the total CPU costs for one physical time step.
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(maximum iterations is 25) the required number of subiterations is substantially
higher than JFNK. This implies that 25 NMG iterations is not sufficient for the
stricter nonlinear convergence criteria.

Figures 4(c) to 4(e) give the breakdown in CPU costs for NMG and JFNK. These
results show that again the overhead for one physical time step is reduced with a
stricter nonlinear convergence criterion. For NMG the solver and total costs on av-
erage increase for a stricter convergence criterion, while for JFNK an optimum is
found in the solver and total costs. The peak seen for JFNK and a convergence cri-
terion of -3 is because the flow solver stagnated for one (intermediate) subiteration.

Finally, in Fig. 4(f) the CPU costs obtained with NMG and JFNK are shown. Com-
pared to the results shown in Fig. 3(f), a larger reduction in CPU costs is achieved
with JFNK compared to NMG. The minimal computing time with JFNK is 108 min-
utes, while it is 360 minutes for NMG. Hence, JFNK enables a speed up of a factor
3.33 over NMG.

4 Conclusions

The results discussed in this paper show that the preconditioned JFNK algorithm can
tackle nearly incompressible flow, whether or not low Mach preconditioned. This
makes it possible to set the preconditioning parameters based solely on numerical
accuracy considerations. In addition, it has been shown that the preconditioned
JFNK algorithm can be readily applied to FSI problems. For strongly coupled FSI

problems it has been shown that the stability and the convergence of the subitera-
tions improved for relative large reductions of the flow iteration error. Hence, when
one aims for a minimum number of subiterations, JFNK enables a significant speed
up over NMG as this solution method is relatively more efficient in achieving large
reductions in the flow iteration error.
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