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Error Bounds for Discrete Geometric Approach

Lorenzo Codecasa1 and Francesco Trevisan2

Abstract: Electromagnetic problems spatially discretized by the so called Dis-
crete Geometric Approach are considered, where Discrete Counterparts of Consti-
tutive Relations are discretized within an Energetic Approach. Pairs of oriented
dual grids are considered in which the primal grid is composed of (oblique) paral-
lelepipeds, (oblique) triangular prisms and tetrahedra and the dual grid is obtained
according to the barycentric subdivision. The focus of the work is the evaluation
of the constants bounding the approximation error of the electromagnetic field; the
novelty is that such constants will be expressed in terms of the geometrical details
of oriented dual grids. A numerical analysis will confirm the theory.
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1 Introduction

The fundamental geometric structure on which electromagnetism is based, allows
to formulate Maxwell’s laws in a discrete manner with respect to a pair of oriented
and interconnected grids, one dual to the other, leading to the so-called Discrete Ge-
ometric Approach (DGA) for computational electromagnetics. This idea has a solid
physical and mathematical foundation, reflected in the scientific work of E. Tonti
with the Cell Method [Tonti (2002); Tonti (1998); Tonti (2001); Heshmatzadeh and
Bridges (2007); Cosmi (2001); Ferretti (2003); Ferretti (2004b); Ferretti (2004a);
Ferretti (2005)]„ the work of T. Weiland regarding the Finite Integration Technique
[Weiland (1977); Weiland (1985)] and the work of A. Bossavit with the understand-
ing of the geometric properties of the Finite Element Method Bossavit (1998).

Integrals – like circulations or fluxes – of the electromagnetic field quantities, re-
ferred to as Degrees of Freedom (DoFs), with respect to nodes, edges, faces and
volumes of such a pair of oriented dual grids, are the working variables in DGA.
The physical laws of electromagnetism can be straightforwardly written as exact
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Balance Equations in terms of the DoFs. This step, in the discretization process
of Maxwell’s laws, is quite clear and widely accepted within the electromagnetics
community and it is a common modus operandi of other physical theories.

On the other hand, in recent years, most of the research in DGA has been focussed
on the computation of the Discrete Counterparts of the Constitutive Equations; such
discrete counterparts of the constitutive equations are approximate equations trans-
forming the DoFs associated with geometric elements of one grid into the cor-
responding DoFs associated with geometric elements of the other grid. Discrete
Counterparts of the Costitutive Equations have to guarantee the stability and con-
sistency of the overall discrete formulated electromagnetic problem consisting of
the pairing of the exact balance equations together with the approximate Discrete
Counterparts of the Constitutive Equations.

It has been shown [Codecasa, Minerva, and Politi (2004); Codecasa and Trevisan
(2006); Codecasa, Specogna, and Trevisan (2007); Codecasa and Trevisan (2007)]
that specifically developed piece-wise uniform vector base functions can be prof-
itably used within energetic functionals, yielding Discrete Counterparts of the Con-
stitutive Equations ensuring stability and consistency of discrete equations for any
pair of oriented polyhedral dual grids. This methodology has been referred to as
Energetic Approach.

A further step has been recently performed, by demonstrating in [Codecasa and Tre-
visan (2010)] the convergence of an electromagnetic problem spatially discretized
by DGA when the Discrete Counterparts of the Constitutive Equations are obtained
by means of the Energetic Approach with respect to a pair of oriented dual grids.

Such a novel result provides to the DGA a sound mathematical background and
constitutes the starting point of this paper. However the constants, derived in [Code-
casa and Trevisan (2010)], bounding the approximation error of the electromagnetic
field have simply a theoretical relevance, without any indication on their numerical
extent. This is unlike what is provided by other discretization methods, in particular
by the Finite Element Method (FEM), in which constants bounding the approxima-
tion error can be derived in terms of the geometric details of the meshes.

In this work, the significant case is considered in which the primal grid consists
of (oblique) parallelepipeds, (oblique) triangular prisms and tetrahedra and the
dual grid is obtained from the barycentric subdivision of the primal grid [Bossavit
(1998)]. The novelty content of this work lies in the computation of the analytical
values of the constants bounding the approximation error of the electromagnetic
field by expressing them in terms of the geometrical properties of the pairs of ori-
ented dual grids. A simple numerical example confirms the theoretical analysis.

The rest of this paper is organized as follows. In Section 2, the spatial discretization
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of an electromagnetic problem by the DGA is discussed briefly. The Energetic Ap-
proach for discretizing the Constitutive Equations is recalled in Section 3. The main
convergence result of the discretized equations is reported in Section 4. Step-wise
uniform vector functions attached to edges and faces for the Energetic Approach
are introduced in Section 5, and their geometric properties are outlined. Constants
bounding the approximation error of the electromagnetic field are derived in terms
of the geometric properties of the pairs of oriented dual grids in Section 6. Finally,
numerical results are given in Section 7.

2 Spatial discretization of electromagnetic problems by DGA

A time-domain electromagnetic boundary value problem is considered in a bounded
spatial region Ω and in a time interval [0,T ]. The electromagnetic field is described
by the electric field e(r, t), the electric displacement d(r, t), the magnetic induction
b(r, t) and the magnetic field h(r, t). These quantities are functions of the position
vector r and of time instant t and are ruled by Faraday equation, Ampére-Maxwell
equation, and constitutive equations. Linear, non-dispersive, in general, anisotropic
electromagnetic media are considered. Thus the electric constitutive equation is

d(r, t) = ε(r)e(r, t) (1)

in which the permittivity ε(r) together with its inverse η(r) is a double tensor,
assumed to be symmetric, positive-definite and the magnetic constitutive equation
is

h(r, t) = ν(r)b(r, t), (2)

in which the reluctivity ν(r) together with its inverse µ(r) is a double tensor, as-
sumed to be symmetric, positive-definite.

For the sake of simplicity, magnetic walls boundary conditions are considered.
Generic initial conditions for d(r, t) and b(r, t) are assumed.

The electromagnetic problem is spatially discretized by DGA as follows. Firstly the
Ω spatial region is covered by a pair of oriented dual grids G , G̃ [Weiland (1996);
Tonti (2002), Bossavit (1998)]. The primal grid G has n nodes, l edges, f faces and
v volumes. Each of these geometrical elements is given an orientation. The dual
grid G̃ has ñ = v nodes, l̃ = f edges, f̃ = l faces and ṽ = n volumes. Each of these
geometrical elements has the orientation induced by the corresponding geometrical
element of the primal grid G [Tonti (2002)].

Secondly, the electromagnetic field quantities are discretized into integral quantities
associated with geometric elements of the pair of dual grids G , G̃ yielding the
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following arrays: the l×1 array v(t), which approximates the l×1 array1 ρee(r, t)
of the circulations of the electric field e(r, t) along the edges of G ; the f ×1 array
ϕ(t), which approximates the f × 1 array2 ρ f b(r, t) of the fluxes of the magnetic
induction b(r, t) through the faces of G ; the f̃ ×1 array ψ̃(t), which approximates
the l× 1 array3 ρ f̃ d(r, t) of the fluxes of the electric displacement d(r, t) through
the faces of G̃ ; the l̃×1 array f̃(t), which approximates the f ×1 array4 ρẽh(r, t) of
the circulations of the magnetic field h(r, t) along the edges of G .

Thirdly, Faraday and Ampére-Maxwell equations are discretized [Tonti (2002)]
substituting ρee(r, t), ρ f b(r, t), ρ f̃ d(r, t), ρẽh(r, t) respectively with v(t), ϕ(t), ψ̃(t),
and f̃ (t) in the exact equations satisfied by ρee(r, t), ρ f b(r, t), ρ f̃ d(r, t), ρẽh(r, t).
Boundary conditions, being magnetic wall boundary conditions, are included in a
natural way in discretized Ampére-Maxwell equations [Tonti (2002)]. Initial con-
ditions are written in terms of ϕ(t) and ψ̃(t).
Lastly, constitutive equations are discretized. Electric constitutive equation is dis-
cretized into matrix equation

ψ̃(t) = Ev(t), (3)

in which E is an l× l matrix, of inverse H, representing the discrete counterpart of
the ε(r) tensor. Magnetic constitutive equation is discretized into matrix equation

f̃(t) = Nϕ(t), (4)

in which N is an f × f matrix, of inverse M, representing the discrete counterpart
of the ν(r) tensor.

The discrete electric constitutive equation is only approximately satisfied by ρee(r, t)
and ρ f̃ d(r, t). In a similar way, the discrete magnetic constitutive equation is only
approximately satisfied by ρ f b(r, t) and ρẽh(r, t). The problem of discretizing con-
stitutive equations by approximate equations is crucial in DGA. It it here faced by
the energetic approach previously proposed by the Authors [Codecasa, Minerva,
and Politi (2004); Codecasa and Trevisan (2006); Codecasa, Specogna, and Tre-
visan (2007); Codecasa and Trevisan (2007)].

1 Symbol ρe acts on a vector field yielding an array of circulations along the edges of G .
2 Symbol ρ f acts on a vector field yielding an array of fluxes through the faces of G .
3 Symbol ρ f̃ acts on a vector field yielding an array of fluxes through the faces of G̃ .
4 Symbol ρẽ acts on the vector field yielding an array of circulations along the edges of G̃ .



Error Bounds for Discrete Geometric Approach 159

3 Energetic approach for constructing discrete counterparts of constitutive
equations

In the energetic approach, discrete counterparts of constitutive equations are con-
structed primal volume by primal volume. Precisely let G k, G̃ k be the pairs of dual
grids obtained by restricting the pair of dual grids G , G̃ to the single volumes Ωk of
G with k = 1, . . . ,v. Let Γk

i , Σ̃k
i with i = 1, . . . , lk be respectively the edges of G k and

the faces of G̃ k, with k = 1, . . . ,v. Let Σk
i , Γ̃k

i with i = 1, . . . , f k be respectively the
faces of G k and the edges of G̃ k, with k = 1, . . . ,v. Let lk

i be the edge vector of the
edge Γk

i with i = 1, . . . , lk. Let sk
i be the face vector of the face Σk

i with i = 1, . . . , f k.
Similarly let l̃k

i be edge vector of edge Γ̃k
i with i = 1, . . . , f k and let s̃k

i be face vector
of face Σ̃k

i with i = 1, . . . , lk. Let rk be the node of G̃ k, with k = 1, . . . ,v.

3.1 Discrete counterpart of the permittivity tensor ε(r)

Let vk(t) and ρk
e e(r, t) be the lk× 1 arrays respectively of the approximate and of

the exact circulations5 of the electric field along the edges of G k. Let ψ̃k(t) and
ρk

f̃ d(r, t) be the lk × 1 arrays respectively of the approximate and of the exact6

fluxes of the electric displacement through the faces of G̃ k.

Let wek
i (r), with i = 1, . . . , lk, be bounded vector functions satisfying the following

geometric properties∫
Γk

j

wek
i (r) · t(r)dΓ = δi j, i, j = 1, . . . , lk, (5)

lk

∑i
1

wek
i (r)⊗ lk

i = I, (6)

s̃k
i =

∫
Ωk

wek
i (r)dΩ, i = 1, . . . , lk, (7)

in which δi j is the Kronecker’s delta symbol and I is the identity double tensor. Let
matrix Ek be introduced, whose elements are

Ek
i j =

∫
Ωk

wek
i (r) · ε(rk)wek

j (r)dΩ, i, j = 1, . . . , lk. (8)

in which the permittivity tensor ε(r) is evaluated at the node rk of G̃ k.

Matrix E in (3) can now generated from matrices Ek, with k = 1, . . . ,v, as follows.
Let Tk be the lk× l matrix whose element tk

i j is 1 if the i-th edge of G k is the j-th

5 Symbol ρk
e acts on a vector field yielding an array of circulations along the edges of G k.

6 Symbol ρk
f̃

acts on a vector field yielding an array of fluxes through the faces of G̃ k.
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edge of G and is 0 otherwise. Then matrix E is constructed as

E =
v

∑k
1

TkT EkTk.

3.2 Discrete counterpart of the reluctivity tensor ν(r)

Let ϕk(t) and ρk
f b(r, t) be the f k× 1 arrays respectively of the approximate and

of the exact fluxes7 of the magnetic induction through the faces of G k. Let f̃k(t)
and ρk

ẽ h(r, t) be the f k×1 arrays respectively of the approximate and of the exact
circulations8 of the magnetic field along the edges of G̃ k.

Let w f k
i (r), with i = 1, . . . , f k, be bounded vector functions satisfying the following

geometric properties∫
Σk

j

w f k
i (r) ·n(r)dΣ = δi j, i, j = 1, . . . , f k, (9)

f k

∑i
1

w f k
i (r)⊗ sk

i = I, (10)

l̃k
i =

∫
Ω

w f k
i (r)dΩ, i = 1, . . . , f k. (11)

Let matrix Nk have elements

Nk
i j =

∫
Ωk

w f k
i (r) ·ν(rk)w f k

j (r)dΩ, i, j = 1, . . . , f k. (12)

in which the reluctivity tensor ν(r) is evaluated at the node rk of G̃ k.

Matrix N in (4) can now generated from matrices Nk, with k = 1, . . . ,v, as follows.
Let Pk be the f k× f matrix whose element pk

i j is 1 if the i-th face of G k is the j-th
face of G and is 0 otherwise. Matrix N is constructed as

N =
v

∑k
1

PkT NkPk.

4 Convergence formulae for electromagnetic problems discretized by the DGA

Regularity conditions on material properties and electromagnetic field are assumed
as in [Codecasa and Trevisan (2010)]. Thus it is assumed that the spatial domain
Ω can be partitioned in a finite set of subdomains Ωi, with i = 1, . . . ,s, in each of

7 Symbol ρk
f acts on a vector field yielding an array of fluxes through the faces of G k.

8 Symbol ρk
ẽ acts on a vector field yielding an array of circulations along the edges of G̃ k.
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which both the tensors ε(r), ν(r) and their inverses η(r), µ(r) are bounded and
Lipschitz continuous. That is, if A(r) is any of such tensors, constants MA and LA

exist such that

||A(r)||2 ≤MA,

||A(r1)−A(r2)||2 ≤ LA|r1− r2|, r1,r2 ∈Ωi, i = 1, . . . ,s,

hold, in which || · ||2 is the spectral norm, recalled in Appendix A. Similarly, it
is assumed that for all time instants 0 ≤ t ≤ T , the fields e(r, t), h(r, t), b(r, t),
d(r, t), together with their time derivatives are bounded and Lipschitz continuous
within each subdomain Ωi, with i = 1, . . . ,s. That is, if a(r, t) is any of such fields,
constants Ma and La exist such that

|a(r, t)| ≤Ma, (13)

|a(r1, t)−a(r2, t)| ≤ La|r1− r2|, r1,r2 ∈Ωi, i = 1, . . . ,s, (14)

hold.

Assumptions are also made on the pair of dual grids G , G̃ . It is assumed that
the Ωi subdomains, with i = 1, . . . ,s, are exactly obtained as unions of volumes of
the primal grid G . Moreover any chosen pair of dual grids G , G̃ is such that the
following disequalities

||ρk
e e(r, t)||Ek ≤ RE

√
|Ωk|max

r∈Ωk

√
||ε(r)||2 max

r∈Ωk
|e(r, t)|, k = 1, . . . ,v, (15)

||ρk
f̃ d(r, t)||Hk ≤ RH

√
|Ωk|max

r∈Ωk

√
||η(r)||2 max

r∈Ωk
|d(r, t)|, k = 1, . . . ,v, (16)

||ρk
f b(r, t)||Nk ≤ RN

√
|Ωk|max

r∈Ωk

√
||ν(r)||2 max

r∈Ωk
|b(r, t)|, k = 1, . . . ,v, (17)

||ρk
ẽ h(r, t)||Mk ≤ RM

√
|Ωk|max

r∈Ωk

√
||µ(r)||2 max

r∈Ωk
|h(r, t)|, k = 1, . . . ,v, (18)

hold, in which the notation in Appendix A is used and the constants RE, RH, RN
and RM are independent of the pair of dual grids G , G̃ . With these assumptions
the following results are obtained in [Codecasa and Trevisan (2010)], in which hM

denotes the maximum diameter [Quarteroni and Valli (1994)] of the volumes of G .

Theorem 1 (Error bound for integral quantities) For 0≤ t ≤ T , it is√
||v(t)−ρee(r, t)||2E + ||f̃(t)−ρẽh(r, t)||2M ≤ (

√
S2

e +S2
h +T

√
S2

ḋ
+S2

ḃ
)hM.√

||ψ̃(t)−ρ f̃ d(r, t)||2H + ||ϕ(t)−ρ f b(r, t)||2N ≤ (2
√

S2
e +S2

h +T
√

S2
ḋ
+S2

ḃ
)hM.
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in which

Se = RH

√
Mη |Ω|(LεMe +MεLe)+RE

√
Mε |Ω|Le,

Sh = RN
√

Mν |Ω|(LµMh +MµLh)+RM

√
Mµ |Ω|Lh,

Sḋ = RE
√

Mε |Ω|(LηMḋ +MηLḋ)+RH

√
Mη |Ω|Lḋ ,

Sḃ = RM

√
Mµ |Ω|(LνMḃ +MνLḃ)+RN

√
Mν |Ω|Lḃ.

These equations establish bounds for the approximation error of discrete quantities
in DGA. Bounds for the approximation error of the electromagnetic field can also
be derived. Introducing the fields

πe(r)v(t) =
lk

∑i
1

vk
i (t)w

ek
i (r), r ∈Ω

k, k = 1, . . . ,v,

π
k
f (r)ϕ

k(t) =
f k

∑i
1

ϕ
k
i (t)w f k

i (r), r ∈Ω
k, k = 1, . . . ,v,

and, using the notation of Appendix A, it results in

Theorem 2 (Error bound for field quantities) For 0≤ t ≤ T , it results in

||πe(r)v(t)− e(r, t)||ε ≤
(

Ie +
√

S2
e +S2

h +T
√

S2
ḋ
+S2

ḃ

)
hM

||π f (r)ϕ(t)−b(r, t)||ν ≤
(

Ib +2
√

S2
e +S2

h +T
√

S2
ḋ
+S2

ḃ

)
hM

in which

Ie = (RE +1)
√

Mε |Ω|Le,

Ib = (RN +1)
√

Mν |Ω|Lb.

5 Vector base functions for the considered pairs of oriented dual grids

As shown in [Codecasa and Trevisan (2010)] a general condition for which (15)-
(18) are satisfied is to choose the pairs of dual grids in such a way that each primal
volume is geometrically similar to a volume in a finite set. However the constants
RE, RH, RN and RM, obtained in this way, which bound the approximation errors
of the electromagnetic field quantities have only a theoretic relevance, since they
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α and face
Σ̂k

α corresponding to the same dual volume Ω̃k
i , with i = nk(α) are also evidenced.

are not expressed in terms of the geometric properties of the pair of oriented dual
grids.

Hereafter the significant case of primal grids G composed of tetrahedra, (oblique)
triangular prisms and (oblique) parallelepipeds and dual grids G̃ is considered in
details. The dual grid G̃ is obtained by the barycentric subdivision of G [Bossavit
(1998)]. Error bounds are derived in terms of the geometrical details of such ori-
ented dual grids G , G̃ .

Let Ω̃k
i be the volumes of G̃ k, with i = 1, . . . ,nk. For each volume Ω̃k

i a triple
of edges is introduced given by the edges of G k which are parts of edges of Ω̃k

i .
Such edges are named Γ̂k

α , with α = 1, . . . ,3nk, and are independently oriented
with respect to the edges of G k. Similarly for each volume Ω̃k

i a triple of faces
is introduced given by the faces of G k which are parts of the faces of Ω̃k

i . Such
faces are named Σ̂k

α , with α = 1, . . . ,3nk. It is assumed that edge Γ̂k
α and face Σ̂k

α ,
indexed by the same α , correspond to the same volume Ω̃k

i , are not coplanar. and
are oriented in such a way that l̂k

α · ŝk
α > 0, l̂k

α being the edge vector of Γ̂k
α and ŝk

α

being the face vector of Σ̂k
α , as shown in Fig. 1. Let i = nk(α) be the function which

associates to each edge Γ̂k
α and face Σ̂k

α the corresponding volume Ω̃k
i .

Let K̂k be 1/8, 1/12, 1/24 according to the volume Ωk is respectively an (oblique)
parallelepiped, an (oblique) triangular prism or a tetrahedron. Besides let Ĉk

α be 1
or 2 according to the face Σ̂k

α is respectively a parallelogram or a triangle. Let T̂k
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be the 3nk× lk rectangular matrix whose elements are

t̂k
αi =

l̂k
α

|l̂k
α |
· lk

i

|lk
i |

δlk(α)i,

lk(α) being the index of the edge Γk
lk(α) of G k corresponding to edge Γ̂k

α , and let P̂k

be the 3nk× f k rectangular matrix whose elements are

p̂k
αi =

ŝk
α

|ŝk
α |
· sk

i

|sk
i |

δ f k(α)i,

f k(α) being the index of the face Σk
f k(α) of G k corresponding to face Σ̂k

α .

Lemma 1 The following relations hold

|Ω̃k
nk(α)|= K̂kĈk

α l̂k
α · ŝk

α , (19)

3nk

∑α
1

t̂k
αiK̂

kĈk
α ŝk

α = s̃k
i (20)

3nk

∑α
1

p̂k
αiK̂

kĈk
α l̂

k
α = l̃k

i . (21)

Proof. For an (oblique) parallelepiped it is

(K̂kĈk
α)(l̂k

α · ŝk
α) =

1
8

8|Ω̃k
nk(α)|,

3nk

∑α
1

(K̂kĈk
α)(t̂k

αiŝ
k
α) =

1
8

3nk

∑α
1

t̂k
αiŝ

k
α =

1
8

8s̃k
i ,

3nk

∑α
1

(K̂kĈk
α)(p̂k

αi l̂
k
α) =

1
8

3nk

∑α
1

p̂k
αi l̂

k
α =

1
8

8l̃k
i

For an (oblique) triangular prism, limitedly to the parallelepipeds Σ̂k
α and the corresponding

Γ̂k
α , it is

(K̂kĈk
α)(l̂k

α · ŝk
α) =

1
6

6|Ω̃k
nk(α)|,

3nk

∑α
1

(K̂kĈk
α)(t̂k

αiŝ
k
α) =

1
6

3nk

∑α
1

t̂k
αiŝ

k
α =

1
6

6s̃k
i ,

3nk

∑α
1

(K̂kĈk
α)(p̂k

αi l̂
k
α) =

1
6

3nk

∑α
1

p̂k
αi l̂

k
α =

1
6

6l̃k
i .
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For an (oblique) triangular prism, limitedly to the triangles Σ̂k
α and the corresponding Γ̂k

α ,
and for a tetrahedron it is

(K̂kĈk
α)(l̂k

α · ŝk
α) =

1
12

12|Ω̃k
nk(α)|

3nk

∑α
1

(K̂kĈk
α)(t̂k

αiŝ
k
α) =

1
12

3nk

∑α
1

t̂k
αiŝ

k
α =

1
12

12s̃k
i

3nk

∑α
1

(K̂kĈk
α)(p̂k

αi l̂
k
α) =

1
12

3nk

∑α
1

p̂k
αi l̂

k
α =

1
12

12l̃k
i

and the thesis follows.

5.1 Discrete counterpart of the permittivity tensor ε(r)

The following step-wise uniform vector functions are introduced

ŵek
α (r) =


K̂kĈk

α ŝk
α

|Ω̃k
n(α)|

r ∈ Ω̃k
n(α)

0 r /∈ Ω̃k
n(α).

Lemma 2 The ŵek
α (r) vector functions satisfy the following properties

∫
Γ̂k

α∩Ω̃k
n(α)

ŵek
β

(r) · t(r)dΓ =
|Γ̂k

α ∩ Ω̃k
n(α)|

|Γ̂k
α |

δαβ , α,β = 1, . . . ,3nk, (22)

3nk

∑α
1

ŵek
α (r)⊗ l̂k

α = I, (23)

K̂kĈk
α ŝk

α =
∫

Ωk
ŵek

α (r)dΩ, α = 1, . . . ,3nk, (24)

Proof. If nk(α) 6= nk(β ), since Ω̃k
n(α) and Ω̃k

n(β ) are disjoint, the left hand side of (22) is

zero. Otherwise if nk(α) = nk(β ) then

∫
Γ̂k

α∩Ω̃k
nk(α)

ŵek
β

(r) · t(r)dΓ =
|Γ̂k

α ∩ Ω̃k
nk(α)|

|Γ̂k
α |

l̂k
α ·

K̂kĈk
β

ŝk
β

|Ω̃k
nk(β )|

which is zero if α 6= β , since l̂
k
α · ŝk

β
= 0, and is |Γ̂k

α ∩ Ω̃k
n(α)|/|Γ̂

k
α |, as a consequence of

Lemma 1, if α = β . Thus (22) is proved.
Let r ∈ Ω̃k

i . The sum in the left hand side of (23) has only three non-zero terms for the
values α1, α2, α3 of the index α such that nk(α1) = nk(α2) = nk(α3) = i. Thus, from
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the definition of ŵek
α (r), from Lemma 1, and since ŝk

α1
, ŝk

α2
, ŝk

α3
are parallel respectively to

l̂
k
α2
× l̂

k
α3

, l̂
k
α3
× l̂

k
α1

, l̂
k
α1
× l̂

k
α2

, it follows

3nk

∑α
1

ŵek
α (r)⊗ l̂k

α =
ŝk

α1
⊗ l̂

k
α1

ŝk
α1
· l̂k

α1

+
ŝk

α2
⊗ l̂

k
α2

ŝk
α1
· l̂k

α2

+
ŝk

α3
⊗ l̂

k
α3

ŝk
α3
· l̂k

α3

=
(l̂k

α2
× l̂k

α3
)⊗ l̂k

α1

(l̂k
α2
× l̂k

α3
) · l̂k

α1

+
(l̂k

α3
× l̂k

α1
)⊗ l̂k

α2

(l̂k
α3
× l̂k

α1
) · l̂k

α2

+
(l̂k

α1
× l̂k

α2
)⊗ l̂k

α3

(l̂k
α1
× l̂k

α2
) · l̂k

α3

= I

in which the last equality for l̂k
α1

, l̂k
α2

, l̂k
α3

can be directly verified, and (23) is proved.

Lastly, by recalling the definition of ŵek
α (r), (24) straightforwardly descends.

Functions wek
i (r) are now constructed in terms of functions ŵek

α (r) as follows

wek
i (r) =

3nk

∑α
1

ŵek
α (r)t̂k

αi, i = 1, . . . , lk.

From Lemma 2 it straightforwardly follows

Theorem 3 Vector functions wek
i (r), with i = 1, . . . , lk, satisfy properties (5)-(7).

Proof. From the definition of wek
i (r) it follows

∫
Γk

j

wek
i (r) · t(r)dΓ =

3nk

∑α
1

t̂k
αi

∫
Γk

j

ŵek
α (r) · t(r)dΓ

=
3nk

∑α
1

t̂k
αi

3nk

∑β

1

t̂k
β j

∫
Γ̂k

β
∩Ω̃k

n(β )

ŵek
α (r) · t(r)dΓ

=
3nk

∑αβ

1

t̂k
αit̂

k
β j

|Γ̂k
α ∩ Ω̃k

nk(α)|

|Γ̂k
α |

δαβ , (25)

=
3nk

∑α
1

|Γ̂k
α ∩ Ω̃k

nk(α)|

|Γ̂k
α |

t̂k
αit̂

k
α j = δi j,

Eq. (25) descending from (22). Eq. (5) is thus proved.
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From the definition of wek
i (r) and from (23) it follows

lk

∑i
1

wek
i (r)⊗ lk

i =
lk

∑i
1

3nk

∑α
1

ŵek
α (r)t̂k

αi⊗ lk
i

=
3nk

∑α
1

ŵek
α (r)⊗

lk

∑i
1

t̂k
αil

k
i

=
3nk

∑α
1

ŵek
α (r)⊗ l̂k

α = I.

Eq. (6) is thus proved.
Lastly from the definition of wek

i (r), from (24) and from (20) it follows

∫
Ωk

wek
i (r)dΩ =

∫
Ωk

3nk

∑α
1

ŵek
α (r)t̂k

αi dΩ

=
3nk

∑α
1

t̂k
αi

∫
Ωk

ŵek
α (r)dΩ

=
3nk

∑α
1

t̂k
αiK̂

kĈk
α ŝk

α = s̃k
i , i = 1, . . . , lk.

Eq. (7) is thus proved.

Functions wek
i (r), with i = 1, . . . , lk, can thus be used in the energetic approach for

constructing the Ek matrices. It is noted that

Ek = T̂k T ÊkT̂k (26)

in which Êk are 3nk×3nk matrices whose elements are

Êk
αβ

=
∫

Ωk
ŵek

α (r) · ε(rk)ŵek
β

(r)dΩ, α,β = 1, . . . ,3nk

5.2 Discrete counterpart of the reluctivity tensor ν(r)

The following step-wise uniform vector functions are introduced

ŵ f k
α (r) =


K̂kĈk

α l̂
k
α

|Ω̃k
nk(α)|

r ∈ Ω̃k
nk(α)

0 r /∈ Ω̃k
nk(α).
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Lemma 3 The ŵ f k
α (r) vector functions satisfy the following properties

∫
Σ̂k

α∩Ω̃k
nk(α)

ŵ f k
β

(r) ·n(r)dΣ =
|Σ̂k

α ∩ Ω̃k
nk(α)|

|Σ̂k
α |

δαβ , α,β = 1, . . . ,3nk, (27)

3nk

∑α
1

ŵ f k
α (r)⊗ ŝk

α = I, (28)

K̂kĈk
α l̂

k
α =

∫
Ωk

ŵ f k
α (r)dΩ, α = 1, . . . ,3nk, (29)

Proof. If nk(α) 6= nk(β ), since Ω̃k
nk(α) and Ω̃k

nk(β ) are disjoint, the left hand side of (27) is

zero. Otherwise if nk(α) = nk(β ) then

∫
Σ̂k

α∩Ω̃k
nk(α)

ŵ f k
β

(r) ·n(r)dΓ =
|Σ̂k

α ∩ Ω̃k
nk(α)|

|Σ̂k
α |

ŝk
α ·

K̂kĈk
β

l̂
k
β

|Ω̃k
nk(β )|

which is zero if α 6= β , since l̂
k
α · ŝk

β
= 0, and is |Σ̂k

α ∩ Ω̃k
nk(α)|/|Σ̂

k
α |, as a consequence of

Lemma 1, if α = β . Thus (27) is proved.
Let r∈ Ω̃k

i . The sum in the left hand side of (28) has only three non-zero terms for the values
α1, α2, α3 of the index α such that nk(α1) = nk(α2) = nk(α3) = i. Thus, by recalling the
definition of ŵ f k

α (r) and Lemma 1,

3nk

∑α
1

ŵ f k
α (r)⊗ ŝk

α =
ŝk

α1
⊗ l̂

k
α1

ŝk
α1
· l̂k

α1

+
ŝk

α2
⊗ l̂

k
α2

ŝk
α1
· l̂k

α2

+
ŝk

α3
⊗ l̂

k
α3

ŝk
α3
· l̂k

α3

= I

and, proceeding as in the proof of Lemma 2, (28) is proved.

Lastly, by recalling the definition of ŵ f k
α (r), (29) straightforwardly descends.

Vector functions ŵ f k
i (r) are now constructed in terms of functions ŵ f k

α (r) as fol-
lows

w f k
i (r) =

3nk

∑α
1

ŵ f k
α (r)p̂k

αi, i = 1, . . . , f k.

From Lemma 3 it straightforwardly follows

Theorem 4 Vector functions w f k
i (r), with i = 1, . . . , f k, satisfy properties (9)-(11).
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Proof. From the definition of w f k
i (r) it follows

∫
Σk

j

w f k
i (r) ·n(r)dΣ =

3nk

∑α
1

p̂k
αi

∫
Σk

j

ŵ f k
α (r) ·n(r)dΣ

=
3nk

∑α
1

p̂k
αi

3nk

∑β

1

p̂k
β j

∫
Σ̂k

β
∩Ω̃k

nk(β )

ŵ f k
α (r) ·n(r)dΣ

=
3nk

∑αβ

1

p̂k
αi p̂

k
β j

|Σ̂k
α ∩ Ω̃k

nk(α)|

|Σ̂k
α |

δαβ , (30)

=
3nk

∑α
1

|Σ̂k
α ∩ Ω̃k

nk(α)|

|Σ̂k
α |

p̂k
αi p̂

k
α j = δi j,

Eq. (30) descending from (27). Eq. (9) is thus proved.

From the definition of w f k
i (r) and from (28) it follows

f k

∑i
1

w f k
i (r)⊗ sk

i =
f k

∑i
1

3nk

∑α
1

ŵ f k
α (r)p̂k

αi⊗ sk
i

=
3nk

∑α
1

ŵ f k
α (r)⊗

f k

∑i
1

p̂k
αis

k
i

=
3nk

∑α
1

ŵ f k
α (r)⊗ ŝk

α = I.

Eq. (10) is thus proved.

Lastly from the definition of w f k
i (r), from (29) and from (20) it follows

∫
Ω

w f k
i (r)dΩ =

∫
Ω

3nk

∑α
1

ŵ f k
α (r)p̂k

αi dΩ

=
3nk

∑α
1

p̂k
αi

∫
Ω

ŵ f k
α (r)dΩ

=
3nk

∑α
1

p̂k
αiK̂

kĈk
α l̂k

α = l̃k
i , i = 1, . . . , f k.

Eq. (11) is thus proved.

Functions w f k
i (r), with i = 1, . . . , f k, can thus be used in the energetic approach for

constructing the Nk matrices.

It is noted that

Nk = P̂k T N̂kP̂k, (31)
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in which N̂k are 3nk×3nk matrices whose elements are

N̂k
αβ

=
∫

Ωk
ŵ f k

α (r) ·ν(rk)ŵ f k
β

(r)dΩ, α,β = 1, . . . ,3nk.

6 Derivation of constants in error bounds

Assumption for choosing the pairs of dual grids are now introduced. For each pri-
mal volume, each triple of edges incident into one node, is such that the modulus
of the angle formed by any of the edges of the triple with the normal to the plane
formed by the other two edges is less than a chosen angle ϑM < π/2. Such condi-
tion can be obtained using common grid generators. Hereafter it is shown that for
such a pair of dual grids the disequalities (15)-(18) hold, RE, RH, RN and RM being
estimated using the results in Section 3.

6.1 Evaluation of the RE and RH constants

The constant RE, defined in (15) is evaluated as follows.

Theorem 5 It results in

RE =
3

cosϑM
.

Proof. Let vk(t) be the array of elements vk
i (t) of the circulations of e(r, t) along the edges

Γk
i , with i = 1, . . . , lk, and let v̂k(t) be the array of elements v̂k

α(t), of the circulations of
e(r, t) along the edges Γ̂k

α , with α = 1, . . . ,3nk. Then it is

v̂k(t) = T̂kvk(t)

so that

||vk(t)||Ek = ||v̂k(t)||Êk =

√√√√∫
Ωk

(
3nk

∑α
1

v̂k
α(t)ŵek

α (r)

)
· ε(rk)

(
3nk

∑β

1

v̂k
β
(t)ŵek

β
(r)

)
dΩ.

From Lemma 1 and from the assumption on the pair of dual grids it is

|v̂k
α(t)ŵek

α (r)| ≤ K̂kĈk
α |ŝk

α |
|Ω̃k

nk(α)|
|l̂k

α |max
r∈Ωk
|e(r, t)|

=
|l̂k

α ||ŝk
α |

l̂k
α · ŝk

α

max
r∈Ωk
|e(r, t)|

≤ 1
cosϑM

max
r∈Ωk
|e(r, t)|.
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Thus it is∣∣∣∣∣3nk

∑α
1

v̂k
α(t)ŵek

α (r)

∣∣∣∣∣≤ 3
cosϑM

max
r∈Ωk
|e(r, t)|.

so that

||vk(t)||Ek ≤
3

cosϑM

√
|Ωk|max

r∈Ωk

√
||ε(r)||2 max

r∈Ωk
|e(r, t)|.

from which the thesis follows.

The constant R̂H in (16) is estimated as follows.

Lemma 4 Let Ĥk be the inverse of matrix Êk, with k = 1, . . . ,v. The elements of
Ĥk are

Ĥk
αβ

=
∫

Ωk

(
ŵ f k

α (r)
K̂kĈk

α

)
·η(rk)

(
ŵ f k

β
(r)

K̂kĈk
β

)
dΩ, α,β = 1, . . . ,3nk.

Proof. The product ÊkĤk has elements

Îαβ =
3nk

∑γ

1

Êk
αγ Ĥk

γβ
, α,β = 1, . . . ,3nk.

If nk(α) 6= nk(β ) then no γ exists such that nk(α) = nk(γ) and nk(β ) = nk(γ). Thus it
cannot be Êk

αγ 6= 0 and Ĥk
γβ
6= 0 and Îαβ = 0 holds. If nk(α) = nk(β ), then from (23), (24)

it is

Îαβ =
3nk

∑γ

1

K̂kĈk
α ŝk

α · ε(rk)

(
K̂kĈk

γ ŝk
γ

|Ω̃k
nk(γ)|

⊗ l̂
k
γ

)
η(rk)

l̂
k
β

|Ω̃k
nk(β )|

= K̂kĈk
α ŝk

α · ε(rk)

(
3nk

∑γ

1

1
|Ωk|

∫
Ωk

ŵek
γ (r)⊗ l̂

k
γ dΩ

)
η(rk)

l̂
k
β

|Ω̃k
nk(β )|

= K̂kĈk
α ŝk

α · ε(rk)
1
|Ωk|

∫
Ωk

(
3nk

∑γ

1

ŵek
γ (r)⊗ l̂

k
γ

)
dΩ η(rk)

l̂
k
β

|Ω̃k
nk(β )|

= K̂kĈk
α ŝk

α · ε(rk)η(rk)
l̂
k
β

|Ω̃k
nk(β )|

=
K̂kĈk

α ŝk
α · l̂

k
β

|Ω̃k
nk(β )|

.

Thus if α 6= β , since ŝk
α · l̂

k
β = 0, then Îαβ = 0 holds. Otherwise if α = β , then from Lemma

1, Îαβ = 1.
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Theorem 6 It results in

RH =
3

cosϑM
.

Proof. Let ψ̃
k(t) be the array of elements ψ̃k

i (t) of the fluxes of d(r, t) through the faces
Σ̃k

i , with i = 1, . . . , lk. Let ψ̂k(t) be the array of elements

ψ̂
k
α(t) =

s̃k
lk(α) · K̂

kĈk
α ŝk

α

|s̃k
lk(α)|2

ψ̃
k
lk(α)(t), α = 1, . . . ,3nk.

Then, from Lemma 1 it results in

3nk

∑α
1

t̂αiψ̂
k
α(t) =

3nk

∑α
1

t̂αi
s̃k

i · K̂kĈk
α ŝk

α

|s̃k
i |2

ψ̃
k
i (t)

=
s̃k

i

|s̃k
i |2
·

(
3nk

∑α
1

t̂αiK̂kĈk
α ŝk

α

)
ψ̃

k
i (t)

= ψ̃
k
i (t),

or equivalently

ψ̃
k(t) = T̂kT

ψ̂
k(t).

Then, by applying Theorem 9 in Appendix A, with Â = Êk and Q̂ = T̂k, it follows

||ψ̃k(t)||Hk ≤ ||ψ̂k(t)||Ĥk =

√√√√√∫
Ωk

(
3nk

∑α
1

ŵ f k
α (r)ψ̂k

α(t)
K̂kĈk

α

)
·η(rk)

3nk

∑β

1

ŵ f k
β

(r)ψ̂k
β
(t)

K̂kĈk
β

 dΩ.

From Lemma 1 ad from the assumption on the pair of dual grids it is∣∣∣∣∣ ŵ f k
α (r)

K̂kĈk
α

ψ̂
k
α(t)

∣∣∣∣∣≤ |l̂k
α |

|Ω̃k
nk(α)|

|s̃k
lk(α)|Ĉ

k
α K̂k|ŝk

α |

|s̃k
lk(α)|

2
|s̃k

lk(α)|max
r∈Ωk
|d(r, t)|

≤ |l̂
k
α ||ŝk

α |
l̂k
α · ŝk

α

max
r∈Ωk
|d(r, t)|

≤ 1
cosϑM

max
r∈Ωk
|d(r, t)|.

Thus it is∣∣∣∣∣3nk

∑α
1

ŵ f k
α (r)

K̂kĈk
α

ψ̂
k
α(t)

∣∣∣∣∣≤ 3
cosϑM

max
r∈Ωk
|d(r, t)|
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so that

||ψ̃k(t)||Hk ≤
3

cosϑM

√
|Ωk|max

r∈Ωk

√
||η(r)||2 max

r∈Ωk
|d(r, t)|

from which the thesis follows.

6.2 Evaluation of the RN and RM constants

The constant RN, defined in (17) is evaluated as follows.

Theorem 7 It results in

RN =
3

cosϑM
.

Proof. Let ϕk(t) be the array of elements ϕk
i (t) of the fluxes of b(r, t) through the faces

Σk
i , with i = 1, . . . , f k, and let ϕ̂

k(t) be the array of elements ϕ̂k
α(t), of the fluxes of b(r, t)

through the faces Σ̂k
α , with α = 1, . . . ,3nk. Then it is

ϕ̂
k(t) = P̂k

ϕ
k(t)

so that

||ϕk(t)||Nk = ||ϕ̂k(t)||N̂k =

√√√√∫
Ωk

(
3nk

∑α
1

ϕ̂k
α(t)ŵ f k

α (r)

)
·ν(rk)

(
3nk

∑β

1

ϕ̂k
β
(t)ŵ f k

β
(r)

)
dΩ.

From Lemma 1 and from the assumption on the pair of dual grids it is

|ϕ̂k
α(t)ŵ f k

α (r)| ≤ K̂kĈk
α |l̂k

α |
|Ω̃k

nk(α)|
|ŝk

α |max
r∈Ωk
|b(r, t)|

=
|l̂k

α ||ŝk
α |

l̂k
α · ŝk

α

max
r∈Ωk
|b(r, t)|

≤ 1
cosϑM

max
r∈Ωk
|b(r, t)|.

Thus it is∣∣∣∣∣3nk

∑α
1

ϕ̂
k
α(t)ŵ f k

α (r)

∣∣∣∣∣≤ 3
cosϑM

max
r∈Ωk
|b(r, t)|.

so that

||ϕk(t)||Nk ≤
3

cosϑM

√
|Ωk|max

r∈Ωk

√
||ν(r)||2 max

r∈Ωk
|b(r, t)|.

from which the thesis follows.
The constant R̂M, in (18), is estimated as follows.
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Lemma 5 Let M̂k be the inverse of matrix N̂k, with k = 1, . . . ,v. The elements of
M̂k are

M̂k
αβ

=
∫

Ωk

(
ŵek

α (r)
K̂kĈk

α

)
·µ(rk)

(
ŵek

β
(r)

K̂kĈk
β

)
dΩ, α,β = 1, . . . ,3nk.

Proof. The product N̂kM̂k has elements

Îαβ =
3nk

∑γ

1

N̂k
αγ M̂k

γβ
, α,β = 1, . . . ,3nk.

If nk(α) 6= nk(β ) then no γ exists such that nk(α) = nk(γ) and nk(β ) = nk(γ). Thus it
cannot be N̂k

αγ 6= 0 and M̂k
γβ
6= 0 and Îαβ = 0 holds. If nk(α) = nk(β ), then from (28), (29)

it is

Îαβ =
3nk

∑γ

1

K̂kĈk
α l̂

k
α ·ν(rk)

 K̂kĈk
γ l̂

k
γ

|Ω̃k
nk(γ)|

⊗ ŝk
γ

µ(rk)
ŝk

β

|Ω̃k
nk(β )|

= K̂kĈk
α l̂

k
α ·ν(rk)

(
3nk

∑γ

1

1
|Ωk|

∫
Ωk

ŵ f k
γ (r)⊗ ŝk

γ dΩ

)
µ(rk)

ŝk
β

|Ω̃k
nk(β )|

= K̂kĈk
α l̂

k
α ·ν(rk)

1
|Ωk|

∫
Ωk

(
3nk

∑γ

1

ŵ f k
γ (r)⊗ ŝk

γ

)
dΩ µ(rk)

ŝk
β

|Ω̃k
nk(β )|

= K̂kĈk
α l̂

k
α ·νk(rk)µ(rk)

ŝk
β

|Ω̃k
nk(β )|

=
K̂kĈk

α l̂
k
α · ŝk

β

|Ω̃k
nk(β )|

.

Thus if α 6= β , since l̂
k
α · ŝk

β
= 0, then Îαβ = 0 holds. Otherwise if α = β , then from Lemma

1, Îαβ = 1.

Theorem 8 It results in

RM =
3

cosϑM
.

Proof. Let f̃k(t) be the array whose elements f̃ k
i (t) are the circulations of h(r, t) along the

edges Γ̃k
i , with i = 1, . . . , f k. Let f̂k(t) be the array of elements

f̂ k
α(t) =

l̃k
f k(α) · K̂

kĈk
α l̂k

α

|l̃k
f k(α)|

2
f̃ k

f k(α)(t), α = 1, . . . ,3nk.
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Then, from Lemma 1 it results in

3nk

∑α
1

p̂αi f̂ k
α(t) =

3nk

∑α
1

p̂αi
l̃k
i · K̂kĈk

α l̂k
α

|l̃k
i |2

f̃ k
i (t)

=
l̃k
i

|l̃k
i |2
·

(
3nk

∑α
1

p̂αiK̂kĈk
α l̂k

α

)
f̃ k
i (t)

= f̃ k
i (t),

or equivalently

f̃k(t) = P̂kT f̂k(t).

Then, by applying Theorem 9 in Appendix A, with Â = N̂k and Q̂ = P̂k, it follows

||f̃k(t)||Mk ≤ ||f̂k(t)||M̂k =

√√√√∫
Ωk

3nk

∑α
1

(
ŵek

α (r) f̂ k
α(t)

K̂kĈk
α

)
·µ(rk)

(
3nk

∑β

1

ŵek
β

(r) f̂ k
β
(t)

K̂kĈk
β

)
dΩ.

From Lemma 1 it is∣∣∣∣ ŵek
α (r)

K̂kĈk
α

f̂ k
α(t)

∣∣∣∣≤ |ŝk
α |

|Ω̃k
nk(α)|

|l̃k
f k(α)|Ĉ

k
α K̂k|l̂k

α |

|l̃k
f k(α)|

2
|l̃k

f k(α)|max
r∈Ωk
|h(r, t)|

≤ |ŝ
k
α ||l̂k

α |
ŝk

α · l̂k
α

max
r∈Ωk
|h(r, t)|

≤ 1
cosϑM

max
r∈Ωk
|h(r, t)|.

Thus it is∣∣∣∣∣3nk

∑α
1

ŵek
α (r)

K̂kĈk
α

f̂ k
α(t)

∣∣∣∣∣≤ 3
cosϑM

max
r∈Ωk
|h(r, t)|

so that

||f̃k(t)||Mk ≤
3

cosϑM

√
|Ωk|max

r∈Ωk

√
||µ(r)||2 max

r∈Ωk
|h(r, t)|

from which the thesis follows.

7 Numerical results

A rectangular waveguide of section 5cm× 2.5cm and length 10cm is considered.
At one end a TE10 electric field is applied. At the other end a PEC termination is
applied. The corresponding time domain electromagnetic boundary value problem
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Figure 2: Percent error of the electric field in the energy norm versus the maximum
grid diameter.

has been spatially discretized by means of DGA, the oriented primal grid being
tetrahedral, the oriented dual grid being its barycentric subdivision and constitutive
relations being discretized as in Section 3. The resulting semi-discrete equations
have been discretized with respect to time by means of the FD-TD scheme, in the
time interval 0ns≤ t ≤ 0.95ns. The time step has been chosen in such a way that its
effect on the approximate electromagnetic field is negligible. The approximation
error in the energy norm for the electromagnetic field has been evaluated at t =
0.95ns for primal grids having different maximum diameters hM and ϑM = 1.2rad.
The evaluated percent error, for the electric field, is compared in Fig. 2 with the
theoretical error bound estimated by Theorem 2.
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8 Conclusions

The paper has proposed a novel and original computation of the analytical values
of the constants bounding the approximation error of the electromagnetic field by
expressing them in terms of the geometrical properties of the pairs of oriented dual
grids. A numerical example confirmed the theoretical analysis.
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Appendix A

If A is a symmetric, positive definite matrix of order n and x1, x2 are a pair of
column arrays of n rows, then a scalar product and its corresponding norm in the
space of column arrays of n rows are defined by

(x1,x2)A = xT
1 Ax2

||x1||A =
√

(x1,x1)A =
√

xT
1 Ax1.

Theorem 9 Let Â be a symmetric, positive definite matrix of order m and let Q̂ be
a real, full rank, m×n matrix with m≥ n. Let it be A = Q̂T ÂQ̂. Then for each real
column vector x̂ of m rows

||x||A−1 ≤ ||x̂||Â−1 (32)

holds, being x = Q̂T x̂.
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Proof. For each real column vector c of n rows it results in

H = (Â−
1
2 x̂− Â

1
2 Q̂c)T (Â−

1
2 x̂− Â

1
2 Q̂c)≥ 0. (33)

By expanding the terms in (33) it results in

H = x̂T Â−1x̂−2x̂T Q̂c+ cT Q̂T ÂQc≥ 0.

In particular, by choosing

c = A−1Q̂T x̂.

it results in

H = x̂T Â−1x̂−xT A−1x≥ 0

from which (32) descends.

Let now A(r) be a symmetric, positive definite double tensor defined in a spatial
region Ω. If both ||A(r)||2 and ||A−1(r)||2 are bounded in Ω, then in the space
of vector functions square integrable in Ω, a scalar product and its corresponding
norm are defined as

(x1(r),x2(r))A(r) =
∫

Ω

x1(r) ·A(r)x2(r)dΩ

||x1||A(r) =
√

(x1,x1)A(r) =
√∫

Ω

x1(r) ·A(r)x1(r)dΩ.




