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A Meshless Collocation Method Based on the Differential
Reproducing Kernel Approximation
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Abstract: A differential reproducing kernel (DRK) approximation-based collo-
cation method is developed for solving ordinary and partial differential equations
governing the one- and two-dimensional problems of elastic bodies, respectively.
In the conventional reproducing kernel (RK) approximation, the shape functions for
the derivatives of RK approximants are determined by directly differentiating the
RK approximants, and this is very time-consuming, especially for the calculations
of their higher-order derivatives. Contrary to the previous differentiation manip-
ulation, we construct a set of differential reproducing conditions to determine the
shape functions for the derivatives of RK approximants. A meshless collocation
method based on the present DRK approximation is developed and applied to the
analysis of one-dimensional problems of elastic bars, two-dimensional potential
problems, and plane elasticity problems of elastic solids to validate its accuracy
and find the rate of convergence. It is shown that the present method is indeed a
fully meshless approach with excellent accuracy and fast convergence rate.

Keywords: Meshless methods, Reproducing kernels, Collocation methods, De-
formation, Stress, Elastic solids.

1 Introduction

Developing an efficient meshless method in computational mechanics has attracted
considerable attention in recent decades. This is based on some reports which
indicate that the conventional computational methods may not be suitable for the
treatment of discontinuities, moving boundaries and large deformations (Liu, Jun
and Zhang, 1995; Chen et al., 1996), such as finite element and finite difference
methods in which formulations strongly rely on an assigned grid (or mesh). Hence,
the unknown approximants in the meshless methods have been entirely constructed
in terms of nodes which are randomly scattered to overcome the drawbacks of
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previous approaches. A comprehensive literature survey of meshless methods was
undertaken by Belytschko et al. (1996), Atluri and Shen (2002), Liu (2003) and
Nguyeh et al. (2008).

Liu et al. (1995) proposed the reproducing kernel (RK) particle method for numer-
ical analysis of partial differential equations. The RK particle method was devel-
oped to address the weaknesses of smooth particle hydrodynamics (SPH) methods
(Lucy, 1977; Monaghan, 1988) by introducing a correction function for kernels,
such as the so-called tensile instability problem (Libersky et al., 1993). The con-
tinuous RK approximants were developed by satisfying a set of the reproducing
conditions. The RK particle method has been successfully applied for the large de-
formation analysis of non-linear structures (Chen, Pan and Wu, 1997; Chen et al.,
2000; Liew, Ng and Wu, 2002) and for the dynamic analysis of plates and shells
(Zhou, Zhang and Zhang, 2005; Zhao, Liew and Ng, 2003; Liew et al., 2004; Zhao,
Ng and Liew, 2004). A point collocation method based on the RK approximants
was presented by Aluru (2000). It is shown that the results obtained using the RK
approximation-based collocation method for several one- (1-) and two-dimensional
(2D) problems of elastic solids are accurate with rapid convergence rate. Oñate,
Perazzo and Miquel (2001) proposed a finite point method for the analyses of
linear elastic structural problems. Jin, Li and Aluru (2005) proposed several im-
provements to the construction of meshless shape functions and compared several
collocation schemes with the framework of the finite cloud method.

On the basis of the principle of virtual displacement (PVD), an alternative class of
Galerkin-type meshless methods using the moving least squares (MLS) approxi-
mants (Lancaster and Salkauskas, 1981) has been proposed, such as the element-
free Galerkin method (Belytschko, Lu and Gu, 1994; Lu, Belytschko and Gu,
1994), and the meshless local Petrov-Galerkin (MLPG) method (Atluri, Cho and
Kim, 1999; Atluri and Zhu, 1998). The element-free Galerkin method has been
extensively applied for the static analysis of anisotropic plates and laminates based
on a first-order shear deformation theory (Belinha and Dinis, 2006) and thermo-
mechanical analysis of functionally graded material plates (Dai et al., 2005). Be-
cause the computation for derivatives of unknown approximants is complicated,
Atluri et al. (2004) proposed an MLPG mixed finite volume method to simplify
and speed up the MLPG implementation, and this has been successfully applied
to various elastic problems (Han and Atluri, 2004a, b; Han, Rajendran and Atluri,
2005). Atluri, Liu and Han (2006a) proposed an MLPG mixed collocation method
using the Dirac delta function as the test function in the MLPG method, and it
has been concluded that this is much more efficient than the MLPG finite volume
method. Atluri, Liu and Han (2006b) further proposed an MLPG mixed difference
method for solid mechanics where the generalized finite difference method was
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used to approximate the derivatives of a function using the nodal values in the local
domain of definition. Various elasticity problems were investigated to validate the
accuracy and convergence rate of this MLPG mixed difference method.

Recently, a meshless collocation method based on the differential reproducing ker-
nel (DRK) approximation was proposed for the three-dimensional (3D) analysis of
multilayered and functionally graded (FG) plates/shells made up of smart materi-
als (Wu, Chiu and Wang, 2008a, b, c), in which the 3D problems were reduced
to 1D problems by expanding the primary field variables as a series of double
Fourier functions of in-surface coordinates, the DRK approximation-based col-
location method was developed and applied to the resulting system of ordinary
differential equations in the thickness coordinate, and the coupling effects among
the multi-fields on the static behavior of multilayered piezoelectric plates and FG
magneto-electro-elastic shells/plates were mainly concerned. The novelty of the
DRK approximation-based collocation method is in its modifications for the cal-
culation of the derivatives of RK approximants, where the shape functions for the
derivatives of RK approximants are determined using a set of differential repro-
ducing conditions without directly differentiating the shape functions of the RK
approximants used in the conventional RK approximation. This makes the present
DRK approximation-based collocation method less time-consuming and more effi-
cient for the calculation of the derivatives of unknown approximants. In the present
paper, this method is further applied to some 1D problems of elastic bars, 2D poten-
tial problems and plane elasticity problems of elastic solids to validate its accuracy
and find the rate of convergence, in which a generalized multi-dimensional for-
mulation of DRK approximation and a 2D collocation method based on this are
presented. In the implementation of this method, some guidelines to select the
optimal support size and highest-order of the basis functions are discussed. In ad-
dition, the influence of uniform and random distributions of nodal points and of
using different weight functions on the present results is also studied.

2 The DRK approximation for one-dimensional problems

In the present DRK approximation, we focus on the determination of the shape
functions for the derivatives of RK approximants using a set of differential repro-
ducing conditions, not by differentiating the RK approximants (Liu, Jun and Zhang,
1995). In order to make a clear interpretation, we firstly simplify the derivation of
the present scheme for one-dimensional problems. Afterwards, this derivation is
extended to multi-dimensional problems.



4 Copyright © 2010 Tech Science Press CMES, vol.60, no.1, pp.1-39, 2010

2.1 Reproducing kernel approximants

It is assumed that there are NP discrete points randomly selected and located at
x=x1, x2, · · · , xNP, respectively, in the domain (Ω). The reproducing kernel ap-
proximant ua(x) of an unknown function u(x), ∀ x ∈Ω, is defined as

ua(x) =
NP

∑
l=1

φl(x) ûl, (1)

where φl(x) = wa(x− xl) C(x; x− xl), C(x; x− xl) = PT (x− xl) b(x),

PT (x− xl) =
[
1 (x− xl) (x− xl)2 · · · (x− xl)n

]
,

bT (x) =
[
b0(x) b1(x) b2(x) · · · bn(x)

]
;

ûl(l = 1, 2, · · · , NP) are the fictitious nodal values and are not the nodal values of
ua(x) in general; φl(x) is the shape function for the RK approximant corresponding
to nodal point at x=xl; wa(x− xl) is the weight function centered at x=xl with a
support size a; C(x; x−xl) is the correction function; b j(x) ( j = 0, 1, 2, · · · , n) are
the undetermined functions and will be determined by satisfying the reproducing
conditions; and n is the highest-order of the basis functions.

By selecting the complete nth-order polynomials as the basis functions to be repro-
duced, we obtain a set of reproducing conditions to determine the undetermined
functions of bl(x) in (1). The reproducing conditions are give as

NP

∑
l=1

φl(x) xm
l = xm m = 0, 1, 2, · · · , n. (2)

Equation (2) represents (n+1) reproducing conditions and can be rearranged in the
explicit form of

m = 0 :
NP

∑
l=1

φl(x) = 1, (3)

m = 1 :
NP

∑
l=1

φl(x) (x− xl) = x
NP

∑
l=1

φl(x)−
NP

∑
l=1

φl(x)xl = 0, (4)

m = 2 :
NP

∑
l=1

φl(x) (x− xl)2 = x2
NP

∑
l=1

φl(x)−2x
NP

∑
l=1

φl(x)xl +
NP

∑
l=1

φl(x)x2
l = 0 (5)

...
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m = n :
NP

∑
l=1

φl(x) (x− xl)n = 0. (6)

By using the expression of φl(x) in (1), we can rewrite the previous reproducing
conditions in the matrix form of

NP

∑
l=1

P(x− xl)φl(x) =
NP

∑
l=1

P(x− xl)wa(x− xl)PT (x− xl)b(x) = P(0), (7)

where P(0) =
[
1 0 0 · · · 0

]T .

According to the reproducing conditions in (7), we may obtain the undetermined
function matrix b(x) in the following form

b(x) = A−1(x) P(0), (8)

where A(x) =
NP
∑

l=1
P(x− xl)wa(x− xl)PT (x− xl).

Substituting (8) into (1) yields the shape functions for the RK approximant in the
form of

φl(x) = wa(x− xl)PT (x− xl)A−1(x)P(0). (9)

It is realized from (9) that φl(x) vanishes when x is not in the support of nodal point
at x = xl . The influence of the shape function in the support of each nodal point
monotonically decreases as the relative distance to the nodal point increases, and
this preserves the local character of the present scheme.

2.2 Derivatives of reproducing kernel approximants

Since the reproducing kernel approximant ua(x) is given in (1), the first derivative
of ua(x) is therefore expressed as

d ua(x)
dx

=
NP

∑
l=1

φ
(1)
l (x) ûl, (10)

where φ
(1)
l (x) denotes the shape functions for the first-order derivative of the RK

approximant.

In the conventional RK approximation, φ
(1)
l (x) (l = 1, 2, · · · , NP) are obtained by
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directly differentiating the shape functions of the RK approximant and given as

φ
(1)
l (x) =

∂ φl (x)
∂ x

=
∂ wa (x− xl)

∂ x
PT (x− xl) A−1 (x) P(0)+wa (x− xl)

∂ PT (x− xl)
∂ x

A−1 (x) P(0)

+wa (x− xl) PT (x− xl)
∂ A−1 (x)

∂ x
P(0) ,

(11)

where ∂ A−1(x)
∂ x =−A−1 (x) ∂ A(x)

∂ x A−1 (x) .

It is apparent that (11) involves a lengthy expression and complicated computation,
especially for calculations involving the higher-order derivatives of the RK approxi-
mant. In contrast to this, a novel approach was developed in two recent papers (Wu,
Chiu and Wang, 2008a, b) in which the shape functions for the derivatives of the
RK approximant are determined using a set of differential reproducing conditions,
and the related derivation is given as follows.

In the DRK approximation, we expressed φ
(1)
l (x) in the similar form of φl(x) as

follows.

φ
(1)
l (x) = wa(x− xl) C1(x; x− xl), (12)

where C1(x; x− xl) = PT (x− xl) b1(x),

bT
1 (x) =

[
b1

0(x) b1
1(x) b1

2(x) · · · b1
n(x)

]
.

The differential reproducing conditions for a set of complete nth-order polynomials
are given as

NP

∑
l=1

φ
(1)
l (x) xm

l = mxm−1 m = 0, 1, 2, · · · , n. (13)

Equation (13) can be rearranged and explicitly written as follows.

m = 0 :
NP

∑
l=1

φ
(1)
l (x) = 0, (14)

m = 1 :
NP

∑
l=1

φ
(1)
l (x) (x− xl) = x

NP

∑
l=1

φ
(1)
l (x)−

NP

∑
l=1

φ
(1)
l (x)xl =−1 (15)
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m = 2 :
NP

∑
l=1

φ
(1)
l (x) (x− xl)2 = x2

NP

∑
l=1

φ
(1)
l (x)−2x

NP

∑
l=1

φ
(1)
l (x)xl +

NP

∑
l=1

φ
(1)
l (x)x2

l = 0

(16)

...

m = n :
NP

∑
l=1

φ
(1)
l (x) (x− xl)n = 0. (17)

By using (12), we can rewrite the previous reproducing conditions in the matrix
form of

NP

∑
l=1

P(x− xl)φ
(1)
l (x) =

NP

∑
l=1

P(x− xl)wa(x− xl)PT (x− xl)b1(x) =−P(1)(0) (18)

where[
P(1)(0)

]
=

d P(x− xl)
d x

∣∣∣∣
x=xl

=
[
0 −1 0 · · · 0

]T
.

The undetermined function matrix b1(x) can then be obtained and given by

b1(x) =−A−1(x) P(1)(0). (19)

Substituting (19) into (12) yields the shape functions for the first-order derivative
of the RK approximant in the form of

φ
(1)
l (x) =−wa(x− xl)PT (x− xl)A−1(x)P(1)(0). (20)

Carrying on the similar derivation to the kth-order derivative of the RK approximant
leads to

dk ua(x)
dxk =

NP

∑
l=1

φ
(k)
l (x) ûl, (21)

where

φ
(k)
l (x) = (−1)k wa(x− xl)PT (x− xl)A−1(x)P(k)(0),

P(k)(0) =
dkP(x− xl)

d xk

∣∣∣∣
x=xl

.
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w(s) 

 

 (x-xl)/a 
Figure 1: Various weight functions

2.3 Weight functions and the relative L2 error norm

In implementing the present scheme, the weight functions must be selected in ad-
vance. The conventional weight functions are shown in Fig. 1 and given as

Normalized Gaussian function:

w(s) =

 e−(s/α)2−e−(1/α)2

1−e−(1/α)2
for s≤ 1

0 for s > 1
, (22)

Cubic spline:

w(s) =


6s3−6s2 +1 for s≤ (1/2)
−2s3 +6s2−6s+2 for (1/2) < s < 1
0 for s > 1

, (23)



A Meshless Collocation Method 9

Quartic spline:

w(s) =

{
−3s4 +8s3−6s2 +1 for s≤ 1
0 for s > 1

(24)

where wa(x− xl) = w(s) and s = |x− xl|/a. α is a freely-chosen parameter, and
is taken to be 0.3, 0.4, 0.5 in Fig. 1 and Tables 1_3 for comparison purposes; and
the normalized Gaussian function with α=0.3, which is commonly used in the lit-
erature, is adopted as the weight function in the later work of this paper due to
the fact that it possesses the continuous properties of any higher-order derivative
of itself and its overall performance is slightly more accurate than the other weight
functions.

It is noted that a very small value of a may result in an unexpected numerical error
when the calculation for the coefficients of the system matrix is performed. On the
other hand, the value of a also has to be small enough to preserve the local character
of the present scheme. Hence, a compromise range of the value of a will be studied
later in this work to ensure the accuracy and convergence of the present scheme.

The relative L2 error norms of a certain variable and of the strain energy of an
elastic body, respectively, are defined as

Relative L2 error norm of a certain variable:

(L2)u =

√
NP

∑
l=1

[(ul)num− (ul)exact ]
2/

√
NP

∑
l=1

(ul)2
exact . (25)

Relative L2 error norm of the strain energy of an elastic body:

(L2)Π =

√
NP

∑
l=1

[(Πl)num− (Πl)exact ]
2/

√
NP

∑
l=1

(Πl)2
exact , (26)

where Π denotes the strain energy density and is written as Π =(σx εx +σy εy + τxy γxy)/2,
in which (σx, σy, τxy) are the in-plane stress components and (εx, εy, γxy) are the
in-plane strain components.

The convergence rate of the relative error norm is defined as

R = [Log10 (ei+1/ei)]/ [Log10 (hi+1/hi)], (27)

where (ei+1, hi+1) and (ei, hi) are the relative errors and the uniform nodal spacing
for the refined and coarse node distributions, respectively.
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Table 1: The present DRK approximation-based collocation solutions of maximum
displacement and axial force in a horizontal bar under a sinusoidally distributed
load (n=2)

∆x Weight functions a
Present results

(L2)u
Present results

(L2)Pu(1.0) P(0.0)
1/8 Normalized Gaussian (α=0.3) 2.1∆x 3.0228e-01 4.5e-02 6.0457e-01 4.9e-02

Normalized Gaussian (α=0.4) 2.1∆x 3.0289e-01 4.2e-02 6.0577e-01 4.6e-02
Normalized Gaussian (α=0.5) 2.1∆x 3.0380e-01 3.7e-02 6.0760e-01 4.2e-02

Quartic spline 2.1∆x 3.0240e-01 4.5e-02 6.0481e-01 4.8e-02
Cubic spline 2.1∆x 3.0234e-01 4.5e-02 6.0469e-01 4.8e-02

Normalized Gaussian (α=0.3) 2.6∆x 3.0292e-01 4.2e-02 6.0584e-01 4.6e-02
Normalized Gaussian (α=0.4) 2.6∆x 3.0355e-01 3.5e-02 6.0709e-01 4.2e-02
Normalized Gaussian (α=0.5) 2.6∆x 2.9944e-01 4.3e-02 5.9888e-01 5.3e-02

Quartic spline 2.6∆x 3.0239e-01 3.6e-02 6.0477e-01 4.5e-02
Cubic spline 2.6∆x 3.0355e-01 3.5e-02 6.0710e-01 4.2e-02

1/16 Normalized Gaussian (α=0.3) 2.1∆x 3.1425e-01 1.0e-02 6.2849e-01 1.2e-02
Normalized Gaussian (α=0.4) 2.1∆x 3.1441e-01 9.6e-03 6.2882e-01 1.1e-02
Normalized Gaussian (α=0.5) 2.1∆x 3.1465e-01 8.4e-03 6.2929e-01 1.0e-02

Quartic spline 2.1∆x 3.1428e-01 1.0e-02 6.2856e-01 1.1e-02
Cubic spline 2.1∆x 3.1426e-01 1.0e-02 6.2853e-01 1.1e-02

Normalized Gaussian (α=0.3) 2.6∆x 3.1442e-01 9.6e-03 6.2884e-01 1.1e-02
Normalized Gaussian (α=0.4) 2.6∆x 3.1456e-01 8.0e-03 6.2913e-01 1.0e-02
Normalized Gaussian (α=0.5) 2.6∆x 3.1352e-01 1.0e-02 6.2704e-01 1.3e-02

Quartic spline 2.6∆x 3.1426e-01 8.4e-03 6.2852e-01 1.1e-02
Cubic spline 2.6∆x 3.1456e-01 8.0e-03 6.2913e-01 1.0e-02

1/24 Normalized Gaussian (α=0.3) 2.1∆x 3.1650e-01 4.4e-03 6.3300e-01 5.0e-03
Normalized Gaussian (α=0.4) 2.1∆x 3.1657e-01 4.1e-03 6.3314e-01 4.8e-03
Normalized Gaussian (α=0.5) 2.1∆x 3.1668e-01 3.6e-03 6.3336e-01 4.4e-03

Quartic spline 2.1∆x 3.1651e-01 4.3e-03 6.3303e-01 5.0e-03
Cubic spline 2.1∆x 3.1651e-01 4.4e-03 6.3301e-01 5.0e-03

Normalized Gaussian (α=0.3) 2.6∆x 3.1658e-01 4.1e-03 6.3315e-01 4.8e-03
Normalized Gaussian (α=0.4) 2.6∆x 3.1664e-01 3.4e-03 6.3328e-01 4.4e-03
Normalized Gaussian (α=0.5) 2.6∆x 3.1617e-01 4.3e-03 6.3235e-01 5.7e-03

Quartic spline 2.6∆x 3.1650e-01 3.6e-03 6.3301e-01 4.8e-03
Cubic spline 2.6∆x 3.1664e-01 3.4e-03 6.3328e-01 4.4e-03

Exact solutions 3.183099e-01 6.366198e-01

3 The DRK approximation for multi-dimensional problems

3.1 Reproducing kernel approximants

3.1.1 Two-dimensional problems

It is assumed that there are NP discrete points randomly selected and located at
(xl, yl) l = 1, 2, · · · , NP. The reproducing kernel approximant uR(x, y) of un-



A Meshless Collocation Method 11

Table 2: The present DRK approximation-based collocation solutions of maximum
displacement and axial force in a horizontal bar under a sinusoidally distributed
load (n=3)

∆x Weight functions a
Present results

(L2)u
Present results

(L2)Pu(1.0) P(0.0)
1/8 Normalized Gaussian (α=0.3) 3.1∆x 3.2643e-01 2.6e-02 6.5286e-01 2.7e-02

Normalized Gaussian (α=0.4) 3.1∆x 3.3284e-01 4.7e-02 6.6567e-01 4.7e-02
Normalized Gaussian (α=0.5) 3.1∆x 3.3521e-01 5.4e-02 6.7041e-01 5.4e-02

Quartic spline 3.1∆x 3.3360e-01 4.9e-02 6.6720e-01 4.9e-02
Cubic spline 3.1∆x 3.3273e-01 4.6e-02 6.6546e-01 4.6e-02

Normalized Gaussian (α=0.3) 3.6∆x 3.3069e-01 4.0e-02 6.6138e-01 4.0e-02
Normalized Gaussian (α=0.4) 3.6∆x 3.3720e-01 6.1e-02 6.7440e-01 6.1e-02
Normalized Gaussian (α=0.5) 3.6∆x 3.4104e-01 7.4e-02 6.8209e-01 7.4e-02

Quartic spline 3.6∆x 3.3755e-01 6.2e-02 6.7511e-01 6.2e-02
Cubic spline 3.6∆x 3.3637e-01 5.8e-02 6.7274e-01 5.8e-02

1/16 Normalized Gaussian (α=0.3) 3.1∆x 3.2061e-01 7.3e-03 6.4122e-01 7.3e-03
Normalized Gaussian (α=0.4) 3.1∆x 3.2225e-01 1.2e-02 6.4451e-01 1.2e-02
Normalized Gaussian (α=0.5) 3.1∆x 3.2308e-01 1.5e-02 6.4615e-01 1.5e-02

Quartic spline 3.1∆x 3.2228e-01 1.3e-02 6.4456e-01 1.3e-02
Cubic spline 3.1∆x 3.2208e-01 1.2e-02 6.4416e-01 1.2e-02

Normalized Gaussian (α=0.3) 3.6∆x 3.2172e-01 1.1e-02 6.4343e-01 1.1e-02
Normalized Gaussian (α=0.4) 3.6∆x 3.2378e-01 1.7e-02 6.4757e-01 1.7e-02
Normalized Gaussian (α=0.5) 3.6∆x 3.2502e-01 2.1e-02 6.5004e-01 2.1e-02

Quartic spline 3.6∆x 3.2390e-01 1.8e-02 6.4779e-01 1.8e-02
Cubic spline 3.6∆x 3.2349e-01 1.6e-02 6.4699e-01 1.6e-02

1/24 Normalized Gaussian (α=0.3) 3.1∆x 3.1935e-01 3.3e-03 6.3871e-01 3.3e-03
Normalized Gaussian (α=0.4) 3.1∆x 3.2009e-01 5.6e-03 6.4018e-01 5.6e-03
Normalized Gaussian (α=0.5) 3.1∆x 3.2047e-01 6.8e-03 6.4095e-01 6.8e-03

Quartic spline 3.1∆x 3.2009e-01 5.6e-03 6.4018e-01 5.6e-03
Cubic spline 3.1∆x 3.2000e-01 5.3e-03 6.4000e-01 5.3e-03

Normalized Gaussian (α=0.3) 3.6∆x 3.1985e-02 4.9e-03 6.3970e-01 4.9e-03
Normalized Gaussian (α=0.4) 3.6∆x 3.2081e-01 7.9e-03 6.4161e-01 7.9e-03
Normalized Gaussian (α=0.5) 3.6∆x 3.2138e-01 9.7e-03 6.4276e-01 9.7e-03

Quartic spline 3.6∆x 3.2086e-01 8.0e-03 6.4172e-01 8.0e-03
Cubic spline 3.6∆x 3.2067e-01 7.4e-03 6.4134e-01 7.5e-03

Exact solutions 3.183099e-01 6.366198e-01

known function u(x, y), ∀ (x, y) ∈Ω, is defined as

uR(x, y) =
NP

∑
l=1

ψl(x, y) ûl, (28)

where ψl(x, y) = w̄a(x− xl, y− yl) C̄(x, y; x− xl, y− yl),

C̄(x, y; x− xl, y− yl) = P̄T (x− xl, y− yl) b̄(x, y),
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Table 3: The present DRK approximation-based collocation solutions of maximum
displacement and axial force in a horizontal bar under a sinusoidally distributed
load (n=4)

∆x Weight functions a
Present results

(L2)u
Present results

(L2)Pu(1.0) P(0.0)
1/8 Normalized Gaussian(α=0.3) 4.1∆x 3.1852e-01 4.8e-04 6.3704e-01 8.4e-04

Normalized Gaussian(α=0.4) 4.1∆x 3.1766e-01 2.0e-03 6.3531e-01 2.1e-03
Normalized Gaussian(α=0.5) 4.1∆x 3.1750e-01 2.5e-03 6.3500e-01 2.5e-03

Quartic spline 4.1∆x 3.1774e-01 1.7e-03 6.3548e-01 2.0e-03
Cubic spline 4.1∆x 3.1781e-01 1.5e-03 6.3562e-01 1.8e-03

Normalized Gaussian(α=0.3) 4.6∆x 3.1793e-01 1.2e-03 6.3586e-01 1.4e-03
Normalized Gaussian(α=0.4) 4.6∆x 3.1731e-01 3.0e-03 6.3463e-01 3.0e-03
Normalized Gaussian(α=0.5) 4.6∆x 3.1707e-01 3.8e-03 6.3414e-01 3.8e-03

Quartic spline 4.6∆x 3.1739e-01 2.8e-03 6.3478e-01 2.8e-03
Cubic spline 4.6∆x 3.1745e-01 2.6e-03 6.3490e-01 2.6e-03

1/16 Normalized Gaussian(α=0.3) 4.1∆x 3.1832e-01 3.5e-05 6.3664e-01 4.7e-05
Normalized Gaussian(α=0.4) 4.1∆x 3.1825e-01 1.5e-04 6.3650e-01 1.7e-04
Normalized Gaussian(α=0.5) 4.1∆x 3.1823e-01 2.1e-04 6.3645e-01 2.4e-04

Quartic spline 4.1∆x 3.1826e-01 1.1e-04 6.3653e-01 1.4e-04
Cubic spline 4.1∆x 3.1827e-01 1.0e-04 6.3654e-01 1.3e-04

Normalized Gaussian(α=0.3) 4.6∆x 3.1827e-01 9.3e-05 6.3655e-01 1.1e-04
Normalized Gaussian(α=0.4) 4.6∆x 3.1821e-01 2.7e-04 6.3641e-01 3.0e-04
Normalized Gaussian(α=0.5) 4.6∆x 3.1812e-01 4.9e-04 6.3624e-01 5.5e-04

Quartic spline 4.6∆x 3.1821e-01 2.5e-04 6.3642e-01 2.8e-04
Cubic spline 4.6∆x 3.1822e-01 2.3e-04 6.3644e-01 2.6e-04

1/24 Normalized Gaussian(α=0.3) 4.1∆x 3.1831e-01 7.6e-06 6.3662e-01 8.4e-06
Normalized Gaussian(α=0.4) 4.1∆x 3.1830e-01 2.9e-05 6.3659e-01 3.6e-05
Normalized Gaussian(α=0.5) 4.1∆x 3.1829e-01 4.2e-05 6.3658e-01 5.0e-05

Quartic spline 4.1∆x 3.1830e-01 2.1e-05 6.3660e-01 2.8e-05
Cubic spline 4.1∆x 3.1830e-01 2.0e-05 6.3660e-01 2.6e-05

Normalized Gaussian(α=0.3) 4.6∆x 3.1830e-01 1.8e-05 6.3660e-01 2.3e-05
Normalized Gaussian(α=0.4) 4.6∆x 3.1829e-01 5.3e-05 6.3657e-01 6.2e-05
Normalized Gaussian(α=0.5) 4.6∆x 3.1829e-01 3.6e-05 6.3659e-01 4.6e-05

Quartic spline 4.6∆x 3.1829e-01 5.0e-05 6.3658e-01 5.9e-05
Cubic spline 4.6∆x 3.1829e-01 4.5e-05 6.3658e-01 5.3e-05

Exact solutions 3.183099e-01 6.366198e-01

P̄T (x− xl, y− yl)
=
[
1 (x− xl)(y− yl) (x− xl)2 (x− xl)(y− yl) (y− yl)2 · · · (y− yl)n

] ,

b̄T (x,y) =
[
b̄0(x,y) b̄1(x,y) b̄2(x,y) · · · b̄(n+1)(n+2)/2(x,y)

]
.

By selecting a set of complete nth-order polynomials as the basis functions to be re-
produced, we can determine the undetermined functions of b̄ j(x,y) ( j = 0, 1, 2, · · · , (n+
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Table 4: The present DRK approximation-based collocation solutions for a 2D
Laplace equation with Dirichlet boundary conditions.

Distribution of nodes (∆x or ∆y) n NI
Present results Present results Present results

Φ (1, 1) (L2)Φ
Φ,x (1, 1) (L2)Φ,x

Φ,y (1, 1) (L2)Φ,y

5x5 2 9 3.984792 1.3e-02 5.854712 2. 9e-02 5.854712 2. 9e-02
(1/4) 11 3.986158 1.3e-02 5.859137 3.0e-02 5.859137 3.0e-02

13 3.985982 1.2e-02 5.858672 2.5e-02 5.858672 2.5e-02
3 17 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000

19 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000
21 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000

9x9 2 9 3.992006 3.3e-03 5.897932 9.7e-03 5.897932 9.7e-03
(1/8) 11 3.992528 3.1e-03 5.899762 9.9e-03 5.899762 9.9e-03

13 3.992591 3.0e-03 5.901043 8.1e-03 5.901043 8.1e-03
3 17 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000

19 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000
21 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000

17x17 2 9 3.995539 8.9e-04 5.939227 3.6e-03 5.939227 3.6e-03
(1/16) 11 3.995833 8.3e-04 5.941070 3.5e-03 5.941070 3.5e-03

13 3.995892 8.0e-04 5.941396 3.2e-03 5.941396 3.2e-03
3 17 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000

19 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000
21 4.000000 0.00000 6.000000 0.00000 6.000000 0.00000

Exact solutions 4.000000 6.000000 6.000000

Table 5: Coordinates and the present DRK approximation-based collocation solu-
tions for a patch test with a random distribution of 28 points.

Points Coordinates (x,y)
Displacements

σ x σ y τxyu(u=x) v(v=-y/4)
6 (4.507602, 2.522152) 4.507602 -0.63054 1 0.000000 0.000000
7 (1.530571, 0.762847) 1.530571 -0.19071 1 0.000000 0.000000

10 (3.035742, 2.442854) 3.035742 -0.61071 1 0.000000 0.000000
11 (4.19446, 0.730575) 4.19446 -0.18264 1 0.000000 0.000000
14 (5.34542, 2.787791) 5.34542 -0.69695 1 0.000000 0.000000
15 (5.755749, 1.049951) 5.755749 -0.26249 1 0.000000 0.000000
18 (3.283293, 0.589786) 3.283293 -0.14745 1 0.000000 0.000000
19 (0.831747, 0.753252) 0.831747 -0.18831 1 0.000000 0.000000
22 (0.895764, 1.848134) 0.895764 -0.46203 1 0.000000 0.000000
23 (1.54505, 1.419867) 1.54505 -0.35497 1 0.000000 0.000000

1)(n+2)/2) in (28). The reproducing conditions are give as

NP

∑
l=1

ψl(x,y)xr
l y

s
l = xr ys r + s≤ n. (29)

Equation (29) can be rearranged in the explicit form of
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r = s = 0 :
NP

∑
l=1

ψl(x, y) = 1, (30)

r = 1, s = 0 :

NP

∑
l=1

ψl(x, y) (x− xl) = x
NP

∑
l=1

ψl(x, y)−
NP

∑
l=1

ψl(x, y)xl = 0, (31)

r = 0, s = 1 :

NP

∑
l=1

ψl(x, y) (y− yl) = y
NP

∑
l=1

ψl(x, y)−
NP

∑
l=1

ψl(x, y)yl = 0, (32)

...

r = 0, s = n :

NP

∑
l=1

ψl(x, y) (y− yl)n = 0. (33)

By using the expression of ψl(x) in (28), we can rewrite the previous reproducing
conditions in the matrix form of
NP

∑
l=1

P̄(x− xl, y− yl)ψl(x, y)

=
NP

∑
l=1

P̄(x− xl, y− yl) w̄a(x− xl, y− yl) P̄T (x− xl, y− yl) b̄(x, y)

= P̄(0, 0)

, (34)

where P̄(0, 0) =
[
1 0 0 · · · 0

]T .

According to the reproducing conditions in (34), the undetermined function matrix
b̄(x, y) can then be obtained and given by

b̄(x, y) = Ā−1(x, y) P̄(0, 0), (35)

where Ā(x, y) =
NP
∑

l=1
P̄(x− xl, y− yl) w̄a(x− xl, y− yl) P̄T (x− xl, y− yl).

Substituting (35) into (28) yields the shape functions for the RK approximant in the
form of

ψl(x, y) = w̄a(x− xl, y− yl) P̄T (x− xl, y− yl) Ā−1(x, y) P̄(0, 0). (36)
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3.1.2 Three-dimensional problems

Similar to the previous derivation, we assume that there are NP discrete points
randomly selected and located at (xl, yl, zl) l = 1, 2, · · · , NP. The reproducing
kernel approximant uB(x, y, z) of the unknown function u(x, y, z), ∀ (x, y, z) ∈ Ω,
is defined as

uB(x, y, z) =
NP

∑
l=1

ϕl(x, y, z) ûl, (37)

where

ϕl(x, y, z) =

w̃a(x− xl, y− yl, z− zl) P̃T (x− xl, y− yl, z− zl) Ã−1(x, y, z) P̃(0, 0, 0),

Ã(x, y, z) =
NP

∑
l=1

P̃(x− xl, y− yl, z− zl) w̃a(x− xl, y− yl, z− zl) P̃T (x− xl, y− yl, z− zl),

P̃T (x− xl, y− yl, z− zl) =[
1 (x− xl) (y− yl) (z− zl) (x− xl)2 (x− xl)(y− yl) (y− yl)2

(y− yl)(z− zl) (z− zl)2 (x− xl)(z− zl) · · · (z− zl)n
]
,

P̃(0, 0, 0) =
[
1 0 0 · · · 0

]T
.

3.2 Derivatives of reproducing kernel approximants

3.2.1 Two-dimensional problems

Since the reproducing kernel approximant uR(x, y) is given in (28), the first deriva-
tives of uR(x, y) are therefore expressed as

∂ uR(x, y)
∂ x

=
NP

∑
l=1

ψ
(x)
l (x, y) ûl, (38a)

∂ uR(x, y)
∂ y

=
NP

∑
l=1

ψ
(y)
l (x, y) ûl, (38b)

where ψ
(x)
l and ψ

(y)
l denote the shape functions for the first-order derivatives of the

approximant with respect to x and y, respectively.
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There is a similar derivation for determining ψl(x, y), in which we express ψ
(x)
l (x, y)

in the form of

ψ
(x)
l (x, y) = w̄a(x− xl, y− yl) C̄x(x, y; x− xl, y− yl), (39)

where C̄x(x, y; x− xl, y− yl) = P̄T (x− xl, y− yl) b̄x(x, y),

b̄T
x (x, y) =

[
b̄(x)

0 (x, y) b̄(x)
1 (x, y) b̄(x)

2 (x, y) · · · b̄(x)
(n+1)(n+2)/2(x, y)

]
.

The differential reproducing conditions for a set of complete nth-order polynomials
are given as

NP

∑
l=1

ψ
(x)
l (x, y) xr

l ys
l = r xr−1 ys r + s≤ n. (40)

Equation (40) can be rearranged and explicitly written as follows.
r = s = 0 :

NP

∑
l=1

ψ
(x)
l (x, y) = 0, (41)

r = 1, s = 0 :

NP

∑
l=1

ψ
(x)
l (x, y) (x− xl) = x

NP

∑
l=1

ψ
(x)
l (x, y)−

NP

∑
l=1

ψ
(x)
l (x, y)xl =−1, (42)

r = 0, s = 1 :

NP

∑
l=1

ψ
(x)
l (x, y) (y− yl) = y

NP

∑
l=1

ψ
(x)
l (x, y)−

NP

∑
l=1

ψ
(x)
l (x, y)yl = 0, (43)

...

r = 0, s = n :

NP

∑
l=1

ψ
(x)
l (x, y) (y− yl)n = 0. (44)
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By using (39), we rewrite the previous reproducing conditions (41)-(44) in the ma-
trix form of

NP

∑
l=1

P̄(x− xl, y− yl)ψ
(x)
l (x, y)

=
NP

∑
l=1

P̄(x− xl, y− yl) w̄a(x− xl, y− yl) P̄T (x− xl, y− yl) b̄x(x, y)

= (−1)
∂ P̄
∂ x

(0, 0)

(45)

where ∂ P̄
∂ x (0, 0) =

[
0 −1 0 · · · 0

]T .

According to the reproducing conditions in (45), the undetermined function matrix
b̄x(x, y)can then be obtained and given by

b̄x(x, y) = (−1)Ā−1(x, y)
∂ P̄
∂ x

(0, 0). (46)

Substituting (46) into (28) yields the shape functions for
(
∂ uR/∂x

)
in the form of

ψ
(x)
l (x, y) = (−1) w̄a(x− xl, y− yl) P̄T (x− xl, y− yl) Ā−1(x, y)

∂ P̄
∂ x

(0, 0). (47)

Similarly, we can express ψ
(y)
l as

ψ
(y)
l (x, y) = (−1) w̄a(x− xl, y− yl) P̄T (x− xl, y− yl) Ā−1(x, y)

∂ P̄
∂ y

(0, 0). (48)

Carrying out the same derivation for the higher-order derivatives of the RK approx-
imant leads to

∂ p+q uR(x, y)
∂ xp ∂ yq =

NP

∑
l=1

ψ
(

p︷︸︸︷
xx...

q︷︸︸︷
yy...)

l (x, y) ûl, (49)

where

ψ
(

p︷︸︸︷
xx · · ·

q︷︸︸︷
yy · · ·)

l (x, y) =

(−1)p+q w̄a(x− xl, y− yl) P̄T (x− xl, y− yl) Ā−1(x, y)
∂ p+q P̄

∂ xp ∂ yq (0, 0).
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3.2.2 Three-dimensional problems

Similarly, the higher-order derivatives of the reproducing kernel approximant for
three-dimensional problems are

∂ p+q+t uB(x, y, z)
∂ xp ∂ yq ∂ zt =

NP

∑
l=1

ϕ
(

p︷︸︸︷
xx...

q︷︸︸︷
yy...

t︷︸︸︷
zz... )

l (x, y, z) ûl, (50)

where

ϕ
(

p︷︸︸︷
xx · · ·

q︷︸︸︷
yy · · ·

t︷︸︸︷
zz... )

l (x, y, z)

= (−1)p+q+t w̃a(x− xl, y− yl, z− zl) P̃T (x− xl, y− yl, z− zl) Ã−1(x, y, z)

∂ p+q+t P̃
∂ xp ∂ yq ∂ zt (0, 0, 0).

4 Applications

A point collocation method based on the present DRK approximation is formulated
and applied to a variety of structural problems in the following illustrative exam-
ples. The present solutions of the DRK approximation-based collocation method
are compared with the exact solutions available in the literature to validate its ac-
curacy and find the rate of convergence.

4.1 Static analysis of bars

The static analysis of a uniform bar with homogeneous isotropic material properties
and under a sinusoidally distributed load ( f (x)) in the x direction, is considered and
shown in Fig. 2. The edge at the left hand side is clamped and at the right hand side
is free. The governing equation of the uniform bar is given by

AE
d2u(x)

d x2 + f (x) = 0 in 0 < x < L, (51)

where f (x) = f0 sin(π x/L), AE is the axial rigidity of the beam, and L is the length
of the bar.

Equation (51) is normalized and rewritten as

d2ū
d x̄2 + f̄ (x̄) = 0 in 0 < x̄ < 1 (52)
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Figure 2: The configuration, coordinates and loading condition of a uniform bar

where x̄ = x/L, ū = AE u/ f0L2, f̄ (x̄) = f (x)/ f0 (or f̄ (x̄) = sin (π x̄)), f0 is a ref-
erence magnitude of the distributed load.

The boundary conditions in the dimensionless form are given as

ū = 0 at x̄ = 0, (53a)

AE
d ū
d x̄

= 0 at x̄ = 1. (53b)

Randomly selecting NP sampling points and applying the present DRK approximation-
based collocation method to (52) at each nodal point in the bar domain leads to

NP

∑
l=1

φ
(2)
l (x̄k) ûl =−sin (π x̄k) for k = 1, 2, 3, · · · ,NP, (54)

Similarly, applying the present method to the edge conditions leads to

NP

∑
l=1

φl(0) ûl = 0, (55a)

NP

∑
l=1

φ
(1)
l (1) ûl = 0. (55b)

The set of equations (54) and (55) represents a mathematical system consisting of
(NP+2) simultaneously algebraic equations in terms of NP unknowns. The present
solutions can then be obtained by solving the previous set of algebraic equations
using a weighted least squares method with a weight number of 10,000 for the
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essential boundary condition (55a), 100 for the natural boundary condition (55b),
and 1 for Euler equations (54). The present solution is validated by the exact so-
lutions of horizontal displacement ([ū(x̄)]exact = 1

π2 sin(π x̄) + x̄
π

) and axial force
([P̄(x̄)]exact = 1

π
cos(π x̄)+ 1

π
).

Tables 1-3 show the present solutions of maximum axial displacement and axial
force of the bar using the uniform distributions of nodes. In the implementation,
the spacing between adjacent nodes (∆x/L) is taken as 1/8, 1/16, 1/24; the highest-
order of the basis functions n=2, 3, 4; and the support size a= 2.1∆x, 2.6∆x, for
n=2 in Table 1, a= 3.1∆x, 3.6∆x for n=3 in Table 2; a= 4.1∆x, 4.6∆x for n=4 in
Table 3. In comparison with the exact solutions, it is observed from Tables 1-3
that the accurate solutions are obtained when a ≈2.6∆x is used in the case of n=2,
a ≈3.1∆x in the case of n=3, and a ≈4.1∆x in the case of n=4; that the variation
of the present solutions with the values of free-chosen parameter α is minor, and
the present solutions obtained using the normalized Gaussian with α=0.3 yield the
best accuracy among those obtained using the normalized Gaussian with α=0.4,
0.5 and using the other weight functions; and that the error norms of the present
solutions of both the maximum displacement and axial force of the bar, obtained
using ∆x=1/16, α = 0.3, n=3 and a=3.1∆x, is less than 0.8% in comparison with
the exact solutions.

The support size must not remain constant in the cases of random and non-uniform
distribution of nodes, and the suitable support size of each sampling node will be
dependent upon a fixed number of nearest neighboring nodes (NI) included in the
support region. According to the results in Tables 1-3, we suggest that the appropri-
ate support size for each sampling node is determined by including about (2n+1)
nearest neighboring nodes (i.e., NI ≈ (2n+1) or NI ≈ (2Nn−1) in which Nn is the
total number of basis functions). This guidance of NI ≈ (2Nn−1) has also been ex-
tended to the following multi-dimensional problems. Fig. 3 shows the convergence
rate of the displacement and axial force in the cases of n=2, 3, 4. It is shown that
the present solutions of horizontal displacement obtained using n=2 and n=3 yield
the convergence rate R ≈ 2.0. The convergence rate in the case of n=4 is much
improved, and is up toR≈ 4.0. Fig. 4 shows the present results for the distributions
of horizontal displacement and axial force functions along the length direction of
the bar using three different node-distributions (i.e., node distributions A, B and C)
in which node distribution A is uniform with ∆x/L=1/8, node distributions B and C
are non-uniform with three different spacing (∆x/L=1/16, 1/8 and 1/4) through the
whole bar domain, and a variant support size with a fixed value of NI=5 for each
sampling point and n=2 are used. It is shown that the present DRK approximation-
based collocation solution using either the uniform or non-uniform distribution of
nodes is in good agreement with the exact solution; Moreover, the present solu-
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 Figure 3: The convergence rate of the displacement and axial force in the cases of
n=2, 3, 4
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 Figure 4: The present results for the distributions of horizontal displacement
and axial force along the length direction of the bar using three different node-
distributions
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 Figure 5: The through-length distributions of the shape functions for the RK ap-
proximant
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tions are precisely satisfied both the essential boundary condition (u(0) = 0) and
the natural boundary condition (P(1) = 0).

In order to have a clearer picture of the distributions of shape functions for the
DRK approximant and its first-order and second-order derivatives along the bar
domain, we present the through-length distribution of φl(x) (l=1∼5) and (φ (1)

5 , φ
(2)
5 )

in Figs. 5 and 6, respectively. It is shown that these shape functions smoothly and
continuously vary along the length coordinate of the bar.

4.2 2D potential problems

A 2D potential problem governed by a Laplace equation in a square domain and
associated with Dirichlet boundary conditions along the four edges is studied using
the present DRK approximation-based collocation method. The problem was pro-
posed and analyzed by Aluru (2000) using an RK approximation-based collocation
method, and the governing equation for it is given as

∂ 2Φ

∂ x2 +
∂ 2Φ

∂ y2 = 0 0 < x < 1, 0 < y < 1, (56)

where Φ is the unknown function.

The boundary conditions on the four edges are prescribed as

Φ(x = 0) =−y3, Φ (x = 1) =−1− y3 +3y2 +3y,

Φ (y = 0) =−x3, Φ (y = 1) =−1− x3 +3x2 +3x. (57)

The exact solution is given as

Φ (x, y) =−x3− y3 +3xy2 +3x2 y. (58)

In the implementation, three sets of uniformly distributed nodes (5x5, 9x9 and
17x17) and a set of randomly distributed nodes (289 nodes) are used for the present
analysis. Fig. 7 shows the node distributions in the square domain for a uniform dis-
tribution of (17x17) nodes and a random distribution of 289 nodes. Table 4 shows
the present results of the unknown function (Φ) and its derivatives with respect tox
and y(i.e., Φ,x and Φ,y) using the uniform distributions of (5x5), (9x9) and (17x17)
nodes. The support size of each sampling node is considered to be variant, but the
number of nearest neighboring nodes (NI) included in this support domain of each
sampling node remains the same, with NI taken to be 9, 11, 13 when n=2, and to
be 17, 19, 21 when n=3. Because the exact solutions fall into the space spanned by
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Figure 7: The node arrangements in the square domain for a uniform distribution
of (17x17) nodes and a random distribution of 289 nodes
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Figure 8: The rate of convergence of the unknown function and its derivatives for
n=2

the complete set of third-order basis functions (n=3), it is seen in Table 4 that the
present solutions with n=3 are identical to the exact solutions in the cases of (5x5),
(9x9) and (17x17) nodes; in the case of (9x9) nodes with n=2 and NI=11, the rela-
tive errors of the unknown function and its derivatives is less than 1%. Fig. 8 shows
the rate of convergence of the unknown function and its derivatives for n=2. It is
shown that the rate of convergence (R) is about 1.978 for Φ, and about 1.536 for
both Φ,x and Φ,y. The present solutions of (Φ, Φ,x and Φ,y) at the 17x17 nodes,
computed using a uniform distribution of (17x17) nodes and interpolated using the
computed results of a random distribution of 289 nodes, are shown in Figs. 9_11,
and it is found that both the computed and interpolated solutions are in excellent
agreement with the exact solutions.

4.3 Plane elasticity problems

The present DRK approximation-based collocation method is further applied to a
typical patch test of plane elasticity problems, as well as the problem of an infi-
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 Figure 9: The present solution of
Φ using a uniform distribution of
(17x17) nodes and a random distribu-
tion of 289 nodes
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 Figure 10: The present solution of
Φ,x using a uniform distribution of
(17x17) nodes and a random distribu-
tion of 289 nodes



A Meshless Collocation Method 29

nite plate with a central hole where the material properties of the plane bodies are
considered to be homogeneous and isotropic. The governing equations of plane
elasticity in terms of the displacement components in the x and y directions are
given as follows:

c11 u,xx +c33u,yy +(c12 + c33) v,xy = 0, (59)

(c12 + c33) u,xy +c33v,xx +c22 vyy = 0, (60)

where u and v denote the displacement components in the x and y directions, re-
spectively; and ci j (i, j=1,2, 3) are the elastic stiffness coefficients.

The possible boundary conditions at each point on the boundary edge are

either (c11 u,x +c12 v,y) nx + c33 (u,y +v,x) ny = t̂x or u = û, (61a)

either c33 (u,y +v,x) nx + (c12 u,x +c22 v,y) ny = t̂y or v = v̂, (61b)

where nx and ny are the direction cosines of the unit vector relative to the given
coordinates; t̂x and t̂y are the traction components; and û and v̂ are the prescribed
displacement components.

4.3.1 Patch test

A patch test of plane elasticity problems is considered (Oñate, Perazzo and Miquel,
2001). In the patch test, a rectangular plate for which the in-plane dimensions
are 6x12 units is subjected to a uniform tensile stress with the magnitude of one
at two edges in the x direction and is shown in Fig. 12. A quarter-plate model
is used for the present analysis. The material properties of the plate are given as
E=1 and υ=0.25. The exact solutions are u = x, v =−y/4, σx = 1 and σy = τxy =
0. Fig. 13 shows the node arrangements of a uniform distribution of nodes (4x7)
and a random distribution of 28 nodes. Because the exact solutions fall in the
space spanned by the complete sets of one-order, two-order or higher-order basis
functions, the present solutions with n=1, 2 or any other positive integer should lead
to the exact solutions using the uniform distribution of 4x7 and random distribution
of 28 nodes. As expected, Table 5 shows the present solutions with a random
distribution of 28 nodes and n=2 coincide precisely with the exact solutions. Figs.
14_15 show the present solutions of in-plane displacements at the 4x7 nodes which
are computed using a uniform distribution of (4x7) nodes and interpolated using the
computed results of a random distribution of 28 nodes. Again, it is noted that both
the computed and interpolated solutions coincide precisely with the exact solutions.
Based on the results of Table 5 and Figs. 14-15, we may conclude that the present
DRK approximation-based collocation method passes the patch test of 2D plane
elasticity, which is commonly used to validate the feasibility of a new numerical
method in the literature.
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Figure 11: The present solution of Φ,y using a uniform distribution of (17x17)
nodes and a random distribution of 289 nodes
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1=xσ

 

Figure 12: The configuration, coordinates and loading condition of a rectangular
plate in a patch test

4.3.2 Infinite plate with a circular hole

An infinite plate with a central hole of radius a (a=1m) and subjected to a uniformly
distributed traction σ0 (σ0=1N/m2) in the x direction, is considered and shown in
Fig. 16. The material properties are assumed to be homogeneous and isotropic and
given as E =1000 N/m2 and υ=0.3. The exact solutions for stress components are
given as

σx = σ0

[
1− a2

r2

(
3
2

cos2θ + cos4θ

)
+

3a4

2r4 cos4θ

]
, (62a)

σy = σ0

[
−a2

r2

(
1
2

cos2θ − cos4θ

)
− 3a4

2r4 cos4θ

]
, (62b)

τxy = σ0

[
−a2

r2

(
1
2

sin2θ + sin4θ

)
+

3a4

2r4 sin4θ

]
, (62c)

where (r, θ) are the polar coordinates and θ is measured from the positive x axis
counterclockwise.

The present DRK approximation-based collocation method is used to solve this
problem, where a quarter-plate model is used due to symmetry. In the present anal-
ysis, three different non-uniform distributions of (NP×NP) nodes are considered,
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 Figure 13: The node arrangements in the rectangular domain for a uniform distri-

bution of (4x7) nodes and a random distribution of 28 nodes

Table 6: The magnitudes of in-plane stress σx at point (r=1.0, θ = 900) calculated
using the distributions of (13x13), (15x15) and (17x17) nodes.

Distributions of nodes n NI σ x (L2)Π

13×13 3 26 2.5726 7.57e-03
15×15 3 26 2.7805 4.12e-03
17×17 3 26 2.9384 2.32e-03
Exact solutions 3.0000
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Figure 14: The present solution of u
using a uniform distribution of (4x7)
nodes and a random distribution of 28
nodes
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Figure 15: The present solution of v
using a uniform distribution of (4x7)
nodes and a random distribution of 28
nodes
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4m
1m

 
Figure 16: The configuration, coordinates and loading condition of an infinite plate
with central hole

where NP = 13, 15, 17; and the node arrangements are ∆θ = π/2(NP− 1) and
ri = 1 + [(i−1)/(NP−1)]2 (5−1) , (i = 1, 2, · · ·NP) in the r and θ directions,
respectively. The node arrangement of the distribution of (17x17) nodes is shown
in Fig. 17, in which the spacing between adjacent nodes is taken to be smaller,
when the nodes become close to the hole. Fig. 18 shows the distribution of the
stress component σx along the left edge (x=0 and 1m < y < 5m). It is shown that
the present solutions obtained using the distributions of both (15x15) and (17x17)
nodes are in good agreement with the exact solutions, and the present (17x17)-node
solutions are slightly more accurate than those of (15x15)-node solutions. Table 6
shows both the magnitudes of the in-plane stress σx at a crucial position (r=1m,
θ = 900) and the relative errors of the strain energy of the quarter plate using the
distributions of (13x13), (15x15) and (17x17) nodes. The present solutions of the
stress concentration factor (σx/σ0) at the point (r=1.0, θ = 900), which is obtained
using the non-uniform distributions of (13x13), (15x15), (17x17) nodes, are 2.5726,
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Figure 17: The node arrangement of a non-uniform distribution of (17x17) nodes

2.7805 and 2.9384, respectively. The stress concentration factor obtained using the
distribution of (17x17)-nodes are 2,9384 are in good agreement with the exact so-
lution which is 3, and its associated error norm of the strain energy of the quarter
plate is 0.23%.

5 Concluding remarks

A DRK approximation-based collocation method has been proposed for solving the
physical problems governed by the ordinary or partial differential equations with
a set of appropriate boundary conditions. Unlike the conventional RK approxima-
tion, in which directly differentiating the shape functions of RK approximants was
used to obtain the derivatives of RK approximants, we constructed a set of differ-
ential reproducing conditions to achieve this. The present DRK approximation-
based collocation method has been applied to some one- and two-dimensional
problems to validate its performance with regard to the static behavior of bars, a
two-dimensional potential problem, a typical patch test of plane elasticity prob-
lems and an infinite plate with a central circular hole. It is shown that the present
DRK approximation-based collocation method can be readily used to determine the
derivatives of RK approximants, and the present DRK approximation solutions are



36 Copyright © 2010 Tech Science Press CMES, vol.60, no.1, pp.1-39, 2010

 

Figure 18: The distribution of the in-plane stress component (σx) along the edge
(x=0 and 1m<y<5m)

very close to the available exact solutions with a rapid rate of convergence. Some
guidance for using this method was also presented in this work. Specifically, the
highest-order of basis functions used was suggested to be one or two orders higher
than the highest-order of the governing equations. In addition, the support size for
each sampling node was suggested to include about (2Nn−1) nearest neighboring
nodes for one-dimensional bar problems and two-dimensional potential problems,
while for plane elasticity problems, the optimal values of NI will be larger than the
earlier suggested value (i.e., NI > 2Nn− 1). In the case of n=3, the optimal val-
ues of NI are NI=7 for one-dimensional bar problems, NI=19 for two-dimensional
potential problems, and NI=26 for plane elasticity problems.
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