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A Topology Optimization of Moderately Thick Plates
Based on the Meshless Numerical Method

S.L. Li1,2, S.Y. Long1 and G.Y. Li1

Abstract: A new implementation of topology optimization for the plate described
by the Reissner-Mindlin theory based on the meshless natural neighbour Petrov-
Galerkin method (NNPG) is proposed in this work. The objective is to produce the
stiffest plate for a given volume by redistributing the material throughout the plate.
We try to couple the advantages of the meshless numerical method with the topol-
ogy optimization of moderately thick plate. The numerical approach presented here
is based on the solid isotropic material with penalization (SIMP) formulation of the
topology optimization problem. The natural neighbour interpolation shape func-
tion is employed to discretize both displacement and bulk density fields. Several
examples are provided to illustrate the validity and effectiveness of the proposed
method.

Keywords: topology optimization; meshless method; Reissner-Mindlin plate; the
natural neighbour interpolation; SIMP

1 Introduction

Topology optimization of the continuum structure is one of the most difficult and
challenging areas of the structural optimization [Bendsoe and Sigmund (2003)].
The goal of a typical topology optimization problem is to determine the layout
of the most rigid structure capable of supporting a given load, constrained by the
amount of material available and restricted spatially to be within a prescribed pack-
age space. Ever since Bendsoe and Kikuchi (1988) introduced the topology opti-
mization using a so-called microstructure or homogenization method, many topol-
ogy optimization methods have been developed including the so-called “power-law
approach” or SIMP approach (Solid Isotropic Material with Penalization) [Bendsoe
(1989), Zhou and Rozvany (1991), Bendsoe and Sigmund (1999)], the evolution-
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ary approach [Xie and Steven (1993)], the level-set method [Wang et al. (2003)],
and the implicit topology description function (ITDF) method [Belytschko et al.
(2003)], etc.

Up to now, the prevailing analysis method in the topology optimization is the finite
element method (FEM), and most of the numerical methods used in topology op-
timization literatures are mesh-based methods. However, for these methods, there
are some shortcomings such as mesh distortion, frequent remeshing when dealing
with large deformation or moving boundary problems, etc. These shortcomings are
even more acute when dealing with topology optimization problems. In this kind
of problems, it is vital to obtain accurate structural responses. In recent years, con-
siderable efforts have been devoted to develop various meshless methods to avoid
the mesh-related difficulties. Many meshless methods have been proposed, such
as the smooth particle hydrodynamics (SPH) [Monaghan (1977)], the element-free
Galerkin method (EFG) [Belytschko et al. (1994)], the reproducing kernel particle
method (RKPM) [Liu et al. (1995)], the meshless local Petrov-Galerkin method
(MLPG) [Atluri and Zhu (1998)], the Natural Element Method (NEM) [Braun and
Sambridge (1995); Sukumar et al. (1998)] and several others. The meshless local
Petrov-Galerkin method (MLPG) which based on local weak formulation proposed
a new integration method in a local domain and permits trial and test functions from
different spaces. Remarkable successes of the MLPG and their variation have been
reported in high-speed impact, penetration and perforation Problems [Han et al.
(2006)], dynamic fracture problems [Gao et al. (2006)], elastic transient analysis
[Sellountos et al. (2009)], etc. Recently, the natural neighbour Petrov-Galerkin
method (NNPG) was proposed by Wang et al (2005), which intends to combine the
advantage of easy imposition of essential boundary conditions of the NEM with
some prominent features of the MLPG.

Plate structures are widely used in many engineering structures. It is well known
that the classical thin plate theory of Kirchhoff gives rise to certain non-physical
simplifications from the omission of the shear deformations and rotary inertia,
which are growing significantly for increasing thickness of the plate. The effects of
shear deformation and rotary inertia are taken into account in the Reissner–Mindlin
plate bending theory [Reissner (1945), Mindlin (1951)]. In recent years, the anal-
ysis of Reissner–Mindlin plates by meshless methods has been object of attention
and studied extensively. The elastic analysis of Reissner-Mindlin plates was con-
sidered in Donning and Liu (1998) using the EFG and in Garcia et al. (2000) re-
sorting to the hp-clouds method. The Elasto-plastic analysis of Reissner–Mindlin
plates by the EFG has been reported in Belinha and Dinis (2006). Geometrically
nonlinear analysis of Reissner-Mindlin plate by the meshless collocation method
was given by Wen and Hon (2007). Dynamic bending problems and viscoelastic
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analysis of Reissner-Mindlin plate were studied by Sladek et al (2007, 2008a) re-
sorting to the MLPG. Sladek et al (2008b) also applied the MLPG to the thermal
analysis of Reissner-Mindlin shallow shells with FGM properties. The problem of
finding optimum topologies for plate structures has been treated extensively in the
literature. The use of topology design in general and the homogenization approach
in particular for Mindlin plates and shells is discussed in Soto and Diaz (1993),
Diaz et al (1995), Lipton and Diaz (1997). Topology optimization of plates with
prestress was given by Pedersen (2001). Maximizing the band gap size for bending
waves in a Mindlin plate is the theme of Halkjær et al (2006). Topological ma-
terial layout in plates for vibration suppression and wave propagation control was
considered in Larsen et al (2009).

In the present paper, a new implementation of the topology optimization for Reissner-
Mindlin plate using the meshless natural neighbour Petrov-Galerkin method (NNPG)
is proposed. In most papers that deal with the optimization of plate the problem is
formulated as a case of reinforcement optimization, and the topology optimiza-
tion problem is formulated using the homogenization method. In this case it is
the reinforcement which is topology optimized and not the basic structure. In the
present paper, based on a meshless NNPG model of the plate, the SIMP formula-
tion of the topology optimization problem and the optimality criteria method for
iterative optimization will be used. In the NNPG, the trial functions on a local do-
main are constructed using the natural neighbour interpolation and shape functions
of the three-node triangular element in FEM are taken as test functions. The nat-
ural neighbour interpolation shape function which has Kronecker Delta function
property is employed to discretize both displacement and bulk density fields. The
checkerboard layout is one of the frequently encountered numerical instabilities in
the topology optimization. To ensure existence of solutions, the SIMP approach
must be combined with a perimeter constraint, a gradient constraint or with filter-
ing techniques [Sigmund and Petersson (1998)]. However, by virtue of the contin-
uous density fields employed in this work (The natural neighbour interpolants are
smooth everywhere, except at the nodes where they are C0), the proposed method
effectively eliminates checkerboard patterns of the material distribution without us-
ing any extra filtering techniques.

The outline of this paper is as follows. In Section 2, a brief review of the natural
neighbour interpolation is presented. In Section 3, we briefly describe the NNPG
method for the Reissner-Mindlin plate bending problems. The formulations of the
topology optimization for plates based on the meshless NNPG method are given
in Section 4. In Section 5, several numerical examples of topology optimization
problems are presented to demonstrate the validity and feasibility of the proposed
method. The paper ends with some conclusions that are presented in Section 6.
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2 Natural neighbour interpolation

The natural neighbour interpolation is based on the well-known Voronoi diagram
and Delaunay tessellation. Consider a set of distinct nodes N = {n1,n2, · · · ,nM} in
R2. The Voronoi diagram (or 1st-order Voronoi diagram) of the set N is a subdivi-
sion of the plane into regions Ti, where each region Ti is associated with a node ni,
such that any point in Ti is closer to ni (nearest neighbour) than to any other node
n j ∈ N ( j 6= i), in mathematical terms:

Ti =
{

x ∈ R2 : d (x,xi) < d (x,x j)∀ j 6= i
}

(1)

where d (x,xi) is the distance between x and xi. The Voronoi cell Ti is the in-
tersection of finitely many open half-spaces, being delimited by the perpendicu-
lar bisectors of the lines which connect the node ni with its natural neighbours.
The Delaunay triangulation, which is the dual of the Voronoi diagram, is con-
structed by connecting the nodes whose Voronoi cells have common boundaries.
The important property of Delaunay triangles is the empty circumcircle criterion—
if DT(n j,nk,nl) is any Delaunay triangle of the nodal set N, then the circumcircle
of DT contains no other nodes of N. This criterion is used to find the natural
neighbours of a point x (like integration points). If the point x lies within the cir-
cumcircle of a triangle DT(n j,nk,nl), then n j, nk and nl are its natural neighbours.
The Voronoi diagram and the Delaunay triangulation of a set of nodes are shown in
Figure 1.

 

Figure 1: Voronoi diagram, Delaunay
triangulation of a set of nodes

 

Figure 2: Construction of natural neigh-
bour coordinates

In order to quantify the neighbour relation for any point x introduced into the tes-
sellation, the second-order Voronoi cell of point x is constructed as shown in Figure
2. The natural neighbour shape function of x with respect to a natural neighbour i
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is defined as the ratio of the area of overlap of their Voronoi cells to the total area
of the Voronoi cell of x:

Φi (x) = Ai (x)/A(x) (2)

where i ranges from 1 to n (the number of the natural neighbours of point x), and
A(x) = ∑

n
j=1 A j (x). The four regions shown in Figure 2 are the second-order cells,

while their union (closed polygon abcd) is the first-order Voronoi cell. Referring to
Figure 2, the shape function Φ1 (x) is given by

Φ1 (x) = Aab f e/Aabcd (3)

The derivatives of the shape functions are obtained by differentiating equation (2):

Φi, j (x) =
Ai, j (x)−Φi (x)A, j (x)

A(x)
( j = 1,2) (4)

The displacement approximations uh (x) of point x can be written as

uh (x) =
n

∑
i=1

Φi (x)ui (5)

where ui (i = 1, · · · ,n) are the vectors of nodal displacements at the n natural neigh-
bours, and Φi (x) are the shape functions associated with each node.

By definition of the shape function given in equation (2), the following remarkable
properties that are important to construct the approximation functional spaces is
self-evident [Sukumar et al. (1998)]:

0≤Φi (x)≤ 1 (6)

Φi (x j) = δi j (7)
n

∑
i=1

Φi (x) = 1 (8)

x =
n

∑
i=1

Φi (x)xi (9)

Equation (7) implies that the NEM interpolant passed through the nodal values,
and the essential boundary conditions can be imposed directly. Equations (8) and
(9) defines a partition of unity and linear completeness, which imply that the shape
functions can reproduce the rigid body displacement and the constant strain. The
more detailed discussion of the NEM interpolation can be found in Sukumar et al.
(1998).
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3 Governing equations for the Reissner-Mindlin plate theory and their local
weak form

Consider an elastic plate of constant thickness h with a domain Ω, the x1−x2 plane
is assumed to coincide with the mean surface of the plate. The governing equations
of the Reissner-Mindlin plate for bending problem can be expressed as

Mi j, j−Qi = 0 i, j = 1,2; in Ω (10)

Qi,i +q = 0 i = 1,2; in Ω (11)

Where Mi j denote the bending and torsional moments, Qi are the shear forces, and
q is the transverse load on the middle plane in unit area. Mi j and Qi are expressed
in terms of the rotations and the lateral displacement as

Mi j =
1−ν

2
D
(

θi, j +θ j,i +
2ν

1−ν
θγ,γδi j

)
(12)

Qi =
D(1−ν)

2
λ

2 (θi +w,i) (13)

Where θi denotes the rotation in the xi− direction, w represents the out-of-plane
deflection, D = Eh3/

[
12
(
1−ν2

)]
denotes the plate flexural stiffness, with E being

Young’s modulus, ν being Poisson’s ratio, and λ 2 = 10/h2 is the shear correction
factor of the Reissner theory. The shear correction factor κ2 of the Mindlin theory
is usually taken as 5/6 in order for the two theories to coincide provided that λ 2 =
12κ2/h2.

As the natural neighbour shape functions have the Kronecker delta function prop-
erty, neither Lagrange multiplier nor penalty parameter is needed to impose the
essential boundary condition. In sub-domain Ω s which is a small region taken for
each node, the generalized local weak form of the governing equations (10) and
(11) can be written as∫

Ωs

WI (Mi j, j−Qi)dΩ = 0 (14)

∫
Ωs

WI (Qi,i +q)dΩ = 0 (15)

where WI is the test function. Using Gaussian divergence theorem, Equation (14)
can be written as∫

Γs

WIMi jn jdΓ−
∫

Ωs

WI, jMi jdΩ−
∫

Ωs

WIQidΩ = 0 (16)
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that is

∫
Ωs

[
WI,x 0 WI,y

0 WI,y WI,x

]
Mx

My

Mxy

dΩ−
∫

Γs

WI

[
nx 0 ny

0 ny nx

]
Mx

My

Mxy

dΓ

+
∫

Ωs

WI

{
Qx

Qy

}
dΩ = 0 (17)

Analogously, equation (15) can be written as∫
Γs

WIQinidΓ−
∫

Ωs

WI,iQidΩ+
∫

Ωs

WIqdΩ = 0 (18)

that is∫
Ωs

[
WI,x WI,y

]{Qx

Qy

}
dΩ−

∫
Γs

WI
[
nx ny

]{Qx

Qy

}
dΓ−

∫
Ωs

WIqdΩ = 0 (19)

Combining equations (17) and (19) gives

∫
Ωs

WI,x 0 WI,y WI 0
0 WI,y WI,x 0 WI

0 0 0 WI,x WI,y




Mx

My

Mxy

Qx

Qy

dΩ

−
∫

Γs

WI

nx 0 ny 0 0
0 ny nx 0 0
0 0 0 nx ny




Mx

My

Mxy

Qx

Qy

dΓ−
∫

Ωs

WI


0
0
q

dΩ = 0 (20)

succinctly as∫
Ωs

LWIσσσdΩ−
∫

Γs

WIN̄σσσdΓ−
∫

Ωs

WIbdΩ = 0 (21)

Where

L =


∂

∂x 0 ∂

∂y 1 0
0 ∂

∂y
∂

∂x 0 1
0 0 0 ∂

∂x
∂

∂y

 (22)
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N̄ =

nx 0 ny 0 0
0 ny nx 0 0
0 0 0 nx ny

 (23)

σσσ =
[
Mx My Mxy Qx Qy

]T (24)

b =
[
0 0 q

]T (25)

Where the boundary Γs for the sub-domain Ωs usually consists of three parts: the
internal boundary Γsi, which does not intersect with the global boundary, the bound-
ary Γsu and Γst , over which the essential and natural boundary conditions are pre-
scribed. Noting that n jσi j = t̄i holds on the Γst , equation (21) becomes∫

Ωs

LWIσσσdΩ−
∫

Γsu

WIN̄σσσdΓ−
∫

Γsi

WIN̄σσσdΓ =
∫

Ωs

WIbdΩ+
∫

Γst

WI t̄dΓ (26)

For a sub-domain located entirely within the global domain, there is no intersection
with the global boundary, in such a case, the integrals over Γsu and Γst vanish. To
simplify the above equation, the test function WI can be deliberately selected such
that the support of test function WI is coincident with sub-domain Ωs. This can be
easily accomplished by selecting the three-node triangular FEM shape function NI

as test function. As a result, the integral over Γsi vanishes due to the zero value of
the test function, and the continuous form of the NNPG formulation for Reissner-
Mindlin plate theory is obtained∫

Ωs

LNIσσσdΩ−
∫

Γsu

NIN̄σσσdΓ =
∫

Ωs

NIbdΩ+
∫

Γst

NI t̄dΓ (27)

For the numerical implementation, the discrete form of equation (27) is used, which
is obtained by substituting the approximation of the displacement (5) into equation
(27).∫

Ωs

VdIDBudΩ−
∫

Γsu

VIN̄DBudΓ =
∫

Ωs

VIbdΩ+
∫

Γst

VI t̄dΓ (28)

Where u =
[
(θx)1 (θy)1 w1 · · · (θx)n (θy)n wn

]T is the vector of nodal
displacements. For simplicity, the matrix forms of the discrete equations can be
written as

(KI)3×3n u3n×1 = (FI)3×1 (29)

where KI and FI are the nodal stiffness matrix and nodal force vector of the node
I, respectively.

KI =
∫

Ωs

VdIDBdΩ−
∫

Γsu

VIN̄DBdΓ (30)
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FI =
∫

Ωs

VIbdΩ+
∫

Γst

VI t̄dΓ (31)

In above equations, B is the strain matrix, and D is the constant material matrix. VI

and VdI are the matrices of test function and their derivative, respectively. These
matrices are defined as follows:

B =


Φ1,x 0 0 · · · Φn,x 0 0

0 Φ1,y 0 · · · 0 Φn,y 0
Φ1,y Φ1,x 0 · · · Φn,y Φn,x 0
Φ1 0 Φ1,x · · · Φn 0 Φn,x

0 Φ1 Φ1,y · · · 0 Φn Φn,y

 (32)

D =


D νD 0 0 0

νD D 0 0 0
0 0 (1−ν)D

2 0 0
0 0 0 (1−ν)D

2 λ 2 0
0 0 0 0 (1−ν)D

2 λ 2

 (33)

VI =

NI 0 0
0 NI 0
0 0 NI

 (34)

VdI =

NI,x 0 NI,y NI 0
0 NI,y NI,x 0 NI

0 0 0 NI,x NI,y

 (35)

It must be noted that equation (29) represents three linear equations for the sub-
domain of the Ith field node, therefore a total of 3N equations can be obtained for
all N field nodes. The final discrete system equations can be written as follows:

K(3N×3N)U(3N×1) = F(3N×1) (36)

To numerically implement the NNPG, the sub-domains need to be defined. In
NNPG, a set of distinct nodes are placed in the global domain and on its boundary,
and the domain is subdivided by Delaunay tessellations. Each node in the global
domain and on the boundary, e.g. node I, is associated with a local sub-domain Ωs,
which is constructed by collecting all the surrounding Delaunay triangles with node
I being their common vertices. In each sub-domain, the three-node triangular FEM
shape function NI is used as the test function. In the implementation, the domain
integrals over Ωs can be evaluated by the summation of the integrals over included
Delaunay triangles with Gaussian quadrature scheme. In the present work, three
Gaussian points are used for domain integrals in each triangular region and two
Gaussian points are used for boundary integrals.
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4 Formulation of the topology optimization design based on NNPG

In the topology design of a structure we are interested in the determination of the
optimal placement of a given isotropic material in space, i.e., we should determine
which points of space should be material points and which points should remain
void (no material) [Bendsoe and Sigmund (2003)]. The most commonly used ap-
proach to solve this discrete valued design problem (0-1 problem) is to replace
the integer variables with continuous variables and then introduce some form of
penalty that steers the solution to discrete 0-1 values. In present paper, the very
popular and extremely efficient SIMP approach [Bendsoe (1989)] is used.

Ei jkl (x) = ρ (x)P E0
i jkl P > 1∫

Ω
ρ (x)dΩ≤V ; 0≤ ρ (x)≤ 1 x ∈Ω

(37)

Here ρ (x) which resembles a density of material is the design variable, P is the
penalty factor that penalizes the intermediate values of this artificial density func-
tion, E0

i jkl represents the material properties of a given isotropic material, and V is
the amount of material at our disposal. In the SIMP, P > 1 is chosen so that inter-
mediate densities are unfavourable in the sense that the stiffness obtained is small
compared to the cost (volume) of the material.

The natural neighbour interpolation shape function is employed to discretize the
bulk density fields.

ρ (x) =
np

∑
i=1

Φi (x)ρi (38)

Where ρi is the nodal relative density of the ith node, Φi (x) is the same natural
neighbour interpolation shape function which is employed to discretize the dis-
placement field in the structural response analysis, and np is the number of natural
neighbours of x.

A topology optimization for plate bending problem based on the SIMP approach,
where the objective is to minimize compliance, can be formulated in the NNPG
method context as follows:

find ρ (x) , x ∈Ω

min: c = FT U
subject to: KU = F

: Ei jkl (x) = ρ (x)P E0
i jkl

: V =
∫

Ω

ρ (x)dΩ = fV0; 0 < ρmin ≤ ρi ≤ 1

(39)
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where U and F are the global displacement and force vectors, respectively, K is
the global stiffness matrix, V and V0 are the material volume and design domain,
respectively, f is the prescribed volume fraction, and ρmin is a lower bound on the
density which introduced to prevent any possible singularity, ρmin = 0.001 is used
in this paper.

The optimization problem (39) could be solved using several different approaches
such as Optimality Criteria (OC) method [Bendsoe and Kikuchi (1988), Zhou
and Rozvany (1991)], Sequential Linear Programming (SLP) method [Fujii and
Kikuchi (2000)] or Method of Moving Asymptotes (MMA) [Svanberg (1987)] and
others. Since OC method is easy to understand and implement, and is an effective
method for solving large scale problems which comes from the fact that each de-
sign variable is updated independently of the update of the other design variables;
OC method is used in this work. Following Sigmund (2001), a heuristic updating
scheme for the design variables can be formulated as

ρ
new
i =


max(ρmin,ρi−m) if ρiB

η

i ≤max(ρmin,ρi−m)
ρiB

η

i if max(ρmin,ρi−m) < ρiB
η

i < min(1,ρi +m)
min(1,ρi +m) if min(1,ρi +m)≤ ρiB

η

i

(40)

where m is a move limit and η is a tuning parameter, which control the changes
that happen at each iteration step and they can be made adjustable for efficiency of
the method; and Bi is found from the optimality condition as

Bi =− ∂c
∂ρi

(
λ

∂V
∂ρi

)−1

(41)

where λ is a Lagrange multiplier which should be adjusted in an inner iteration
loop in order to satisfy the active volume constraint and can be found by a bisection
method.

In order to complement the presentation of the optimality criteria method, we will
here work with the sensitivity analysis of the minimum compliance problem for-
mulated in equation (39). Referring to the sensitivity analysis in the FEM form,
the adjoint method is used to obtain the sensitivity of the objective function. We
rewrite the objective function by adding the zero function:

c = FT U− ŨT (KU−F) (42)

where Ũ is any arbitrary, but fixed real vector. By the differentiation of above
equation with respect to the design variable ρi, after rearrangement of terms, we
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obtain as

∂c
∂ρi

=
(
FT − ŨT K

) ∂U
∂ρi
− ŨT ∂K

∂ρi
U (43)

This can be written as

∂c
∂ρi

=−ŨT ∂K
∂ρi

U (44)

when Ũ satisfies the adjoint equation:

FT − ŨT K = 0 (45)

Since the stiffness matrix K in the NNPG is asymmetric, Ũ is normally not equal to
U. In contrast to the approach in FEM form, the adjoint equation requires additional
computations in this work. In this way, the derivatives of the displacement are no
need to calculate explicitly. The derivative of the volume constraint with respect to
the design variable is obtained as follows

∂V
∂ρi

=
∫

Ω

ΦidΩ (46)

5 Numerical examples

In this section, several topology optimization problems of plates are chosen as
examples to demonstrate the validity and feasibility of the proposed method. In
all these examples, the elastic material properties are chosen as Young’s modulus
E = 2× 1011Pa and Poisson’s ratio ν = 0.3. A move limit m = 0.2 and a tuning
parameter η = 0.5 are chosen in this work.

To test the convergence and the accuracy of the present method, a uniformly loaded
clamped square plate with side length a = 1.0m and plate thickness h = 0.2m is
considered. For convergence study, the deflection norms is defined as below

‖ w ‖=
(
∫
Ω

w2dΩ

)1/2

(47)

The relative error of the deflection is defined as

r =
‖ wn−we ‖
‖ we ‖

(48)

where the superscripts n and e denote the numerical solutions and exact solutions,
respectively. As “exact” solutions, the FEM results have been used, where a very
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fine mesh discretization with 1600 quadrilateral eight-node shell elements has been
applied. The relative error of the bending moments is defined similarly. To study
the convergence of the method, three regular node distributions with 21 by 21, 33 by
33, 41 by 41 nodes, respectively, are used for the discretization of the domain. The
density of nodes can be characterized by the distance of two neighbouring nodes
s. The relative errors and the convergence rates for central deflection and bending
moment are shown in Figure 3. The convergence rates for both quantities are pretty
high. The relative error of the central deflection is a little lower than for bending
moment. For the finest node distribution with 41 by 41 nodes the relative error
for the central deflection is 0.148% and for the bending moment 0.297%, which
conforms that the present numerical method for Reissner-Mindlin plate is highly
accurate.

 

Figure 3: Relative errors and convergence rates for the central deflection and the
bending moment of a clamped plate.

In the second example, a square clamped plate of constant thickness h with side
length a = 1.5m and a concentrated force F = 1.0×106N applied at the central of
the plate is discussed. A regular node distribution with 31 by 31 nodes is used for
the discretization of the problem domain, and the penalty factor P = 3.0 is used.
The topology optimized results obtained by the present method are shown in Figure
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4. As we can see from Figure 4, by our optimizing, the mid areas of four clamped
edges and central area of the plate, where the bending moments are the largest and
second large areas respectively, are strongly reinforced by redistributing the given
material in space.

In the third example, a square cantilever plate subjected to two downwards forces at
the free end is optimized (see load case 1 in Figure 5). The following geometrical
parameters are used in our optimization: the side length of the plate a = 1.5m, and
the thickness h = 0.1m. Again, a regular node distribution with 31 by 31 nodes is
used for the discretization of the problem domain, and the penalty factor P = 3.0
is used. Figure 6 shows the intermediate steps during the optimization process
for square Reissner-Mindlin cantilever plate loaded with two downward oriented
forces, the final topology optimized design is shown in Figure 6(e).

It should be noticed that all the analysis are carried out in a meshless manner not a
standard lattice mesh, the optimized designs are represented by the relative density
distribution of field nodes (the relative density of each field node is between 0 and
1). The same cantilever plate described in the third example subjected to one down-
wards force and one upwards force at the free end (see load case 2 in Figure 5) is
also considered. The topology optimized design of the square cantilever plate ob-
tained by the present method with 31 by 31 nodal discretization is shown in Figure
7 (Only the field nodes whose relative densities are bigger than 0.8 are shown).

In the last example, the same square plate described in the second example but
with four edges simply supported is investigated. In our numerical tests, the hardly
penalization of the intermediate densities is inadvisable at the beginning of the op-
timization, the penalty factor P = 2.2 is chosen in this example. Resulting topology
for compliance minimization of the square Reissner-Mindlin plates with four edges
simply supported is shown in Figure 8.

For convergence studies, the step-variations of compliance in the optimization pro-
cess both for the clamped plate and simply supported plate are given in Figure
9. Apparently, the topology optimized design for clamped plate is much stiffer
than for simply supported plate by the same material constraints, the compliance
of topology design for simply support plate is about 2.67 times by that for clamped
plate. The convergence speed of the topology optimization for simply supported
plate is little slower than clamped plate by virtue of choosing the smaller penalty
factor.

6 Conclusions

In this paper, a new implementation of the topology optimization for the Reissner-
Mindlin plate using the meshless natural neighbour Petrov-Galerkin method (NNPG)
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(a): h=0.1m, f=0.25 

 

(b): h=0.1m, f=0.3 

 

(c): h=0.1m, f=0.4 

 

(d): h=0.2m, f=0.3

Figure 4: Resulting topologies for compliance minimization of square Reissner-
Mindlin plates with four edges clamped. The material volumes are restricted to
0.25, 0.3 and 0.4, respectively.
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Figure 5: Design problem with loads.

has been described.

In the NNPG, the trial functions on a local domain are constructed based on the
natural neighbour interpolation and shape functions of the three-node triangular
element in FEM are taken as test functions, which reduces the order of integrands
involved in domain integrals and no stiffness matrix assembly is required. The
natural neighbour interpolation shape functions have the Kronecker Delta function
property, which facilitates imposition of essential boundary conditions.

The structural response analysis, the sensitivity analysis as well as the bulk density
field are all approximated by the natural neighbour interpolation shape functions in
a meshless manner. In the optimization process, the mesh distortion of mesh-based
methods can be completely eliminated and without requiring remeshing.

Several topology optimization problems for plate are solved successfully by the
proposed method. Our numerical examples demonstrate that the proposed method
is valid and capable to deal with topology optimization problems. By virtue of
the continuous density fields employed in this work, the checkerboard pattern of
material distribution is prevented in our numerical examples even if without using
any extra filtering techniques.

Acknowledgement: This work is supported by National 973 Scientific and
Technological Innovation Project (2010CB3228005), Natural Science Foundation
of China (No. 10672055) and the Science Fund of State Key Laboratory of Ad-
vanced Design and Manufacturing for Vehicle Body (No. 60870003).



A Topology Optimization of Moderately Thick Plates 89

 

 

(a) Step 5 

 

(b) Step 10 

 
(c) Step 15 

 
(d) Step 25 

 
(e) Final topology optimized design 

 
Figure 6: Optimization process for a square Reissner-Mindlin cantilever plate
loaded with two downward oriented forces: (a) step 5; (b) step 10; (c) step15;
(d) step 25; (e) final design. The material volume fraction is 50%.
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Figure 7: Resulting topology for compliance minimization of square Reissner-
Mindlin cantilever plate loaded with one force downwards and one upwards. The
material volume fraction is 50%

 
Figure 8: Resulting topology for compliance minimization of square Reissner-
Mindlin plates with four edges simply supported and a force loaded at the centre.
The material volume fraction is 30%.
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Figure 9: Step-variations of compliance in the optimization process both for the
clamped plate and simply supported plate.
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