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Reduced Polynomials and Their Generation in
Adomian Decomposition Methods

Jun-Sheng Duan' and Ai-Ping Guo®

Abstract: Adomian polynomials are constituted of reduced polynomials
and derivatives of nonlinear operator. The reduced polynomials are inde-
pendent of the form of the nonlinear operator. A recursive algorithm of the
reduced polynomials is discovered and its symbolic implementation by the
software Mathematica is given. As a result, a new and convenient algorithm
for the Adomian polynomials is obtained.
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1 Introduction

The Adomian decomposition method and its modifications [Adomian (1986,
1989, 1994); Lai, Chen, and Hsu (2008); Soliman and Abdou (2008);
Wazwaz (1999, 2009); Wazwaz and El-Sayed (2001)] provide an effective
procedure for analytical solution of many kinds of, linear or nonlinear, func-
tional equations in science and engineering. The advantage of the decompo-
sition method is that it is straightforward, without restrictive assumptions,
and does not change the problem into a convenient one for the use of linear
theory.

Let us recall the basic principles of the Adomian decomposition methods.
Consider an equation in the form

Lu+Ru+Nu=g, (D
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where L is an easily invertible linear operator, R is the remaining linear part,
N represents an analytical nonlinear operator and g is a given function.

For an initial value problem, for example, we assume that L™'Lu = u — ¢.
Applying operator L~! on both sides of (1) gives

u=¢+L 'g—L 'Ru—L 'Nu. (2)

The tactic of the method is to look for a solution in the series form u =
Y. —_oun and to decompose the nonlinear term Nu into a series

Nu=Y A, 3)
n=0
where A,, depends on ug,uy,--- ,u,, called the Adomian polynomials that

are obtained for the analytical nonlinearity Nu = f(u) by the formula

f(iunln>] 7n:071727 (4)
n=0 A=0

The first few Adomian polynomials are

1 an
An= aan

AO = f(lxl()),

Ay = f'(uo)ui, i

Ay = f(uo)uz+ f"(uo) 5t 3
Az = f(uo)us+ f" (uo)uruz + 3 (uo) 5.

The decomposition method consists in identifying the u,,’s by means of the
formulae

w=¢+L""g, (5)
Uns1 = —L 'Ru, — L7 'A,,n=0,1,2,--- . (6)
Convergence of this method was studied in, e.g., [Abbaoui and Cherruault

(1994); Cherruault (1989); Gabet (1994); Rach (2008)].

The calculation of the Adomian polynomials is a key issue and different al-
gorithms were proposed [Abdelwahid (2003); Azreg-Ainou (2009); Babo-
lian and Javadi (2004); Biazar and Shafiof (2007); Rach (1984, 2008);
Wazwaz (2000); Zhu, Chang, and Wu (2005)].
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Symbolic implementation of the algorithms by using software Mathematica
or Maple was considered in, e.g, [Azreg-Ainou (2009); Chen and Lu (2004);
Choi and Shin (2003); Pourdarvish (2006)].

Most of the algorithms involve with parametrization, derivatives about the
parameter, expanding and regrouping, etc. Recursive methods for A,, should
be more efficient. The algorithms in [Babolian and Javadi (2004); Biazar
and Shafiof (2007)] are recursive, used self-defined operator and derivatives
about parameter, respectively.

In this article we give a new recursive algorithm for A, in terms of the re-
duced polynomials.

The Rach’s Rule [Adomian (1989, 1994)] for the Adomian polynomials
reads

Am= f £ (uo)C (e, m), 7
k=1

where C(k,m) are the sums of all probably products of k& components of
u whose subscripts sum to m, divided by the factorial of the number of
repeated subscripts. The explicit expression of C(k,m) is

Vi Vin
Wi U (8)

C(k,m) = .t
m!

|
Y0 vi=k, YLy jvi=m Vi!
2 Reduced polynomials and their generation

From the difference of the equations 21}1:1 Jjvj = m and 27:1 V; = k one
deduces that

Vin—k42 == Vi =0, )

so (8) is refined as [Azreg-Ainou (2009)]

Clk,m) = Zyy(ur,uz, - Up_s1)
Vi Vin—k+1
= Z i Mkt 10)
Vil V!

—k+1,, n—k+1 .o,
ZT 1 Vj—ka Zl}:l JVj=m

The function Z,, is used to replace C(k,m) for convenience. Z, ; (ui,
up, -+, Uy—r+1) is a function of m — k+ 1 variables, called reduced poly-
nomials. This terminology was first introduced in [Azreg-Ainou (2009)].
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Therein the reduced polynomials are described through solving the indeter-
minate equations under the ) in Eq. (10), the recursive algorithm does not
be given.

We give a recursive generation method for the reduced polynomials as fol-
lows:

Algorithm for reduced polynomials:
(1) Form>1,k=1,

Zm,l(ulyub"' 7um):uI11' (11)

(2) Form>2,if2 <k < [%},then

Zon (U, 12, Uy 1) Z Zin—kp—1(U2, "+ s U2k 1142, (12)

if [%] < k < m, then
up
Zp(ur,uz, - Jty—ki1) 2/0 Zy—1j—1(ur,up, - s py—jy1)duy. (13)

Proof of the algorithm: Eq. (11) is immediate from (10). Let 2 <k <
[%]. Then in Eq. (10) v; can take the values 0,1,--- ,k— 1. If v; = then
V2, oy Vin—kt1 satisfy
m—k+1 m—k+1

Y vi=k—1, Y jvi=m—1, 0<I<k-1.

Jj=2 j=2

Hence Eq. (10) can be rewritten as

k=1, m—k+1 MJV,J‘
Zin g (U1 w2, sty gy1) = o Y I1 e
=0 okl =2 Vi

it =k-t

The system of equations under )’ is equivalent to

m—2k+1+2 m—2k+I1+2

Y vi=k—1, Y (j-1)vj=m—k,

J=2 J=2
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and

Vi 2kti+3 =" = Vxy1 = 0.

According to the definition of the reduced polynomials one derives
Zn (U1, U2, ty—gy1) = l—,Zm fek—1 (U2, - U2k 1142).

If [%] < k < m, from the equations Zm ket Jjvj=m, Zm 1 v; = k it fol-
lows that v; > 1. The reduced polynomlals in Eq. (10) are rewritten as

vi—l m—k+1 Y

uj u
Zm,k(”l;”Z;"'a”m—k—i—l):/ Y —— [ Hau.
0 el vi—=D! 5 !
Z JVj=m
Lo
Zm + V]:k

On rewriting the system of equations under ) as

m—k+1 m—k+1
(vi—1)+ Z jVj:m—l,(Vl—l)—l— Z vi=k—1,
=2 =2

one obtains

g (U1, U2, tm—+1) :/o Zn—1 g—1(u1,u2, - Up—1)duy.

The proof is completed. U
Although Eq. (13) involves with integrals the calculation is very simple.

1
One only needs to replace L"} r in the expanding summation of Z,,_j 41 (u1,
V1+1
Uy, -+, U 1) b . If u; does not appear in some summand we
25 y Ym—k+ y (V 1)1 pp

regard = W is contained.

2
From Z; | = u; it follows that Z , = "71 by using (13). Further from Z, ; and

3
Z > one obtains Z3 > = ujup and Z3 3 = % Z4 7 1s given by using (12) from
71 and Z; . We give the reduced polynomials Z,, ; fromm =1tom =6
in Tab. 1.

Symbolic implementation using Mathematica for the reduced polynomials
is as follows.
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Table 1: Reduced polynomials Z,, s (u1,u2, -+ , Upm—k+1)

k=1 k=2 k=3 k=4 k=5 k=6
m=1 w
2
m=2 up %
u3
m=3 u3 up 3t
2 2 4
u u u
m=4 uy wuz+-5 Sy, o
lt% M% u? M?
m=>5 us ujug + U3 SJuz+u;5 Frl2 57
2
u
uius +uguq  Hustuipuz 22l u
m=6 ug 3 U3+ 55 FrU2 G

2
u wn
+3 +730

poly[n_]:=Module[{Z,U},Z=Table[0,{i,1,n},{j,1,i}];

Z[[1,1]]=Subscript [u,1] ;U=Table[Subscript[u,1]~1/1!,{1,0,n}];
For [m=2,m<=n,m++,Z[[m,1]]=Subscript [u,m] ;

For [k=2,k<=Floor[m/2] ,k++,

Z[[m,k]]1=Expand[Take[U,k] . (Table[Z[[m-k,k-1]],{1,0,k-1}]1/.
Table[Subscript[u,i] ->Subscript[u,i+1],{i,1,n}]1)]1];

For [k=Floor [m/2]+1,k<=m,k++,

Z[[m,k]]=Integrate[Z[[m-1,k-1]],Subscript[u,1]1]11];
Z];

Further the Adomian polynomials are given by the following Mathematica
program.

Ado([n_]:=Module[{Z,dir},Z=poly[n];
dir=Table[D[f [Subscript [u,0]],{Subscript[u,0],k}],{k,1,n}];
For [m=1,m<=n,m++,Subscript [A,m]=Take[dir,m] .Z[[m]]]];

We illustrate the calculation and use of Adomian polynomials by some ex-
amples.

Example 1. Consider the Riccati equation
W' (t)=u?, 0 <t <1, u(0)=1.

The exact solution of the equation is u* (1) = %_Z,O <t<l1.
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Integrating the equation yields
t
u=1+ / ulds.
0

Letu =Y~ _ou,. The Adomian polynomials for u? are

Ay = u(z), A1 = 2upuy, Ar = u%+2u0u2, Az = 2uuy + 2ugus,
A4:u%—|—2u1u3+2uou4,

By iteration

ug = 1, U, = féAn_ldt,n: 1,2,--- ,

we obtain

u=t, u2:t2, U3 =t3, u4:t4,---

The solution is derived

1
M(I):1+t+t2+t3+'”:l_t’0§t<1'

Example 2. Consider the Riccati equation

W' =12 +u?, u(0) = 0.

2
The exact solution of the equation is u*(t) = %, 0 <t < c [Edwards

and Penney (2004)], where J,,(z) is the Bessel function of the first kind,
¢ =2.00315--- satisfies u*(r) — +oo,ast — ¢~

By integrations we get

3 t
u—— —|—/ wldr.
3 0

Applying the iteration

3 t
Uy =3, Up = foAn—ldlan: 1,2,
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Table 2: Error |@ (1) — u*(2)| Table 3: Error |@s(t) — u*(¢)|
t error t error

0.0 0.0 0.5 1.28231x 10~
0.2 4.33681 x 1017 1.0 1.18104x 10710
0.4 1.04083 x 10~ 1.5 1.77473 x 1078
0.6 0.0 20 4.6394x 1077

0.8 2.77556 x 10~17 2.5 3.51076 x 107°

1.0 5.55112x 10717 3.0 5.13328x107°

1.2 4.44089 x 10716 3.5  0.000256459

1.4 1.82077 x 10714 40  0.00213891

1.6 4.42956 x 10~° 4.5 0.0108976

1.8 0.000340938 5.0 0.0407117

the n-term approximation ¢, = ?;()1 u; can be obtained. Using the soft-

ware Mathematica we calculate 22-term approximation ¢»,, and the error
|¢22(¢) — u*(¢)| in the interval [0, 1.8] is examined, see Tab. 2.

Example 3. Consider the pendulum equation

1 1
u” + 7 sinu =0, u(0) =0, u'(0) = 5

The solution can be expressed as u*(t) = 2arcsin(%sn(%, %)) where sn(z, m)

is the Jacobi elliptic function.

Integrating the equation yields

Pl
uzz—z/o/osinudtdt

The Adomian polynomials for sinu are

2
Ag = sinugy, A = ujcosug, Ar = upcosugy — %lsinuo,
3

Aj = —ﬂcosuo—uluzsinuo+u3cosu0, e
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Using the iteration

p 1 [t [t
uy = Evul’l: _Z/() /()Anldtdtan: 1,2,

the 5-term approximation ¢s(¢) is obtained with the help of the software
Mathematica

¢5:%+l(251n%—t)+1( —|—8$1n2+sm 2tcos%)—|—
% (—3 (2t2 83) sin & — 661 + 24sinz + sm — 78t cos § — 6t cost) +
87 (41 (22 = 501) cos & — 3 (7212 sin & + 8t2 sint +469¢ — 19365sin 5 —
232sint — 16sin & + 4t cos 3 — (sint — 84¢) cost) ) .
The graphs of the functions u*(¢) and ¢s(¢) on the interval [0,5] are plotted
in Fig. 1.
1o
o8}
os|
oaf

0.2

. . . . Lt
1 2 3 4 5

Figure 1: The exact solution u*(¢) (solid line) and the approximate solution
¢s(t) (dashed line).

The error of the approximate solution ¢5(z) on the interval [0,5] is checked,
see Tab. 3.

Example 4. Solve the inhomogeneous advection problem [Wazwaz (2009)]
1
ut_l_i( 2= e +12e*, u(x,0) =0.

Integrating with respect to ¢ results in

3
t 1 /o

t) =te"+ —e* — — | —uldt.
u(x,1) e+3e 208xu
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Using Wazwaz’s modification of the decomposition method [Wazwaz (1999)]

3

t 1 [d 1 [ d

e = e~ [ L agar :——/ A, dtn =23,
uo e, u 36 208x07un Zoaxnl7n 1)y )
yields u, = 0,n = 1,2,---. Thus u(x,t) = te*, which is verified to be the
solution.

In Examples 2 and 3 the programs generating the reduced polynomials and
Adomian polynomials are carried out by Mathematica 7.

Adomian polynomials occur also in the power series method (modified de-
composition method [Rach, Adomian, and Meyers (1992)]) for nonlinear
problems. For instance, consider the differential equation

u'(t) +h(r)f(u) = g(t), u(0) = a, (14)

where we suppose a(t) =Y. ohat", g(t) =Y o gnt".

Let u(t) =Y, ogcat". Then f(u) =Y, oAn(co,c1, -+ ,cn)t". Substituting
into the differential equation and comparing the like power terms, and ap-
plying the initial value yield [Adomian (1994); Rach, Adomian, and Meyers
(1992)]

1 n
co=a,Cpi] = (gn— hy—_1Ax(co,c1y - ,ck)> n=0,1,---. (15)
k_

n+1 )

3 Conclusion

The reduced polynomials constituting Adomian polynomials are studied
and their recursive algorithms are given. Based on the algorithms the sym-
bolic implementation by the software Mathematica for the reduced polyno-
mials and Adomian polynomials is obtained. We illustrate by some nonlin-
ear examples the Adomian decomposition method gives the exact analytical
solutions or approximate analytical solutions.
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