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Reconstruction of Boundary Data in Two-Dimensional
Isotropic Linear Elasticity from Cauchy Data Using an

Iterative MFS Algorithm

Liviu Marin1

Abstract: We investigate the implementation of the method of fundamental so-
lutions (MFS), in an iterative manner, for the algorithm of Kozlov, Maz′ya and
Fomin (1991) in the case of the Cauchy problem in two-dimensional isotropic lin-
ear elasticity. At every iteration, two mixed well-posed and direct problems are
solved using the Tikhonov regularization method, while the optimal value of the
regularization parameter is chosen according to the generalized cross-validation
(GCV) criterion. An efficient regularizing stopping criterion is also presented. The
iterative MFS algorithm is tested for Cauchy problems for isotropic linear elas-
tic materials to confirm the numerical convergence, stability and accuracy of the
method.

Keywords: Inverse Problem; Cauchy Problem; Isotropic Linear Elasticity; Itera-
tive Method of Fundamental Solutions (MFS); Regularization.

1 Introduction

In the case of inverse boundary value problems in solid mechanics, the lack of
complete boundary conditions is usually overcome by supplying additional infor-
mation in the form of either internal displacement, strain or stress measurements, or
over-specified boundary conditions on the aforementioned boundary, the latter be-
ing referred to as the Cauchy problem. It is well known that such inverse problems
are in general ill-posed, in the sense that the existence, uniqueness and stability
of their solutions are not always guaranteed, see Hadamard (1923). There are
numerous important contributions in the literature (see e.g. Bonnet and Constan-
tinescu (2005) for an extensive overview of inverse problems in solid mechanics)
and various approaches devoted to the theoretical and numerical solutions of in-
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verse boundary value problems in elasticity. Generally speaking, two major classes
of regularization methods are employed for the stable solution of inverse boundary
value problems in elasticity, namely non-iterative (direct) and iterative methods.

The first class is usually based on either the minimization of a Tikhonov functional
(or, equivalently, the resolution of the normal equation) (Tikhonov and Arsenin ,
1986) or the decomposition of the matrix corresponding to the discretised system
of equations, for example using the singular value decomposition (SVD) (Hansen
, 1998), which is successively used to solve a sequence of well-conditioned prob-
lems depending on the regularization parameter. Finally, the optimal value of the
regularization parameter and, consequently, the corresponding optimal solution, are
selected using an appropriate criterion, such as the discrepancy principle of Moro-
zov (Morozov , 1966), the generalized cross-validation (GCV) criterion (Wahba ,
1977) or Hansen’s L-curve criterion (Hansen , 1998).

Maniatty, Zabaras and Stelson (1989) employed the finite element method (FEM)
and a first-order spatial regularization scheme using the measurements of internal
strains and displacements to solve for the boundary traction reconstruction in terms
of shape and magnitude. Schnur and Zabaras (1990) presented a boundary condi-
tion reconstruction and the so-called keynode method, which consists of specifying
a polynomial to represent the missing boundary condition. Spatial regularization
and the boundary element method (BEM) were also used by Zabaras, Morellas
and Schnur (1989) for the resolution of the same problem. Later, Maniatty and
Zabaras (1994) applied Bayesian statistical theory for general inverse problems to
inverse elasticity problems and also compared it to the method proposed in Schnur
and Zabaras (1990). Martin, Haldermann and Dulikravich (1995) combined the
BEM and the SVD to determine the numerical solution of Cauchy problems in
two-dimensional elasticity. Both Turco (1999) and Marin and Lesnic (2002a)
used the BEM to discretise the problem and the Tikhonov regularization method
completed by the GCV criterion and the L-curve method, respectively, to make the
solution process entirely automatic. The BEM-based system of linear equations
was successfully solved via the CGM and a stopping criterion based on a Monte-
Carlo simulation of the GCV by Turco (2001). The SVD, in conjunction with the
BEM, was employed by Marin and Lesnic (2002b) to determine the numerical so-
lutions to Cauchy problems in linear elasticity. Bilotta and Turco (2009) solved the
Cauchy problem in two-dimensional isotropic linear elasticity by using a standard
FEM approach, the Tikhonov regularization method and the GCV criterion. Marin
and Lesnic (2004) and Marin (2005) proposed the method of fundamental solu-
tions (MFS), in conjunction with the Tikhonov regularization method, for solving
the Cauchy problem in two- and three-dimensional isotropic linear elasticity, re-
spectively.
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With respect to iterative methods, it should be mentioned that every iteration con-
sists of the resolution of two or three well-posed direct problems and the iterative
procedure has to be stopped according to a suitable regularizing stopping criterion.
In this case, the role of the regularization parameter is played by the iteration num-
ber at which the iterative process is stopped. Both the non-iterative (direct) and
the iterative methods work in a very similar manner as far as regularization is con-
cerned and the choice of one method over another is usually related to the specific
problem under investigation.

The Cauchy problem in elasticity was studied theoretically by Yeih, Koya and
Mura (1993), who analysed its existence, uniqueness and continuous dependence
on the data and proposed the fictitious boundary indirect method based on simple
and double layer potential theory. The numerical implementation of the aforemen-
tioned method was undertaken by Koya, Yeih and Mura (1993), who employed
the BEM and the Nyström method for discretising the integrals. The iterative al-
gorithm of Kozlov, Maz′ya and Fomin (1991), which reduces the Cauchy problem
to solving a sequence of well-posed boundary value problems, was implemented
using the BEM for linear elastic materials by Marin, Elliott, Ingham and Lesnic
(2001, 2002a) and Comino, Marin and Gallego (2007). Ellabib and Nachaoui
(2008) investigated numerically the relaxation of the algorithm of Kozlov, Maz′ya
and Fomin (1991). Further investigations were carried out by Marin and Johansson
(2010) who also proposed alternative ways of relaxation of both the prescribed dis-
placements and tractions on the over-specified boundary, proved the convergence of
these schemes and introduced appropriate optimal stopping rules. Huang and Shih
(1997) and Marin, Háo and Lesnic (2002) used the CGM, as a result of the vari-
ational approach, combined with the BEM in order to solve the two-dimensional
Cauchy problem in linear elasticity. Four regularization methods for solving sta-
bly the Cauchy problem in linear elasticity, namely the Tikhonov regularization,
the SVD, the CGM and the algorithm of Kozlov, Maz′ya and Fomin (1991), were
compared in Marin, Elliott, Ingham and Lesnic (2002b). It was found that the
truncated SVD outperforms the Tikhonov regularization method, whilst the latter
outperforms the CGM. The Cauchy problem in elasticity with L2−boundary data
was approached by combining the BEM with the Landweber-Fridman method and
the minimal error method by Marin and Lesnic (2005) and Marin (2009), re-
spectively. Andrieux and Baranger (2008) reformulated the Cauchy problem for
three-dimensional elastic media as an energy error minimization problem.

The MFS is a simple but powerful technique that has been used to obtain highly
accurate numerical approximations of solutions to linear partial differential equa-
tions when a fundamental solution of the governing equation is explicitly known.
Since its introduction as a numerical method by Mathon and Johnston (1977), it
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has been successfully applied to a large variety of physical problems, an account of
which may be found in the survey papers by Fairweather and Karageorghis (1998),
Fairweather, Karageorghis and Martin (2003) and Cho, Golberg, Muleshkov and
Li (2004). The MFS with fixed singularities has been applied to several direct
problems in elasticity, such as two-dimensional [Redekop (1982); Burgess and
Maharejin (1984, 1985); Mahajerin (1985)], axisymmetric [Redekop and Che-
ung (1987)] and three-dimensional problems [Redekop and Thompson (1983);
Poullikkas, Karageorghis and Georgiou (2002)]. The ease of implementation of the
MFS and its low computational cost make it an ideal candidate for inverse prob-
lems as well. For these reasons, the MFS, mostly in conjunction with the Tikhonov
regularization method or the SVD, have been used increasingly over the last decade
for the numerical solution of inverse problems.

In this paper, we investigate the numerical implementation of the algorithm of
Kozlov, Maz′ya and Fomin (1991) for the Cauchy problem in two-dimensional
isotropic linear elasticity using the MFS in an iterative manner. More precisely,
at every iteration, two mixed well-posed and direct problems are solved using the
MFS, in conjunction with the Tikhonov regularization method, while the optimal
value of the regularization parameter is selected according to the GCV criterion.
An efficient regularizing stopping criterion which terminates the iterative proce-
dure at the point where the accumulation of noise becomes dominant and the errors
in predicting the exact solutions increase, is also presented. Finally, the iterative
MFS algorithm is tested for Cauchy problems in isotropic linear elasticity in vari-
ous geometries.

2 Mathematical formulation

Consider an open bounded domain Ω⊂ Rd , where d is the dimension of the space
where the problem is posed, usually d ∈ {1,2,3}, occupied by an isotropic medium
and assume that Ω is bounded by a smooth or piecewise smooth curve ∂Ω, such
that ∂Ω = Γ1∪Γ2, where Γ1 6= /0, Γ2 6= /0 and Γ1∩Γ2 = /0. In the absence of body
forces, the equilibrium equations are given by, see Aliabadi (2002),

L u(x)≡−∇ ·σ(u(x)) = 0, x ∈Ω. (1)

Here L is the Lamé (Navier) differential operator, σ(u(x)) = [σi j (u(x))]1≤i, j,≤d is

the stress tensor associated with the displacement vector u(x)= (u1(x), . . . ,ud(x))T,
whilst on assuming small deformations, the corresponding strain tensor ε(u(x)) =
[εi j (u(x))]1≤i, j,≤d is given by the kinematic relations:

ε(u(x)) =
1
2

(
∇u(x)+∇u(x)T

)
, x ∈Ω = Ω∪∂Ω. (2)
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These tensors are related by the constitutive law, namely

σ(u(x)) = Cε(u(x)) , x ∈Ω, (3)

where C =
[
Ci jkl

]
1≤i, j,k,l≤d is the fourth-order elasticity tensor.

We now let n(x) = (n1(x), . . . ,nd(x))T be the outward unit normal vector at x∈ ∂Ω,
and t(x) = (t1(x), . . . , td(x))T be the traction vector at a point x ∈ ∂Ω, defined by

t(x)≡ σ(u(x)) ·n(x), x ∈ ∂Ω. (4)

If we assume that it is possible to measure both the displacement and traction vec-
tors on a part of the boundary ∂Ω, say Γ1, then this leads to the mathematical
formulation of the Cauchy problem consisting of the partial differential equations
(1) and the boundary conditions

u(x) = ũ(x), t(x) = t̃(x), x ∈ Γ1, (5)

where ũ and t̃ are prescribed vector valued functions on Γ1. It can be seen from the
boundary conditions (5) that the boundary Γ1 is over-specified by prescribing both
the displacement u

∣∣
Γ1

= ũ and the traction t
∣∣
Γ1

= t̃ vectors, while the boundary Γ2

is under-specified since both the displacement u
∣∣
Γ2

and the traction t
∣∣
Γ2

vectors are
unknown and have to be determined. We also assume that data are chosen such that
there exists a solution to this Cauchy problem. This solution is unique according to
the so-called unique continuation properties for elliptic equations.

It should be mentioned that, if we denote by G, ν and δi j the shear modulus, the
Poisson ratio and the Kronecker delta tensor, respectively, then the components of
the fourth-order elasticity tensor for an isotropic linear elastic material are given by

Ci jkl = G
(

2ν

1−ν
δi jδkl +δikδ jl +δilδ jk

)
. (6)

3 Description of the algorithm

Let H1(Ω)d be the Sobolev space and H1/2(∂Ω)d be the space of traces on ∂Ω

corresponding to H1(Ω)d , see e.g. Lions and Magenes (1972). We denote by
H1/2(Γi)d the space of functions from H1/2(∂Ω)d that are bounded on Γi and by(
H1/2(Γi)d

)∗ the dual space of H1/2(Γi)d , for i = 1,2.

Kozlov, Maz′ya and Fomin (1991) proposed the following iterative algorithm for
the simultaneous reconstruction of the unknown displacement u

∣∣
Γ2

and traction
t
∣∣
Γ2

vectors on the under-specified boundary:
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Step 1. (i) If k = 1 then specify an initial guess for the boundary displacement
vector on Γ2, namely u(2k−1) ∈ H1/2(Γ2)d .

(ii) If k ≥ 2 then solve the following mixed, well-posed, direct problem:


L u(2k−1)(x) = 0, x ∈Ω,

u(2k−1)(x) = ũ(x), x ∈ Γ1,

t(2k−1)(x) = t(2k−2)(x), x ∈ Γ2,

(7)

to determine u(2k−1)(x) for x ∈Ω and u(2k−1)(x) for x ∈ Γ2.

Step 2. Having constructed the approximation u(2k−1), k≥ 1, the following mixed,
well-posed, direct problem:


L u(2k)(x) = 0, x ∈Ω,

t(2k)(x) = t̃(x), x ∈ Γ1,

u(2k)(x) = u(2k−1)(x), x ∈ Γ2,

(8)

is solved in order to determine u(2k)(x) for x ∈Ω and t(2k)(x) for x ∈ Γ2.

Step 3. Repeat steps 1 and 2 until a prescribed stopping criterion is satisfied.

Remark 1. Kozlov, Maz′ya and Fomin (1991) showed that if ∂Ω is smooth,
ũ ∈ H1/2(Γ1)d and t̃ ∈

(
H1/2(Γ1)d

)∗, then the alternating iterative algorithm based
on steps 1−3 produces two sequences of approximate solutions

{
u(2k−1)

}
k≥1 and{

u(2k)
}

k≥1 which both converge in H1(Ω)d to the solution u of the Cauchy problem
(1) and (5) for any initial guess u(1) ∈ H1/2(Γ2)d , provided that a solution to this
Cauchy problem exists. Furthermore, Kozlov, Maz′ya and Fomin (1991) proved
that the alternating iterative algorithm has a regularizing character.

Remark 2. Also, the same conclusion holds if in step 1 one specifies an initial
guess for the unknown traction vector on Γ2, i.e. t(1) ∈

(
H1/2(Γ2)d

)∗, instead of an
initial guess for the displacement vector, u(1) ∈ H1/2(Γ2)d , and we modify steps 1
and 2 accordingly.
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4 Method of fundamental solutions

The fundamental solution matrix U = [Ui j]1≤i, j≤2 of the two-dimensional Lamé
system, i.e. d = 2, of isotropic linear elasticity (1) for the displacement vector is
given by, see Aliabadi (2002)

Ui j(x,ξ) =− 1
8πG(1−ν)

[
(3−4ν) ln‖x−ξ‖δi j− xi−ξi

‖x−ξ‖
x j−ξ j
‖x−ξ‖

]
,

x ∈Ω, ξ ∈ R2 \Ω, i, j = 1,2,

(9)

where ξ is a singularity or source point, and ν = ν in the plane strain state and
ν = ν/(1+ν) in the plane stress state.

The main idea of the MFS consists of the approximation of the displacement vector
in the solution domain and on its boundary by a linear combination of fundamental
solutions with respect to M singularities ξ(m),m = 1, . . . ,M, in the form

u(x)≈ uM(c,ξ;x) =
M

∑
m=1

U(x,ξ(m))c(m), x ∈Ω, (10)

where c∈R2M is a vector containing the components of the unknown two-dimensional
vectors c(m) =

(
c(m)

1 ,c(m)
2

)T, m = 1, . . . ,M, i.e. c =
(
c(1)

1 ,c(1)
2 , . . . ,c(M)

1 ,c(M)
2

)T ∈
R2M, and ξ ∈ R2M is a vector containing the coordinates of the singularities ξ(m).

From Eqs. (2), (4) and (9), it follows that the traction vector at a point x ∈ ∂Ω

defined by the outward unit normal vector n(x) can be approximated by

t(x)≈ tM(c,ξ;x) =
M

∑
m=1

T(x,ξ(m))c(m), x ∈ ∂Ω. (11)

Here T = [Ti j]1≤i, j≤2 is the fundamental solution matrix for the traction vector,
whose components are given by

T1 j(x,ξ) = 2G
1−2ν

[
(1−ν)

∂U1 j(x,ξ)
∂x1

+ν
∂U2 j(x,ξ)

∂x2

]
n1(x)

+ G
[

∂U1 j(x,ξ)
∂x2

+
∂U2 j(x,ξ)

∂x1

]
n2(x),

(12a)
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and

T2 j(x,ξ) = 2G
1−2ν

[
∂U1 j(x,ξ)

∂x2
+

∂U2 j(x,ξ)
∂x1

]
n1(x)

+ G
[

ν
∂U1 j(x,ξ)

∂x1
+(1−ν)

∂U2 j(x,ξ)
∂x2

]
n2(x),

(12b)

for x ∈ ∂Ω, ξ ∈ R2 \Ω and j = 1,2.

Next, we select N1 MFS collocation points
{

x(n)
}N1

n=1 on the boundary Γ1 and N2

MFS collocation points
{

x(n)
}N1+N2

n=N1+1 on the boundary Γ2, such that the total num-
ber of MFS collocation points used to discretise the boundary ∂Ω of the solution
domain Ω is given by N = N1 +N2.

According to the MFS approximations (10) and (11), the discretised versions of the
boundary value problems (7) and (8) may be recast as

Ac = b, (13)

where A is the corresponding MFS matrix, the right-hand side vector b contains
the boundary data associated with the boundary value problems (7) and (8) and the
vector c contains the corresponding unknown boundary data. Eq. (13) represents a
system of 2N linear algebraic equations with 2M unknowns, which can be uniquely
determined if the number N of MFS boundary collocation points and the number M
of singularities satisfy the inequality M ≤ N. However, Eq. (13) cannot be solved
by direct methods, such as the least-squares method, since such an approach would
produce a highly unstable solution in the case of noisy Cauchy data on Γ1.

In the case of the MFS, it is essential to determine the location of the singular-
ities and this is usually achieved by considering either the static or the dynamic
approach. In the first approach, the singularities are pre-assigned and kept fixed
throughout the solution process, whilst in the latter, the singularities and the un-
known coefficients are determined simultaneously during the solution process, see
Fairweather and Karageorghis (1998). Thus the dynamic approach transforms the
inverse problem into a more difficult nonlinear ill-posed problem which is also
computationally much more expensive. On accounting for the findings of Gorze-
lańczyk and Kołodziej (2008), we decided to employ the static approach in our
computations, with the shape of the pseudo-boundary on which the source points
are located similar to that of the boundary of the solution domain.

5 The Tikhonov regularization method

Since the MFS matrix A is severely ill-conditioned, a suitable regularization method
should be employed to obtain an accurate and stable solution of Eq. (13). Several
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regularization techniques used for the stable solution of systems of linear and non-
linear algebraic equations are available in the literature, such as the SVD (Hansen ,
1998), the Tikhonov regularization method (Tikhonov and Arsenin , 1986) and var-
ious iterative methods (Kunisch and Zou , 1998). Recently, Liu and Atluri (2008)
proposed a new and robust numerical technique for the stable solution of ill-posed
large systems of non-linear algebraic equations, namely the fictitious time integra-
tion method (FTIM). This method consists of introducing a fictitious time variable
that plays the role of a regularization parameter, while its filtering effect is better
than that of the Tikhonov and exponential filters. Liu and Atluri (2009) showed
that, when applied to solving an ill-posed system of linear equations, the general
FTIM may be viewed a special case of the Tiknonov regularization method.

Consider the system of linear algebraic equations given by Eq. (13), where N ≥M,
A ∈R2N×2M, c ∈R2M and b ∈R2N . The Tikhonov regularized solution to Eq. (13)
is sought as, see Tikhonov and Arsenin (1986),

cλ : Fλ (cλ ) = min
c ∈ R2M

Fλ (c) , (14)

where Fλ represents the Tikhonov regularization functional given by

Fλ (·) : R2M −→ [0,∞), Fλ (c) =
∥∥Ac−b

∥∥2 +λ
2∥∥c
∥∥2

, (15)

and λ > 0 is the regularization parameter to be prescribed. Formally, the Tikhonov
regularized solution, cλ , of the problem (14) is given as the solution of the normal
equation, i.e.

cλ = A† b, A† ≡
(

ATA+λ
2I2M

)−1
AT, (16)

where I2M ∈ R2M×2M is the identity matrix.

In this paper, we employ the GCV criterion (Wahba , 1977) to determine the optimal
regularization parameter, λopt, for the Tikhonov regularization method, namely

λopt : G
(
λopt
)

= min
λ > 0

G (λ ) . (17)

Here

G (·) : (0,∞)−→ [0,∞), G (λ ) =

∥∥Acλ −bε
∥∥2[

trace
(
I2N−AA†)]2 , (18)

where cλ is obtained from Eq. (16) with b = bε and
∥∥bε−b

∥∥≤ ε is an estimate of
the noisy Cauchy data, bε, on the over-specified boundary Γ1.
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6 Numerical results and discussion

6.1 Examples

We consider an isotropic linear elastic medium characterised by the material con-
stants G = 3.35×1010 N/m2 and ν = 0.34 corresponding to a copper alloy, and we
solve the Cauchy problem given by Eqs. (1) and (5) for three typical examples in
the following geometries:

Example 1. (Doubly connected domain with a smooth boundary) We consider the
following analytical solution for the displacements:

u(an)
i (x) =

1
2G(1+ν)

[
V(1−ν)xi−W(1+ν)

xi

x2
1 +x2

2

]
, x ∈Ω, i = 1,2, (19)

with

V =−σo r2
o−σi r2

i
r2

o− r2
i

, W = (σo−σi)r2
o r2

i
r2

o− r2
i

, σo = 2σi = 2.0×1010 N/m2, (20)

in the annulus Ω =
{

x ∈ R2 |ri < ρ(x) < ro
}

, where ρ(x) =
√

x2
1 +x2

2 is the radial
polar coordinate of x, ri = 2 and ro = 4, which corresponds to constant internal and
external pressures σi and σo, respectively, for which the stress tensor is given by

σ
(an)
i j (x) =

[
V+(−1)i+1 W x2

1−x2
2

(x2
1 +x2

2)
2

]
δi j +2W x2

1−x2
2

x1 x2
(1−δi j),

x ∈Ω, i, j = 1,2.

(21)

Here Γ1 = Γi =
{

x ∈ ∂Ω
∣∣ ρ(x) = ri

}
and Γ2 = Γo =

{
x ∈ ∂Ω

∣∣ ρ(x) = ro
}

.

Example 2. (Simply connected domain with a smooth boundary) We consider the
following analytical solution for the displacements:

u(an)
i (x) =

1−ν

2G(1+ν)
σ0 xi, x ∈Ω, i = 1,2, (22)

in the disk Ω =
{

x ∈ R2 |ρ(x) < r
}

, where σ0 = 1.5×1010 N/m2 and r = 1, which
corresponds to the uniform hydrostatic stress

σ
(an)
i j (x) = σ0 δi j, x ∈Ω, i, j = 1,2. (23)
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Here Γ1 =
{

x ∈ ∂Ω
∣∣ 0≤ θ(x) < π/8

}
∪
{

x ∈ ∂Ω
∣∣ 3π/8 < θ(x) < 2π

}
and Γ2 ={

x ∈ ∂Ω
∣∣ π/8≤ θ(x)≤ 3π/8

}
, where θ(x) is the angular polar coordinate of x.

Example 3. (Simply connected domain with a piecewise smooth boundary) We
consider the following analytical solution for the displacements:

u(an)
i (x) =

1
2G(1+ν)

σ0 (x1 δi1−ν x2 δi2) , x ∈Ω, i = 1,2, (24)

in the square Ω = (−1,1)× (−1,1), where σ0 = 1.5× 1010 N/m2, which corre-
sponds to a uniform traction stress given by

σ
(an)
i j (x) = σ0 δi1 δ j1, x ∈Ω, i, j = 1,2. (25)

Here Γ1 = [−1,1]×{±1}∪{−1}× (−1,1) and Γ2 = {1}× (−1,1).

The inverse problems investigated in this paper have been solved using a uniform
distribution of both the MFS boundary collocation points x(n), n = 1, . . . ,N, and the
singularities ξ(m), m = 1, . . . ,M. Furthermore, the numbers of MFS boundary col-
location points N1 and N2 corresponding to the boundaries Γ1 and Γ2, respectively,
and singularities M, as well as the distance dS between the physical boundary ∂Ω

and the pseudo-boundary ∂ΩS on which the singularities are located, were set to:

(i) N1 ∈ {40,60,80}, N2 = N1/2, M = N1 + N2/2, and dS = ri/2 = 1.0 and
dS = ro = 4.0 for Γi and Γo, respectively, for Example 1;

(ii) N1 = 60, N2 = 20, M = N/2 = 40 and dS = 2r = 2.0 for Example 2;

(iii) N1 = 57, N2 = 19, M = N/2 = 38 and dS = r = 1.0 for Example 3.

6.2 Initial guess

An arbitrary vector valued function u(1) ∈ H1/2(Γ2)d or t(1) ∈
(
H1/2(Γ2)d

)∗ may
be specified as an initial guess for the unknown displacement or traction vector
on Γ2. In order to improve the rate of convergence of the iterative algorithm, one
may choose a vector valued function which ensures the continuity of the boundary
displacement or traction vector at the common endpoints of the boundaries Γ1 and
Γ2, respectively, and which is also linear with respect to either the angular polar
coordinate θ for Example 2, or the Cartesian x2−coordinate for Example 3, see
Marin, Elliott, Ingham and Lesnic (2001) and Comino, Marin and Gallego (2007).
However, in the general situation when the boundaries Γ1 and Γ2 have no common
points, as is the case of Example 1, one cannot use the procedure described above.
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Therefore, in this paper we use the following initial guesses for the unknown dis-
placement and traction vectors on Γ2

u(1)(x) = 0, x ∈ Γ2, (26a)

and

t(1)(x) = 0, x ∈ Γ2, (26b)

respectively. In this way, the most general situations regarding the geometry of the
domain are accounted for and the robustness of the algorithm with respect to the
initial guess for the unknown displacement or traction vector on Γ2 is also tested.

6.3 Convergence of the algorithm

If Ni collocation points,
{

x(n)
}Ni

n=1, are considered on the boundary Γi ⊂ ∂Ω then
the root mean square error (RMS error) associated with the vector valued function
v(·) =

(
v1(·), . . . ,vd(·)

)T : Γi −→ Rd on Γi is defined by

RMSΓi(v) =

√√√√ 1
Ni

Ni

∑
n=1

[
1
d

d

∑
i=1

vi
(
x(n))2

]
. (27)

In order to investigate the convergence of the algorithm, at every iteration, k ≥ 1,
we evaluate the following accuracy errors corresponding to the displacement and
traction vectors on Γ2, which are defined as relative RMS errors, i.e.

eu(k) =
RMSΓ2

(
u(2k−1)−u(an))

RMSΓ2

(
u(an)) =

∥∥u(2k−1)∣∣
Γ2
−u(an)∣∣

Γ2

∥∥
2∥∥u(an)∣∣

Γ2

∥∥
2

, k ≥ 1, (28a)

and

et(k) =
RMSΓ2

(
t(2k)− t(an))

RMSΓ2

(
t(an)) =

∥∥t(2k)∣∣
Γ2
− t(an)∣∣

Γ2

∥∥
2∥∥t(an)∣∣

Γ2

∥∥
2

, k ≥ 1, (28b)

where u(2k−1) and t(2k) are the displacement and traction vectors on Γ2 retrieved
after k iterations by solving the boundary value problems (7) and (8), respectively.

Figs. 1(a) and (b) show the errors eu and et, respectively, as functions of the number
of iterations, k, obtained using exact Cauchy data on Γ1, N ∈ {60,90,120} and
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Figure 1: The accuracy errors (a) eu and (b) et, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm with initial guess
t(1)
∣∣
Γ2

= 0, exact Cauchy data on Γ1 and various numbers of MFS boundary col-
location points and singularities, namely N ∈ {60,90,120} and M ∈ {50,75,100},
respectively, for Example 1.

M ∈ {50,75,100}, for Example 1. It can be seen from these figures that both errors
eu and et decrease even after a large numbers of iterations, e.g. k = 1000, and as
expected eu < et for all MFS discretisations employed, i.e. boundary tractions are
more inaccurate than boundary displacements. Furthermore, as N increases, the
errors eu and et decrease showing that in the case of Example 1, N ≥ 90 ensures a
sufficient discretisation for the accuracy to be achieved.

The numerical solutions for the displacement u
∣∣
Γ2

and traction t
∣∣
Γ2

vectors, ob-
tained after k = 1000 iterations, using exact Cauchy data on Γ1 and various numbers
of MFS boundary collocation points and singularities, for Example 1, are presented
in Figs. 2(a)–(d). From these figures, it can be seen that the accuracy in predict-
ing both the boundary displacements and tractions on Γ2 is very good. Similar
results have also been obtained for the other examples investigated in this study
and, therefore, these are not presented herein.

6.4 Regularizing stopping criterion

Once the convergence with respect to increasing N of the numerical solution to the
exact solution has been established, we fix N = 90 and M = 75, and investigate the
stability of the numerical solution corresponding to the alternating iterative algo-
rithm described in Section 3 with the initial guess (26b), for Example 1. In what
follows, the prescribed displacement, u

∣∣
Γ1

= u(an)
∣∣
Γ1

, and/or the traction vectors,
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Figure 2: The analytical and numerical displacements (a) u1
∣∣
Γ2

and (b) u2
∣∣
Γ2

, and
tractions (c) t1

∣∣
Γ2

and (d) t2
∣∣
Γ2

, obtained using the alternating iterative algorithm

with initial guess t(1)
∣∣
Γ2

= 0, exact Cauchy data on Γ1, k = 1000 iterations and
various numbers of MFS boundary collocation points and singularities, namely
N ∈ {60,90,120} and M ∈ {50,75,100}, respectively, for Example 1.

t
∣∣
Γ1

= t(an)
∣∣
Γ1

, have been perturbed as

ũεi
∣∣
Γ1

= ui
∣∣
Γ1

+δui, δui = G05DDF(0,σui), σui = max
Γ1
|ui|× (pu/100) ,

t̃εi
∣∣
Γ1

= ti
∣∣
Γ1

+δ ti, δ ti = G05DDF(0,σti), σti = max
Γ1
|ti|× (pt/100) ,

(29)
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for i = 1,2, respectively. Here δui and δ ti are Gaussian random variables with
mean zero and standard deviations σui and σti , respectively, generated by the NAG
subroutine G05DDF (NAG Library Mark 21 , 2007), while pu% and pt% are the
percentages of additive noise included into u

∣∣
Γ1

and t
∣∣
Γ1

, respectively.

Figs. 3(a) and 3(b) present the accuracy errors eu and et, respectively, for various
levels of Gaussian random noise pt ∈ {1%,3%,5%}. From these figures it can be
seen that as pt decreases then eu and et decrease. However, the errors in predict-
ing the displacement and traction vectors on Γ2 decrease up to a certain iteration
number and after that they start increasing. If the iterative process is continued
beyond this point then the numerical solutions lose their smoothness and become
highly oscillatory and unbounded, i.e. unstable. Therefore, a regularizing stopping
criterion must be used in order to terminate the iterative process at the point where
the errors in the numerical solutions start increasing.

After each iteration, k, we evaluate the following convergence error which is asso-
ciated with the displacement vectors on the over-specified boundary, Γ1, namely

E(k) =
RMSΓ1

(
u(2k)− ũε

)
RMSΓ1

(
ũε
) =

∥∥u(2k)∣∣
Γ1
− ũε

∣∣
Γ1

∥∥
2∥∥ũε

∣∣
Γ1

∥∥
2

, k ≥ 1, (30)

where u(2k) is the displacement vector on Γ1 retrieved numerically after k iterations
by solving the boundary value problem (8). This error E should tend to zero as
the sequences

{
u(2k−1)

}
k≥1 and

{
u(2k)

}
k≥1 tend to the analytical solution, u(an),

in the space H1(Ω)d and hence they are expected to provide an appropriate stop-
ping criterion. Indeed, if we investigate the error E obtained at every iteration for
Example 1 for various levels of Gaussian random noise added into the input dis-
placement data u

∣∣
Γ1

, we obtain the curves graphically represented in Fig. 3(c). By
comparing Figs. 3(a)–(c), it can be noticed that the convergence error E, as well
as the accuracy errors eu and et, attain their corresponding minimum at around the
same number iterations. Therefore, a natural stopping criterion terminates the MFS
iterative algorithm at the optimal number of iterations, kopt, given by:

kopt : E(kopt) = min
k ≥ 1

E(k). (31)

6.5 Stability of the algorithm

Based on the stopping criterion (31), the analytical and numerical values for the
displacement, u, and traction vectors, t, on Γ2, obtained using the initial guess (26b)
and various levels of noise added into the Dirichlet data on Γ1 for Example 1, are
illustrated in Figs. 4(a)–(d). From these figures it can be seen that the numerical
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Figure 3: The accuracy errors (a) eu and (b) et, and (c) the convergence error E,
as functions of the number of iterations, k, obtained using the alternating iterative
algorithm with initial guess t(1)

∣∣
Γ2

= 0, and various amounts of noise added into
the traction vector t

∣∣
Γ1

, i.e. pt ∈ {1%,3%,5%}, for Example 1.

solution is a stable approximation for the exact solution, free of unbounded and
rapid oscillations, and it also converges to the exact solution as pu decreases.

For Example 1, very satisfactory results have also been retrieved for both the un-
known displacement, u

∣∣
Γ2

, and traction vectors, t
∣∣
Γ2

, when using the stopping
criterion (31), the initial guess (26b) and various levels of noise added into the
Neumann data on Γ1, namely pt ∈ {1%,3%,5%}, and these are presented in Figs.
5(a)–(d). By comparing Figs. 4 and 5 we can conclude that the numerical results
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Figure 4: The analytical and numerical displacements (a) u1
∣∣
Γ2

and (b) u2
∣∣
Γ2

, and
tractions (c) t1

∣∣
Γ2

and (d) t2
∣∣
Γ2

, obtained using the alternating iterative algorithm

with initial guess t(1)
∣∣
Γ2

= 0, and various amounts of noise added into the displace-
ment vector u

∣∣
Γ1

, i.e. pu ∈ {1%,3%,5%}, for Example 1.

obtained using the proposed MFS iterative algorithm, in conjunction with the stop-
ping criterion (31), are more sensitive to perturbations in the displacements on the
over-specified boundary than to noisy boundary tractions on Γ1.

Similar stable numerical results for both the unknown displacement, u
∣∣
Γ2

, and trac-
tion vectors, t

∣∣
Γ2

, which are at the same time free of unbounded and rapid oscilla-
tions, have been obtained for the Cauchy problem (1) and (5) corresponding to an
isotropic linear elastic solid occupying a simply connected domain with a smooth
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Figure 5: The analytical and numerical displacements (a) u1
∣∣
Γ2

and (b) u2
∣∣
Γ2

, and
tractions (c) t1

∣∣
Γ2

and (d) t2
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Γ2

, obtained using the alternating iterative algorithm

with initial guess t(1)
∣∣
Γ2

= 0, and various amounts of noise added into t
∣∣
Γ1

, i.e.
pt ∈ {1%,3%,5%}, for Example 1.

boundary, namely the disk considered in Example 2. Figs. 6(a)–(d) illustrate the
numerical results for displacements and tractions on the boundary Γ2, obtained us-
ing the stopping criterion (31), the initial guess (26a) and various amounts of noise
added into the traction data on Γ1, namely pt ∈ {1%,3%,5%}, in comparison with
their corresponding analytical values, in the case of Example 2.

The proposed MFS-alternating iterative algorithm, in conjunction with the stopping
criterion (31), also works reasonably for the Cauchy problem (1) and (5) associated
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Figure 6: The analytical and numerical displacements (a) u1
∣∣
Γ2

and (b) u2
∣∣
Γ2

, and
tractions (c) t1

∣∣
Γ2

and (d) t2
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Γ2

, obtained using the alternating iterative algorithm

with initial guess u(1)
∣∣
Γ2

= 0, and various amounts of noise added into t
∣∣
Γ1

, i.e.
pt ∈ {1%,3%,5%}, for Example 2.

with an isotropic linear elastic material occupying a simply connected domain with
a piecewise smooth boundary, such as the rectangle investigated in Example 3.
Figs. 7(a)–(d) show the analytical and numerical values for displacements and
tractions on the boundary Γ2, retrieved using the stopping criterion (31), the initial
guess (26a) and various amounts of noise added into the displacement vector on
Γ1, namely pu ∈ {1%,2%,3%}, for Example 3.

The numerical results obtained using the MFS-based iterative algorithm of
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Figure 7: The analytical and numerical displacements (a) u1
∣∣
Γ2

and (b) u2
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Γ2

, and
tractions (c) t1
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and (d) t2
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, obtained using the alternating iterative algorithm

with initial guess u(1)
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Γ2

= 0, and various amounts of noise added into t
∣∣
Γ1

, i.e.
pu ∈ {1%,2%,3%}, for Example 3.

Kozlov, Maz′ya and Fomin (1991) for Cauchy problems in isotropic linear elasticity
in simply connected domains with a smooth or piecewise smooth boundary, such as
those given by Examples 2 and 3, respectively, are remarkable. More specifically,
both the reconstructed displacement and traction vectors using the MFS iterative
algorithm described in Sections 3−5 are more accurate than their counterparts re-
trieved by employing a similar but BEM-based iterative algorithm, see e.g. Marin,
Elliott, Ingham and Lesnic (2001).
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7 Conclusions

In this paper, the iterative algorithm of Kozlov, Maz′ya and Fomin (1991) was im-
plemented, for the Cauchy problem in two-dimensional isotropic linear elasticity,
using a meshless method. The two mixed, well-posed and direct problems corre-
sponding to every iteration of the numerical procedure were solved using the MFS,
in conjunction with the Tikhonov regularization method, while the optimal value
of the regularization parameter was selected according to the GCV criterion. An
efficient regularizing stopping criterion which terminates the iterative procedure at
the point where the accumulation of noise becomes dominant and the errors in pre-
dicting the exact solutions increase, was also presented. The MFS-based iterative
algorithm was tested for Cauchy problems associated with isotropic linear elastic
materials occupying simply and doubly connected two-dimensional domains, with
smooth or piecewise smooth boundaries.

From the numerical results presented in this study, it can be concluded that the
proposed method is consistent, accurate, convergent with respect to increasing the
number of MFS boundary collocation points and stable with respect to decreasing
the amount of noise added into the Cauchy data. One possible disadvantage of the
MFS-based iterative algorithm is related to the optimal choice of the regulariza-
tion parameter associated with the Tikhonov regularization method which requires,
at each step of the alternating iterative algorithm of Kozlov, Maz′ya and Fomin
(1991), additional iterations with respect to the regularization parameter. However,
this inconvenience can be overcome by introducing relaxation procedures in the
MFS iterative algorithm and this is currently under investigation.
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