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Application of Energy Finite Element Method to
High-frequency Structural-acoustic Coupling of an

Aircraft Cabin with Truncated Conical Shape
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Abstract: Energy finite element method (EFEM) is a new method to solve high-
frequency structural-acoustic coupling problems, but its use has been limited to
solving simple structures such as rods, beams, plates and combined structures. In
this paper, the high-frequency structural-acoustic coupling characteristics of an air-
craft cabin are simulated by regarding the shell as a number of flat shell elements
connected with a certain angle in EFEM. Two tests validated the method employed
in this paper. First, the structural response analysis of a cylinder was calculated in
two ways: dividing the shell by axis-symmetric shells after deriving the governing
equation of axis-symmetric vibration; and using flat shell elements to approximate
the shell structure, as proposed by this paper. The second verification used an
EFEM analysis of a simple passenger vehicle and compared the analysis with re-
sults reported in literature. Comparison between results in both tests produced good
correlation. With the method validated, the structural-acoustic coupling character-
istics of an aircraft cabin with two end plates were investigated. A wind tunnel test
provided the fluctuating pressure load imposed on the exterior of a truncated coni-
cal aircraft cabin, and the structural-acoustic coupling characteristics of the aircraft
cabin with two end plates have been investigated with the verified method. The de-
tailed distribution of the flexural energies on the cabin surface and the distribution
of acoustic pressures in the inner space of the cabin under the coupling condition
were then obtained using the new method.
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1 Introduction

Structural-acoustic coupling problems have been experiencing growing interest from
scientists and engineers for some time. Much research has been done to precisely
predict the structural-acoustic response and design structures necessary for best
acoustical comfort and least vibrational destruction. For structural-acoustic cou-
pling response, a great number of numerical studies have been performed using
finite element method (FEM) and boundary element method (BEM) [Brancati A.,
Aliabadi M. H., Benedetti I. (2009)]. However, FEM and BEM are not always
efficient and accurate, especially for high frequency ranges, since structural re-
sponse is extremely sensitive to material and geometry details [Bitsie F. (1996)].
In order to capture the structural characteristic length in high frequency ranges, a
much smaller mesh size is necessary for FEM or BEM models, which results in the
procedure being computationally expensive or even prohibitive. Statistical energy
analysis (SEA) is an alternative efficient method which is suitable for solving high-
frequency problems and has been widely used as an analysis tool in practice. But
local modeling details that concern designers are usually ignored in SEA due to the
fact that SEA is based on the division of sub-structures.

The energy finite element method (EFEM) presented by Nefske et al [Nefske D.
J., Sung S. H. (1989)] is a new tool for structural-acoustic coupling analysis. In
this method, governing differential equations are derived in terms of energy den-
sity variables which are solved by applying the finite element approach. Signifi-
cant advances have been made with the aid of EFEM [Bernhard R. J., Huff J. E.
(1999); Zhang W.G. (2003); Moravaeji S.J. (2008); Yan X. Y. (2008)], including
solutions to many high-frequency structural-acoustic problems. Bitsie presented
coupling relationships between structural and acoustic domains based on the def-
inition of radiation efficiency [Bitsie F. (1996)]. Zhang et al [Zhang W.G., Wang
A.M., Vlahopoulos N. (2002)] derived the governing differential equations of en-
ergy density by considering the acoustic or the flexural response as a summation
of incoherent orthogonal waves. In their study, the orthogonal waves constitute a
basis for expressing the behavior of the plate or the acoustic space and a vessel that
is comprised by both acoustic spaces and structural components was analyzed. Wu
and Vlahopoulos summarized the development of EFEM, concluding that EFEM
comprises a general purpose simulation method for vibration and acoustic analysis
of complex systems [Wu K.C., Vlahopoulos N. (2004); Wu K.C., Vlahopoulos N.
(2006)]. Raymond et al. compared the computational cost of EFEM with respect
to SEA for acoustic modeling and indicated that EFEM was potentially applicable
for detailed analysis of the acoustic environment and the response of surface ships
to various excitation sources [Raymond F., Leo B.,Layton G., David B. (2006)].
Zhang and Raveendra discussed the unique benefits of EFEM through investiga-
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tion of several example problems [Zhang W. G., Raveendra S.T. (2008)]. EFEM
is one of the best choices for solving high-frequency structural-acoustic problems
owing to its flexibility and accuracy.

Among EFEM investigation objects, however, little work has been done on shell
structures possessing a complicated geometry. The primary basis of EFEM is de-
riving the governing differential equations in terms of energy density variables
and then employing a finite element approach to solving those equations numer-
ically. However, deriving energy density governing equations of a general shell,
such as the truncated conical cabin studied in this work, is not easy [Steffen Mar-
burg, Bodo Nolte, Robert Bernhard, Shuo Wang. (2008)]. But in many engineering
fields, such as aviation and spaceflight, structural systems combined by shell struc-
tures are unavoidable.

This paper develops an approximate approach that regards a shell structure as a
number of flat shell elements connected at specific angles to simulate, with EFEM,
the coupling behavior of a shell structural-acoustic system at high frequencies. The
accuracy of this method is first verified with a cylindrical shell, which possess a
simple geometry and for which the derivation of the energy density governing
equation is relatively easy. Then the high-frequency structural-acoustic coupling
characteristics of an aircraft cabin shell structure with a truncated conical shape
are calculated by this method. Furthermore, the fluctuating pressure loads which
are imposed on the exterior of an aircraft cabin with a truncated conical shape are
obtained through a wind tunnel test. Finally, the distribution of flexural energies
on the surface of the aircraft cabin and the distribution of acoustic pressures in its
inner space under the high-frequency coupling condition are obtained with the aid
of the verified method.

2 Introduction of the approximate method for shell structures in EFEM

A complex structural-acoustic system is comprised of structural and acoustic spaces,
where structure can take the form of bar, beam, plate or shell. There are two pro-
cesses in EFEM: deriving governing differential equations in terms of energy den-
sity variables, and employing a finite element approach for solving those equations
numerically. The governing differential equations of energy density for bar, beam
and plate have already been derived and reported by many researchers, but little
literature is available for the energy density governing equations for general shell
structures [Steffen Marburg, Bodo Nolte, Robert Bernhard, Shuo Wang. (2008)].
The authors of this paper derived the energy density equations of a cylinder in their
previous works, but they were limited to axis-symmetric loads. To solve the high-
frequency structural-acoustic problem of a shell structure with truncated conical
shape with EFEM in this work, the shell is divided into flat shell elements for which
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the governing differential equations of plates is available. Furthermore, the power
transfer coefficients between adjacent elements were calculated by the dynamic
stiffness matrix method, the governing differential equations of acoustic space, and
the relationship between the structure and acoustic spaces were developed. Finally,
structural-acoustic coupling problems of a complex system containing shells were
solved using EFEM.

For the structural-acoustic coupling problem of a complex system, the structural-
acoustic effect needs to be considered. The governing equations are written as
[Bitsie F. (1996); Bouthier O. M.; Bernhard R. J. (1995)]

−
C2

gB

(ηsB +ηrad)ω
∇

2 〈ēsB〉+(ηsB +ηrad)ω 〈ēsB〉= 〈π̄sB〉

−
C2

gL

ηsLω
∇

2 〈ēsL〉+ηsLω 〈ēsL〉= 〈π̄sL〉

−
C2

gT

ηsT ω
∇

2 〈ēsT 〉+ηsT ω 〈ēsT 〉= 〈π̄sT 〉

− c2
a

ηaω
∇

2 〈ēa〉+ηaω 〈ēa〉= 〈π̄a〉

(1)

where: C is the wave speed; subscripts B, L and T express the respective bending,
longitudinal and transverse shear waves; subscript g means group speed; subscripts
s and a are used to denote structure and acoustic domains; η is the damping loss
factor; ηrad is the radiation damping; ω is the radian frequency of the harmonic ex-
citation; 〈ē〉 is the time average over a period and space average over a wavelength
of energy density; and 〈π̄〉 is the time average over a period and space average over
a wavelength of input power density.

Using the Galerkin weighted residual scheme and the Lagrangian shape function
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as the trial function, Equation (1) can be rewritten as
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Here Γsi is the element boundary, Ωsi is the area domain of the element, e j is the
time and space average energy density of node j, φ j is the Lagrange interpolating
function, q is energy flow, q =−c2

gηω∇e ·~n, and~n is the unit normal vector of the
boundary.

At a structural-structural junction, the structural waves will be transmitted and re-
flected. Adjacent structural panels have different energy densities at the junction,
but the power flow for adjacent panels remains continuous at the junction [Bouthier
O. M.; Bernhard R. J. (1995)]. The relationship between the net power flow and
the energy density on the different sides of a junction can be expressed as
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(3)

where: q is power flow; I is the identity matrix; τ are power transfer coefficients
which can be calculated using a dynamic stiffness matrix method for elastic wave
transmission developed by Langley and Heron [Langley R.S., Heron K.H. (1990)];
c is structural wave speed; e is energy density; subscripts B, L, T are the bending,
longitudinal and transverse shear waves, respectively; subscript g denotes group
speed; and superscripts i and j are for the structural i and j at the junction. Through
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Equation (3), the energy density e of structural i and j at the junction is estimated
by power flow q. The coupling energy forms are expressed explicitly in terms of
the energy density variables. When dividing the shell by the flat shell element, it is
necessary to compute the power transfer coefficients between the adjacent flat shell
elements. The power transfer coefficients are computed by means of the dynamic
stiffness matrix method.

At the interface between structure and acoustic space, the bending wave will trans-
mit into the acoustic space and interact with the acoustic wave. For a lossless
structural-acoustic joint, the net power flow at the structural-acoustic joint and the
energy density on both sides of the structural-acoustic interface can be written as{

qsB

qa

}
= (Isa− τsa)(Isa + τsa)

−1
[

cgB 0
0 ca

]{
esB

ea

}
(4)

By substituting Equations (3) and (4) into Equation (2), Equation (2) is comprised
of only variable e. Therefore, we can solve the equation numerically to obtain e on
every node of the structural-acoustic system.

3 Verification of the approximate method in EFEM

Because the governing equation of a cylinder is easy to derive, a cylinder model
is used to validate the flat shell element model introduced in the previous section.
Comparison of dynamic response results of the cylindrical shell was performed by
two methods.

For the first case, we derive the governing equation for the cylindrical shell by
taking advantage of the simple shape and then divide the simple shell by its shell
element to calculate the dynamic response of the shell. The same cylindrical shell
is then computed using the approximate method introduced in the previous section.

For the axis-symmetric deformation of a cylindrical shell, the motion equation is
expressed as [He F.B., Shen Y.P. (2008)]

D(1+ iη)
d4w
dx4 +

Eh
a2 w+ρh

∂ 2w
∂ t2 = 0 (5)

Here D is the flexural rigidity, ρ is mass density, E is Young’s modulus, h is the
thickness of the shell, a is the radius of the cylindrical shell, and w is the normal
displacement.

Let w(x, t) = W (x)e jωt ; here W (x) is the amplitude of normal displacement and t
is time. Then

d4W
dx4 − k4W = 0 (6)
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The solution of Equation (6) is

w(x, t) =
(

A0e−ikx +B0eikx +C0e−kx +D0ekx
)

e jωt (7)

where A0,B0,C0,D0 are constant; k is the complex wave number and k = k1 + ik2.
Given η the energy density for bending is derived based on normal displacement.
For far field, the stationary solution of energy density is expressed as

〈ē〉=
(

Eh3

24(1−ν2)
k4

1 +
1
2

ρhω
2
)(
|A0|2 e−

η

2 k1x + |B0|2 e
η

2 k1x
)

(8)

Here ν is Poisson’s ratio. The stationary power is expressed as

p̄ = 2ω
Eh3

12(1−µ2)
k3
(
|A0|2 e−

η

2 k1x−|B0|2 e
η

2 k1x
)

(9)

According to (8) and (9), the relation of power to energy density can be expressed
as

∂ p̄
∂x

=−
4C2

f

ηω

∂ 2 〈ē〉
∂x2 (10)

Here c4
f = ω4D/

(
ρhω2−Eh/a2

)
. The steady state response, based on the princi-

ple of energy balance, becomes

πin = πdiss +∇Ī (11)

For the hysteresis damping model [Zhang G., Vlahopoulos N. (2006); Vlahopoulos
N.,Wang A.M. (2005); Wang A.M., Vlahopoulos N., Buehrle R. (2006)],

π̄diss = ηω ē (12)

The differential equation of energy density for a cylindrical shell can now be de-
rived by considering a power balance at the steady state over a differential control
volume of the shell. [Xie M. X., Chen H.L., Wu J.H. (2008)]

−
4C2

f

ηω

d2 〈ē〉
dx2 +ηω 〈ē〉= π̄in (13)

As illustrated in Equation (13), the energy density of the cylinder is axis-symmetric
so we apply the axis-symmetric shell element to the dividing shell. The energy
density of the shell can be obtained by solving Equation (13) numerically.
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Let us consider an example. The cylindrical shell is made of aluminum with thick-
ness h = 0.01m, length l = 1m and radius a = 0.5m. Its properties are shown in
Table 1. An input bending power density πin = 200J/m2 · s at a frequency f=1000
Hz is applied at one end of the cylinder. For the first case, Equation (13) is solved
and the computed results are shown in Fig.1. For the other case, the energy finite
element flat shell element model is comprised of 288 nodes, 270 rectangular flat
shell elements, and 288 structural-structural joints. Power transfer coefficients are
computed using the method developed by Langley and Heron [Langley R.S., Heron
K.H. (1990)].

Table 1: Cylindrical shell properties

Mass density Young’s modulus Poisson’s ratio hysteresis damping factors
ρ/(kgm−3) E/Pa ν η

2700 7.1e11 0.33 0.01
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Figure 1: Energy density on a cylinder along the axis

The results of the flat shell element model are compared with the numerical solution
of Equation (13) by an axis-symmetric shell element model. The energy density
computed by the two methods is presented in Fig. 1. The largest error is at 1.0 m
from load location along the cylinder’s axis, where the energy density results of
the flat shell element model is 2.75J/m2 and the energy density results of the axis-
symmetric shell element model is 2.62J/m2, displaying an error of 5.57%. It can
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be seen that good correlation is observed between the axis-symmetric shell element
model analysis and the flat shell element model method, indicating that the flat shell
element model is reasonable.

The approximate EFEA method can also be used for plate structures for dynamic
response and structural-acoustic coupling problems. To further validate the accu-
racy of the approximate method, the structural-acoustic coupling characteristics of
a simplified passenger vehicle model based on a model by Dong et al. [Dong J.,
Choi K.K., Wang A. M. (2005)] are computed and compared with results from
Dong et al. The simplified passenger vehicle sketch is shown in Fig. 2. The pas-
senger vehicle EFEA model is comprised of seven different structural panels made
of 0.01 m thick aluminum. The acoustic space enclosed by the structural panels is
filled with air. The model’s properties are shown in Table 2. As the prism meshes
used by Dong et al., shown as Fig. 4(a), may affect the precision of results, a com-
plete hexahedron mesh is used in the EFEA model shown in Fig. 3(a). A power
density at a frequency of 2000Hz is applied at the four corners, similar to the input
applied by Dong et al. The computed acoustic pressure is plotted in Fig. 3(b), while
Fig. 4(b) illustrates the acoustic pressure at the boundary of the acoustic medium re-
sults from Dong et al. The good correlation between the two results again indicates
that this paper’s model is reliable.

Table 2: Properties of simplified passenger vehicle

Mass
density
of panel
ρ/(kgm−3)

Young’s
modu-
lus of
panel
E/Pa

Poisson’s
ratio of
panel ν

hysteresis
damp-
ing
factors
of panel
η

Mass
den-
sity of
acoustic
medium
ρ0/(kgm−3)

wave
speed of
acoustic
medium
c0/(ms−1)

hysteresis
damp-
ing
fac-
tors of
acoustic
medium
η0

2700 7.1e11 0.33 0.01 1.02 343 0.001

4 EFEM analysis of a simplified aircraft cabin with the approximate method

In this section, EFEM analysis of an aircraft cabin using the approximate method
is performed to optimize the cabin’s noise and vibration performance and avoid
damage of instruments inside the control cabin. A simplified aircraft cabin model
comprised of a truncated conical shell structure with two end plates, as shown in
Fig. 5, is constructed and studied for this purpose. The length of the truncated
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 Figure 2: Simplified passenger vehicle model
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conical shell is L, the thickness h and the radius at the ends are R1 and R2, respec-
tively. The shell structure and two end plates have the same physical properties
and the acoustic space enclosed by the truncated conical shell is filled with air.
Fig. 6 shows the corresponding EFEM model for the aircraft cabin, comprised of
208 structural plate elements, 354 acoustics elements and 809 nodes, 48 structural-
structural joints and 208 structural-acoustic joints.

4.1 EFEM analysis of aircraft cabin with imposed point load

A single point force of 50000N with a high frequency of 2088.1Hz is applied to the
center of the small end plate of the truncated conical shell as excitation. The chosen
frequency is a resonance frequency that the large section of the structure vibrates in
the form of three pitch line radial motions. The structural-acoustic coupling prob-
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for the aircraft cabin

lem is solved using the approximate EFEM and acoustic energy is converted to the
root mean square acoustic pressure with the approximation p = c0

√
eρ0. The sound

pressures are expressed in terms of decibel level with the acoustic pressure refer-
ence of 2×10−5Pa. The computed results of interior acoustic pressure distribution
in an acoustic medium at the x=0 symmetric plane, at the y=0 symmetric plane and
the computed energy density distribution on the shell are shown in Fig. 7(a), Fig.
7(b) and Fig. 7(c), respectively.

The 50000 N input force is applied at point P, as shown Fig. 8, and the energy
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(a): Interior acoustic pressure at x=0 plane (b): Interior acoustic pressure at y=0 plane 
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(c): Energy density distribution on the shell 
 Figure 7: Computed results for the truncated conical shell when a 2088.1 Hz load

is imposed at the center of the small end plate

density distribution in the acoustic medium and in the shell are calculated. The
acoustic pressure in terms of decibel level is plotted in Fig.8. Fig.8 (a) and Fig.8 (b)
illustrate the acoustic pressure at the x=0 symmetric plane and y=0 symmetric plane
of the acoustic medium, respectively. Fig.8(c) shows the distribution of energy
density on the shell. In the figures showing acoustic pressure, red indicates high
acoustic pressure while blue stands for low acoustic pressure.

These results show that energy density gradually decreased with increasing distance
from imposed point load. However, the acoustic pressure of inside the cabin takes
on an axis-symmetric distribution.
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(a): Interior acoustic pressure at x=0 plane (b): Interior acoustic pressure at y=0 plane 
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 Figure 8: Computed results at the truncated conical shell when a 2088.1 Hz load is

imposed at point P

4.2 EFEM analysis of aircraft cabin with imposed fluctuating pressure load

4.2.1 Computing the fluctuating pressure load

The pressure exerted on a flying aircraft is the beat of the turbulent boundary layer
and radiation sound pressure due to shell vibration. The radiation pressure is much
smaller than the turbulent boundary layer pressure, so it is ignored here and the fluc-
tuating turbulent boundary layer pressure distribution as an ideal source of stress
is considered. The expression of the input power density due to the fluctuating
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turbulent boundary layer pressure is [Yao D.Y., Wang Q.Z. (1995)]

pin =
2π2C2

ans( f )
4π2 f 2ρs

σrad
〈

p2
a
〉
〈D(Ω)〉 (14)

where Ca is acoustic wave speed, ρs is structural density, ns ( f ) is the modal density
of the structure, σrad is radiation efficiency, pa is acoustic pressure and 〈D(Ω)〉 is
directivity index.

For the truncated conical shell, modal density ns ( f ) is

ns( f ) =


2.0
[

R2(1− R1
R2)

4/5

πh

]
f > Cl

2πR1

1.31
[

R2(1− R1
R2)

3/4
(ωR2)1/2

πh(Cl)
1/2

]
f < Cl

2πR2

(15)

Here Cl is the speed of the longitudinal wave.

In order to compute σrad in Equation (14), the truncated conical shell is simplified
by the equivalent cylindrical shell according to the equivalence law such that: 1)
the cylinder shell and the truncated conical shell are of the same material and the
same thickness; 2) the cylindrical shell diameter is equal to the mean diameter
of the large and small sections of the truncated conical shell; 3) the cylindrical
shell length is the generatrix length of the truncated conic shell. Thus the radiation
efficiency of the equivalent cylindrical shell is regarded as the radiation efficiency
of the truncated conical shell.

When frequencies are higher than the ring frequency fr of the equivalent cylindrical
shell, the general effect of fluid loading on a cylindrical shell is similar to the fluid
loading effect on a plate with the same area and same thickness as the cylindrical
shell [Yao D.Y., Wang Q.Z. (1995)]. The expression of the ring frequency of a
cylindrical shell is

fr =
Cl

2πrl
=

√
Eρ/(1−ν2)

2πrl
(16)

Here rl is the radius of the equivalent cylindrical shell.

Radiation efficiency of the structure is related to the coincidence frequency fc,
where the structural bending wave number coincides with the acoustic wave num-
ber [Zhang W.G., Wang A.M., Vlahopoulos N. (2003); Dong J., Choi K.K., Wang
A.M. (2005)]. The expression of the coincidence frequency of the equivalent cylin-
drical shell is

fc =
C2

a

1.8Clh
(17)
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The radiation efficiency of the equivalent cylindrical shell can be expressed by

σrad =



√
3

2a

(
f
fr

) 3
2 fr

fc
f < fr[

4λc
π2Ac

(2πrl + lc)arcsin
(

f
fc

) 1
2
]

β fr < f < fc(
1− fc

f

)− 1
2
= 2.38 f > fc

(18)

where Ac is the area of the equivalent cylindrical shell, λc is the wave length at
coincidence frequency, lc is the equivalent cylindrical shell length, β =

√
2 and

a =

2.5
√

f
fr

f < 0.5 fr

0.36 f
fr

0.5 fr < f < 0.8 fr

.

The value of
〈

p2
a
〉

in Equation (14) is obtained by wind tunnel test.

4.2.2 Aircraft cabin results with a fluid fluctuating pressure load

To investigate the energy flow in a wide band frequency range from 700–2000 Hz,
the energy finite element model is solved at each center frequency of the one-third
octave band (800 Hz, 1000 Hz, 1250 Hz, 1600 Hz, 2000 Hz). Energy density
distributions from the aircraft cabin and acoustic pressure pa due to the fluctuating
pressure load are computed using EFEM under applied power flow in terms of
Equation (14) and the acoustic energy computed is converted to the root mean
square acoustic pressure. Consider the energy density variation at point B of the
shell, shown in Fig 9. The energy density decreases with increasing frequency for
a Mach number of 0.8 Ma and attack angle of 0 degrees. These results suggest that
vibration is weak at high frequency.

When Mach number is 0.8 Ma and attack angle is 0 degrees, fluctuating pressure
and energy density distribution of the aircraft cabin is expressed by Fig. 10(a) and
Fig. 10(c), respectively. Fig. 10(b) shows the acoustic pressure distribution at the
x=0 symmetric plane in the acoustic medium. Fig. 11 shows the results when the
Mach number is 0.8 Ma and attack angle is 5 degrees. Fig. 12 is the results when
Mach number is 1.15 Ma and attack angle is 0 degrees. Finally, Fig. 13 shows the
results when Mach number is 1.15 Ma and when attack angle is 5 degrees.

The results in Figures 10–13 show that:

1. In each case, the variation of acoustic pressure in the acoustic medium en-
closed by the cabin is very small. Energy propagation and decay still makes
the acoustic pressure diminish from the boundary to the centre.
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(a)                                      (b) 

Figure 9: (a): Location of point B; (b): Variation of energy density at point B
against the frequency of load

2. When the attack angle is 0 degrees, the same cross-section of cabin has the
same approximate energy density because the distribution of fluid pressure
is axis-symmetric. When the attack angle is 5 degrees, the distribution of
fluid pressure and the distribution of energy density in the cabin is not axis-
symmetric and the closer to the load location the larger the energy density.
This suggests that the load distribution is the factor affecting the energy den-
sity distribution on the cabin.

3. The value of energy density on the cabin and the acoustic pressure are in-
creasing dramatically with Mach number increasing from 0.8 to 1.15 Ma. It
appears that the vibration amplitude of the cabin is intensively dependent on
Mach number.

4. No matter the value of attacking angle, the energy density at the smaller
diameter end is larger than the energy density at the end with large diameter
because of the fluid direction.

5 Summary

An approach for computing aircraft cabin structural-acoustic characteristics using
EFEM is developed and presented. The approach was first validated using a sim-
ple cylindrical shell structure for numerical testing and the results demonstrate an
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(a): Turbulent boundary layer pressure (b): Distribution of interior acoustic pressure at 
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 Figure 10: (color online) Simulation results. (0.8 Ma, Attack angle is 0 degrees)

excellent agreement with EFEM results when applied to axis-symmetric shell el-
ements. A second numerical example using a simple passenger vehicle was per-
formed with EFEM and the results agreed with those reported in literature. To
compute the aircraft cabin structural-acoustic characteristics, a wind tunnel test
first provided the fluid pressure of an aircraft cabin at four different flying condi-
tions. The structural-acoustic characteristics of the aircraft cabin under different
flying conditions were then computed using the method presented in this paper.
The cabin energy density and acoustic pressure inside the cabin at different attack
angles and different Mach numbers were computed and analyzed.

The aim of this research is to propose a method to solve the structural-acoustic cou-
pling problem of an aircraft cabin. The results of this study may lead to the devel-
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(a): Turbulent boundary layer pressure (b): Distribution of interior acoustic pressure at 
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(c): Distribution of energy density on the shell 
 Figure 11: (color online) Simulation results. (0.8 Ma, Attack angle is 5 degrees)

opment of effective methods for solving the structural-acoustics coupling problems
for other shell structures. An important direction for further work might be to study
complex structures such as rib and non-axisymmetric structures.
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