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An Efficient Trefftz-Based Method for Three-Dimensional
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Abstract: The Wave Based Method (WBM) is a numerical prediction technique
for Helmholtz problems. It is an indirect Trefftz method using wave functions,
which satisfy the Helmholtz equation, for the description of the dynamic variables.
In this way, it avoids both the large systems and the pollution errors that jeopar-
dize accurate element-based predictions in the mid-frequency range. The enhanced
computational efficiency of the WBM as compared to the element-based meth-
ods has been proven for the analysis of both three-dimensional bounded and two-
dimensional unbounded problems. This paper presents an extension of the WBM
to the application of three-dimensional acoustic scattering and radiation problems.
To this end, an appropriate function set is proposed which satisfies both the govern-
ing Helmholtz equation and the Sommerfeld radiation condition. Also, appropriate
source formulations are discussed for relevant sources in scattering problems. The
accuracy and efficiency of the resulting method are evaluated in some numerical
examples, including the 3D cat’s eye scattering problem.
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1 Introduction

The efficient solution of Helmholtz problems in unbounded domains, encompass-
ing acoustic or electromagnetic scattering and radiation, is the subject of substantial
research effort. Based on the target ratio of the wavelength (λ ) and the problem spe-
cific dimension (a), the currently available techniques can be roughly divided into
two philosophies:

• λ/a ≈ 1: These methods are based on a ‘low-frequency’ approach where
geometric detail is relatively important and small compared to the considered
wavelengths.
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• λ/a << 1: These methods are based on a ‘high-frequency’ approach: the
problem geometry is large as compared to the considered wavelengths.

For many practical problems, however, a mid-frequency ‘twilight zone’ exists,
where neither of these philosophies yields an appropriate solution method.

Looking at the low-frequency side, the most generally established methods are the
element-based methods. The Finite Element Method (FEM) [Zienkiewicz, Tay-
lor, and Zhu (2005)] discretizes the entire problem domain into a large but finite
number of small elements. Within these elements, the dynamic response variables
are described in terms of simple, polynomial shape functions. Because the FEM
is based on a discretization of the problem domain into small elements, it can-
not inherently handle unbounded problems. An artificial boundary is needed to
truncate the unbounded problem into a bounded problem. Special techniques are
then required to reduce spurious reflection of waves at the truncation boundary.
Three strategies are applied to this end [Thompson (2006)]: absorbing boundary
conditions [Patlashenko and Givoli (2000)], infinite elements [Bettess (1992)] and
absorbing layers [Lu and Zhu (2007)]. Amongst these techniques, especially the
derivation of localized higher-order ABC’s and the development of efficient Per-
fectly Matched Layers (PML) are subject of substantial recent research efforts
[Givoli (2008)]. A second important element-based technique, the Boundary El-
ement Method (BEM) [Von Estorff (2000)], is based on a boundary integral for-
mulation of the problem. As a result, only the boundary of the considered domain
has to be discretized. Within the applied boundary elements, the acoustic boundary
variables are expressed in terms of simple, polynomial shape functions, similar to
the FEM. Since the boundary integral formulation inherently satisfies the Sommer-
feld radiation condition, the BEM is particulary suited for the treatment of problems
in unbounded domains.

As the problem wavelengths shorten, the discretization size required in those meth-
ods becomes almost exclusively dependant on the considered frequency: an in-
creasingly fine mesh is needed to match the spatial resolution of the response and
keep pollution errors [Bouillard and Ihlenburg (1999)] controlled. The resulting
large numerical models restrict the practical applicability of these methods to low-
frequency problems due to the prohibitively large computational cost [Yue and
Guddati (2005); Marburg (2002)].

From the high-frequency side, several techniques are available to study scattering
and radiation problems [Chandler-Wilde and Graham (2009); Bleszynski, Bleszyn-
ski, and Jaroszewicz (2004)]. A common point in many of these techniques is the
separation of the phase from the solution field. In the High-Frequency Boundary
Element Method (HF-BEM) [Chandler-Wilde and Graham (2009)], the high fre-
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quency asymptotic solution of the problem is used to separate the phase from the
scattered field. The remaining problem is then smooth and has a relatively low
spatial variation, making it suitable for element-based discretization. Evaluation
of the system matrix in such a HF-BEM method still requires the evaluation of
highly oscillatory integrals, motivating the development of specialized integration
techniques for highly oscillatory kernels [Huybrechs and Vandewalle (2006)]. In
ray-tracing methods [Glassner (1989)], the phase information is omitted from the
solution and the problem is instead considered in terms of energy propagation.
While the resulting technique can be very efficient for high-frequency problems,
the lack of accurate phase information poses a limit to the applicability for many
practical problems.

In general, the accuracy of those high-frequency methods starts to suffer when
considering problems at lower frequencies, where the assumptions made regarding
to the phase of the solution break apart. The relatively smaller geometrical detail
leads to increased interference and resonances in the solution which can not be
accurately captured using the high-frequency assumptions.

Both from the low- and high-frequency side, substantial research effort is spent
in extending the application range into the mid-frequency domain. For the low-
frequency methods, one common path is the enhancement of the efficiency of the
method, thus allowing calculation of more refined and accurate models. A second
approach is the incorporation of a priori knowledge about the problem into the
system, yielding a multitude of enhanced FE/BE methods. For an overview on ad-
vances in these methods the reader is referred to Thompson (2006); Bettess (2004);
Harari (2006), and the works by Qian, Han, Ufimtsev, and Atluri (2004); Callsen,
Von Estorff, and Zaleski (2004); He, Lim, and Lim (2008); Takei, Yoshimura, and
Kanayama (2009). Noteworthy in this regard are the so-called Trefftz methods [Tr-
efftz (1926)], where the basis functions are chosen to satisfy the problem equations
a priori. Based on this principle, several enhanced techniques are devised, tack-
ling various problems including wave scattering. Examples can be found in Sladek,
Sladek, Kompis, Van Keer (2000); Cho, Golberg, Muleshkov and Li (2004); Young
and Ruan (2005); Li, Lu, Huang and Cheng (2007); Trevelyan and Coates (2010).
For the high-frequency methods, several techniques are proposed to enhance the
mid-frequency accuracy, e.g. by including a detailed refraction description and
better phase models. An overview is given by Chandler-Wilde and Graham (2009).

The Wave Based Method (WBM) [Desmet (1998)] is an alternative modeling tech-
nique following the first philosophy, but conceived to offer the enhanced efficiency
and low pollution error needed for accurate mid-frequency predictions. To this
end, the method is based on an indirect Trefftz approach, using wave functions,
which exactly satisfy the governing differential equation, to describe the dynamic
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response variables. In this way no approximation error is made inside the prob-
lem domain. However, the wave functions may violate the boundary and conti-
nuity conditions. Enforcing the residual boundary and continuity errors to zero in
a weighted residual scheme yields a small matrix equation which can be solved
for the unknown contribution factors of the wave functions used in the expan-
sion of the dynamic field variables. This approach has been applied successfully
for many steady-state structural dynamic problems [Vanmaele, Vandepitte, and
Desmet (2007, 2009)], both two-dimensional (2D) [Pluymers, Van Hal, Vande-
pitte, and Desmet (2007); Van Genechten, Vergote, Vandepitte, and Desmet (2010)]
and three-dimensional (3D) [Desmet, Van Hal, Sas, and Vandepitte (2002); Van
Genechten, Vandepitte, and Desmet (2010)] interior acoustic and vibro-acoustic
problems, and 2D exterior (vibro-)acoustic problems [Pluymers, Desmet, Vande-
pitte, and Sas (2005); Van Genechten, Bergen, Vandepitte, and Desmet (2010)]. It
has been shown that, due to the small model size and the enhanced convergence
characteristics, the WBM has a superior numerical performance as compared to
the element-based methods. As a result, problems at higher frequencies may be
tackled.

This paper proposes the necessary tools for applying the WB modeling framework
to 3D problems in unbounded domains. After a short problem description in the
first section, the WB modeling process is detailed. To use the WBM for unbounded
problems, the problem domain is first divided into a bounded and an unbounded
part by introducing a truncation sphere. A suitable function set is proposed to
efficiently model the outgoing waves in this unbounded region. Combined with
the available functions for 3D bounded problems, a model for the total problem is
obtained. The resulting technique is finally validated in two numerical case studies,
illustrating both the efficiency and accuracy of the proposed approach.

2 Problem description

Consider a general unbounded acoustic problem as shown in figure 1. The steady-
state acoustic pressure inside the problem domain is governed by the inhomoge-
neous Helmholtz equation:

∇
2 p(r)+ k2 p(r) = F (r) (1)

with ω the circular frequency and k = ω/c the acoustic wave number. The acoustic
fluid is characterised by its density ρ0 and speed of sound c. The fluid is excited
by a source F (r). The problem boundary Γ constitutes 2 parts: the finite part of
the boundary, Γb, and the ficticious boundary at infinity, Γ∞. Based on the three
types of commonly applied acoustic boundary conditions, the finite boundary can
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Figure 1: An unbounded acoustic problem

be further divided in three non-overlapping parts: Γb = Γv∪Γp∪ΓZ . If we define
the velocity operator Lv(•) as:

Lv(•) =
j

ρ0ω

∂•
∂n

, (2)

we can write the boundary condition residuals:

r ∈ Γv : Rv = Lv(p(r))− vn(r) = 0 , (3)

r ∈ Γp : Rp = p(r)− p(r) = 0 , (4)

r ∈ ΓZ : RZ = Lv(p(r))− p(r)
Zn(r)

= 0 , (5)

where the quantities vn, p and Zn are, respectively, the imposed normal velocity,
pressure and normal impedance. At the boundary at infinity, Γ∞, the Sommerfeld
radiation condition for outgoing waves is applied. This condition ensures that no
acoustic energy is reflected at infinity and is expressed as

lim
|r|→∞

(
r
(

∂ p(r)
∂ |r|

+ jkp(r)
))

= 0 . (6)

Solution of the Helmholtz equation (1) together with the associated boundary con-
ditions (3), (4), (5) and (6) yields a unique dynamic acoustic pressure field p(r).

3 The Wave Based Method for acoustic radiation problems

The WBM [Desmet (1998)] is a numerical modeling method based on an indirect
Trefftz approach for the solution of steady-state acoustic problems in both bounded
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and unbounded problem domains. Instead of using simple approximating polyno-
mials like in the FEM or BEM, the field variables are expressed as an expansion
of wave functions, which inherently satisfy the governing equation, in casu the
Helmholtz equation (1). The degrees of freedom are the weighting factors of the
wave functions in this expansion. It is an indirect approach, since these weighting
factors are not the dynamic field variables themselves. Enforcing the boundary and
continuity conditions using a weighted residual formulation yields a system of lin-
ear equations whose solution vector contains the wave function weighting factors.

The general modeling procedure consists of the following steps:

A. Partitioning into subdomains

B. Selection of the wave functions in the pressure expansion

C. Construction of the system of equations via a weighted residual formulation
of the boundary and continuity conditions

D. Solution of the system of equations and postprocessing of the dynamic vari-
ables

3.1 Partitioning into subdomains

When applied for bounded problems, a sufficient condition for the WB approxima-
tions to converge towards the exact solution, is convexity of the considered problem
domain [Desmet (1998)]. In a general acoustic problem, the acoustic problem do-
main may be non-convex so that a partitioning into a number of convex subdomains
is required.

G
G t8

Figure 2: A WB partitioning of the unbounded problem

If the WBM is applied for unbounded problems, an initial partitioning of the un-
bounded domain into a bounded and an unbounded region precedes the partitioning
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into convex subdomains [Pluymers, Van Hal, Vandepitte, and Desmet (2007)]. Fig-
ure 2 illustrates the principle. The entire acoustic problem domain is divided into
two non-overlapping regions by a spherical truncation surface Γt . The unbounded
region exterior to Γt is considered as one acoustic subdomain.

3.2 Acoustic pressure expansion

The steady-state acoustic pressure field p(α)(r) in a (bounded or unbounded) acous-
tic subdomain Ω(α) (α = 1 . . .NΩ, with NΩ the number of subdomains) is approxi-
mated by a solution expansion p̂(α)(r):

p(α)(r)' p̂(α)(r)=
n(α)

w

∑
w=1

pw
(α)

Φ
(α)
w (r)+ p̂(α)

f (r)

= Φ
(α)(r) pw

(α) + p̂(α)
f (r)

(7)

The n(α)
w wave function contributions p(α)

w are the weighting factors for each of the
selected wave functions Φ

(α)
w . Together they form the vector of degrees of freedom

pw
(α). The corresponding a priori defined wave functions are collected in the row

vector Φ
(α). The set of all nW =

NΩ

∑
α=1

n(α)
w acoustic wave function contributions pw

is collected in the column vector pw, while the row vector Φ contains all nW wave

functions. p̂(α)
f represents a particular solution resulting from acoustic source terms

F (α) in the right hand side of the inhomogeneous Helmholtz equation (1).

3.2.1 Wave functions for a bounded subdomain

Each acoustic wave function Φ
(α)
w (r) exactly satisfies the homogeneous Helmholtz

equation (1). For 3D bounded subdomains three types of wave functions are distin-
guished, the r-, s- and t-set:

n(α)
w

∑
w=1

pw
(α)

Φ
(α)
w (r) =

n(α)
wr

∑
wr=1

pwr
(α)

Φ
(α)
wr (r)+

n(α)
ws

∑
ws=1

pws
(α)

Φ
(α)
ws (r)+

n(α)
wt

∑
wt=1

pwt
(α)

Φ
(α)
wt (r),

(8)

with n(α)
w = n(α)

wr +n(α)
ws +n(α)

wt . These wave functions are defined as:

Φ
(α)
w (r (x,y,z)) =


Φ

(α)
wr (x,y,z) = cos(k(α)

xwr x) cos(k(α)
ywr y)e− jk(α)

zwr z

Φ
(α)
ws (x,y,z) = cos(k(α)

xws x)e− jk(α)
yws y cos(k(α)

zws z)

Φ
(α)
wt (x,y,z) = e− jk(α)

xwt x cos(k(α)
ywt y) cos(k(α)

zwt z)

(9)
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The only requirement for the wave functions (9) to be exact solutions of (1) is(
k(α)

xwr

)2
+
(

k(α)
ywr

)2
+
(

k(α)
zwr

)2

=
(

k(α)
xws

)2
+
(

k(α)
yws

)2
+
(

k(α)
zws

)2

=
(

k(α)
xwt

)2
+
(

k(α)
ywt

)2
+
(

k(α)
zwt

)2
= k2. (10)

As a result, an infinite number of wave functions (9) can be defined for expansion
(7). Desmet (1998) proposes to select the following wave number components:

(
k(α)

xwr ,k
(α)
ywr ,k

(α)
zwr

)
=

(
w(α)

1 π

L(α)
x

,
w(α)

2 π

L(α)
y

,±
√

(k)2−
(

k(α)
xwr

)2
−
(

k(α)
ywr

)2
)

(
k(α)

xws ,k
(α)
yws ,k

(α)
zws

)
=

(
w(α)

3 π

L(α)
x

,±
√

(k)2−
(

k(α)
xws

)2
−
(

k(α)
zws

)2
,

w(α)
4 π

L(α)
z

)
(

k(α)
xwt ,k

(α)
ywt ,k

(α)
zwt

)
=

(
±
√

(k)2−
(

k(α)
ywt

)2
−
(

k(α)
zwt

)2
,

w(α)
5 π

L(α)
y

,
w(α)

6 π

L(α)
z

) (11)

with w(α)
1 . . .w(α)

6 = 0,1,2, . . .. The dimensions L(α)
x , L(α)

y and L(α)
z represent the

dimensions of the (smallest) bounding box, circumscribing the considered subdo-
main.

3.2.2 Wave functions for an unbounded subdomain

The wave functions for the unbounded domain are chosen to implicitly obey the
Sommerfeld radiation condition (6). This removes the need to explicitly impose a
radiation condition, similar to the BEM. The following multipole series is proposed
as a wave function set for 3D unbounded problems based on [Ihlenburg (1998)]:

Φ
(ub)
uv (r(r,θ ,φ)) = h(2)

u (kr)Y v
u (θ ,φ). (12)

In this expression, h(2)
u (kr) is the spherical Hankel function of the second kind:

h(2)
u (kr) =

√
π

2kr
H(2)

u+1/2 (kr) , (13)

and Y v
u (θ ,φ) are the spherical harmonics:

Y v
u (θ ,φ) =

√
2u+1

4π

(u− v)!
(u+ v)!

Pv
w (cos(θ))e jvφ , (14)

with Pv
u (·) the associated Legendre function of order u and degree v. For each order

u = 1,2, . . .umax, the corresponding degrees v =−u . . .u are included in the function
set, yielding a total of n(α)

w = (umax +1)2 wave functions.



WBM for 3D Unbounded Helmholtz Problems 163

3.2.3 Source formulations

For modeling sources in both bounded and unbounded acoustic domains, a par-
ticular solution representing free field pressure of the desired source is required.
Similar as in Bergen, Pluymers, Van Genechten, Vandepitte, and Desmet (2010),
particular solution terms are derived for point source and plane wave excitation.
For an acoustic point source, the particular solution term yields:

p̂(α)
f (x,y,z) = Q(α) e− jkr(α)

q

r(α)
q

. (15)

with r(α)
q =

√
(x− x(α)

q )2 +(y− y(α)
q )2 +(z− z(α)

q )2 for a source at position

(x(α)
q ,y(α)

q ,z(α)
q ) and Q(α) the source strength.

Another commonly used excitation is a plane wave source (in an unbounded prob-
lem). For this source, the particular solution term yields:

p̂ f (x,y,z) = Qpwe jk
(

d(rpw)
)

, (16)

with Qpw the plane wave amplitude and d(rpw) the propagation vector.

3.3 Acoustic wave model

The proposed expansion functions (9) and (12) exactly satisfy the (homogeneous
part of the) Helmholtz equation (1) inside the domain and, in the case of the un-
bounded function set (12), also the Sommerfeld radiation condition (6). The bound-
ary conditions and subdomain continuity are enforced through a weighted residual
formulation. The residuals on the boundary conditions are given in (3), (4) and (5),
and the residuals enforcing continuity between two subdomains α and β can be
written as

r ∈ ΓI : R(α,β )
I =

( j
ρ0ω

∂ p(α)(r)
∂n(α) − p(α)

Zint

)
+
( j

ρ0ω

∂ p(β )(r)
∂n(β ) + p(β )

Zint

)
, (17)

with n(α) the local normal on the interface, outwards of domain α and Zint an
impedance coupling factor, chosen as ρ0c [Pluymers (2006)].

For each subdomain, the error functions are orthogonalized with respect to a weight-
ing function p̃(α) or its derivative. The weighted residual formulation, applying the
introduced error functions, is expressed as:∫

Γ
(α)
v

p̃(α)(r)R(α)
v (r)dΓ +

∫
Γ

(α)
Z

p̃(α)(r)R(α)
Z (r)dΓ

+
∫

Γ
(α)
p

−L
(α)

v (p̃(α)(r))R(α)
p (r)dΓ +

NΩ

∑
β=1,β 6=α

∫
Γ

(α,β )
I

p̃(α)(r)R(α,β )
I (r)dΓ = 0.
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(18)

Like in the Galerkin weighting procedure, used in the FEM, the weighting functions
p̃(α) are expanded in terms of the same set of acoustic wave functions used in the
pressure expansion (7):

p̃(α)(r) =
n(α)

w

∑
a=1

p̃a
(α)

Φ
(α)
a (r) = Φ

(α)(r) p̃w
(α). (19)

Substitution of the pressure expansion (7) and the weighting function expansion
(19) into the weighted residual formulation (18) yields a set of n(α)

w linear equations
in the nW unknown wave function contribution factors. One such matrix equation
is obtained for each subdomain. Combination of the NΩ systems yields the acoustic
WB model, consisting of nW algebraic equations in the nW unknown wave function
contribution factors:[

A
]{

pw
}

=
{

b
}

. (20)

3.4 Solution and postprocessing

The resulting model (20) can be solved for the unknown wave function contribu-
tions pw. The final step in the modeling process is backsubstitution of these con-
tribution factors into the pressure expansions (7), yielding an analytical description
of the approximated dynamic pressure field p̂(r).

3.5 WBM model properties

Where the FEM and BEM use simple polynomials in a fine discretization to de-
scribe the dynamic variables, the WBM uses wave functions in a coarse partition-
ing of the domain. As a consequence, the WBM does not suffer from pollution
errors and relatively few degrees of freedom are needed to accurately represent the
dynamic field. The downside of this is the requirement of convex subdomains (for
the bounded domains), deteriorating the efficiency when the problem geometry is
complex and extensive partitioning is needed.

Derived quantities like acoustic velocity and intensity can be easily calculated from
the analytic derivatives of the basis functions. Because of the wave-like nature of
those basis functions, there is no loss of accuracy for derived variables, since the
derivatives are also analytical functions with a similar spatial resolution.

The use of a Trefftz basis typically leads to ill-conditioned systems [Tsai, Lin,
Young and Atluri (2006); Liu, Yeih and Atluri (2009)]. Therefore, the highly oscil-
latory integrals (18) should be evaluated with care to ensure the matrix coefficients
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are are determined to high accuracy. The use of a Gauss-Legendre quadrature with
a fixed number of integration points per wavelength allows an efficient integration
meeting the desired accuracy. Furthermore, Desmet (1998) proves that the system
resulting from a WB model meets the so-called Picard conditions [Varah (1979)],
indicating an accurate solution can be obtained despite the unfavorable condition
number. The results of similar Picard tests performed for the 3D unbounded numer-
ical examples presented here support the observations made by Desmet (1998) and
hence indicate that the introduction of the proposed set of unbounded basis func-
tions in the WBM approach does not adversely affect the practical convergence of
the method.

As for the BE method and in contrast with the FE method, the WBM yields a
fully populated matrix, whose elements are complex and which cannot be decom-
posed into frequency independent submatrices. However, because the system is
substantially smaller, the computation times are generally much shorter as com-
pared to the element-based methods. These advantageous computation times, com-
bined with the good accuracy of the WBM, result in an excellent convergence
rate and a computational efficiency which is superior to the FEM and BEM for a
wide range of steady-state dynamic problems [Vanmaele, Vandepitte, and Desmet
(2009); Desmet, Van Hal, Sas, and Vandepitte (2002); Pluymers, Desmet, Vande-
pitte, and Sas (2005)], allowing the method to tackle problems at higher frequen-
cies.

4 Numerical examples

This section discusses two numerical examples. In a first example, the proposed
formulations are verified by comparison with an analytical solution. The prob-
lem considered is the scattering of a plane wave on an acoustically rigid or soft
sphere. A second example studies the scattering of the so-called cat’s eye problem
[Makarov and Ochmann (1997)].

4.1 3D Scattering problem: rigid sphere

The acoustic scattering of a plane wave, incident along the negative Z-axis on both
a rigid and sound-soft (p = 0) sphere with radius 1m is considered. The acoustic
fluid is air (c = 340 m/s, ρ0 = 1.225 kg/m3). A reference solution for this problem
is available in the form of a series expansion [Makarov and Ochmann (1997)]:

ps(r,θ) = p0 ∑
n

Dnh(2)
n (kr)Pn(cosθ), (21)

with (r,θ) the spherical coordinates of the observation point. Due to the symmetry
of the problem, the scattered field does not depend on the azimuthal angle φ . The
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Figure 3: geometry and source definition

coefficients Dn in (21) can be calculated as:

Dn = p0(2n+1) jn nJn−1(kR0)− (n+1)Jn+1(kR0)

nh(2)
n−1(kR0)− (n+1)h(2)

n+1(kR0)
for a rigid sphere (22)

Dn = p0(2n+1) jn nJn(kR0)

nh(2)
n (kR0)

for a soft sphere (23)

Jn is the spherical bessel function:

Jn(x) =
√

π

2x
Jn+1/2 (x) , (24)

with Jn the Bessel function of the first kind and order n.

This reference solution will allow for a thorough evaluation of the accuracy of the
proposed method, where a BE model of the same problem enables to assess the
computational efficiency.

The WB model consists of a single unbounded subdomain, and is refined by adding
wave functions in the pressure expansion (7). The details of the BE models con-
structed for the numerical comparison are listed in table 1.

Figure 4 shows the directivity of the pressure field at a radius of 2m, both for the
case with a rigid sphere as with a soft sphere. The analytic solution of the problem
is plotted along as a reference, indicating an excellent agreement with the result
obtained using the WBM.

To assess the accuracy and computational efficiency, the average relative error in
70 points around the sphere is calculated for BE and WB models of increasing
size. Sysnoise rev. 5.6 is used as solver for the BE models. All calculations are
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Table 1: BEM model information for the rigid sphere. ∗ maximum frequency with
6 or 10 elements per wavelength throughout the mesh [Bouillard and Ihlenburg
(1999)]

element ] mesh validity: ∗ calculation
size DOF 6 el./ λ [Hz] 10 el./λ [Hz] time [s]

100mm 2910 381 229 2.67
75mm 5016 500 300 7.31

BEM 50mm 11068 763 458 49
37mm 19430 931 559 226
25mm 43360 1410 846 2225
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Figure 4: Pressure amplitude [Pa] directivity at 2m for the rigid (left) and soft
(right) sphere

carried out on an intel Xeon 5355 based system with 32 GB memory running a linux
operating system. The resulting convergence graphs, relating prediction accuracy
to computational cost (CPU time), are shown in figure 5 (rigid sphere) and 6 (soft
sphere) for 3 frequencies between 250 and 640 Hz (ka' 10...25). It is clear that the
WBM result converges very fast to the analytic solution, indicating both the good
prediction accuracy and the efficiency potential of the proposed approach. BEM
convergence, in comparison, is much slower, which is particulary pronounced for
this geometrically simple problem.
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Figure 5: Convergence diagram, WBM
vs. BEM: rigid sphere
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Figure 6: Convergence diagram, WBM
vs. BEM: soft sphere

4.2 3D Scattering problem: cat’s eye

z

y

x

(-1,-1,-1)

Figure 7: geometry of the cat’s eye problem

A second case considers the acoustic scattering of the cat’s eye problem [Makarov
and Ochmann (1997)]. The cat’s eye consists of a rigid sphere of radius 1m with
the positive octant cut out, as shown in figure 7. The system is excited by an inci-
dent plane wave traveling along the centerline of the positive octant (propagation
direction (-1,-1,-1)). The acoustic fluid is air (c = 340 m/s, ρ0 = 1.225 kg/m3). The
WB model consists of one bounded (the cut-out) and one unbounded subdomain.
Several BEM models are constructed for a numerical comparison, the details are
listed in table 2.

Figures 8 and 9 show the acoustic pressure field (amplitude) and the relative error
of this pressure field, respectively. The relative error is well below 1% throughout
the domain and is only slightly larger at the pressure nodal lines, where the relative
error is most sensitive to small variations.
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Figure 8: Acoustic Pressure Amplitude
[Pa] in xz plane, 250Hz (ka' 10)
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prediction error [-] in xz plane, 250Hz
(ka' 10)

Also for this second validation example, a convergence calculation is carried out.
The resulting convergence graph is shown in figure 10. It can be observed that the
advantageous convergence rate observed in the previous case is well conserved in
this more complicated problem. While the level of the relative error is in this case
constrained by the obtainable accuracy of the BE reference model, it is clear that
convergence to this accuracy is substantially faster using a WB model as compared
to a BEM prediction. In this case, it can be concluded that the WBM is≈100 times
faster compared to the BEM for a similar accuracy.

The improved efficiency of the WBM enables accurate predictions in a wider fre-

Table 2: BEM model information for the cat’s eye. ∗ maximum frequency with 6 or
10 elements per wavelength throughout the mesh [Bouillard and Ihlenburg (1999)]

element ] mesh validity: ∗ calculation
size DOF 6 el./ λ [Hz] 10 el./λ [Hz] time [s]

100mm 3240 381 229 3.18
75mm 5692 500 300 10.27

BEM 50mm 12250 763 458 71.6
37mm 21438 931 559 299
25mm 46216 1410 846 2885

ref. 18mm 88126 1992 1196 /
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Figure 10: Convergence diagram, WBM vs. BEM (ka' 10...25)

quency range as compared to the BEM. This can be clearly observed when look-
ing at frequency response predictions. In figure 11, the pressure amplitude Fre-
quency Response Function (FRF) is shown, calculated both with the BE model
with 100mm mesh size (left), and with the WBM (right). The prediction obtained
using a fine BE model (25mm) is plotted as reference. As predicted by the rule-
of-thumb (using 6 elements/λ ), the BEM prediction accuracy starts to deteriorate
around 400 Hz. A WB model of similar calculation time, however, retains excellent
accuracy throughout a much larger frequency range.
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5 Conclusions

This paper presents the extension of the Wave Based Method (WBM) for the treat-
ment of 3D acoustic problems in unbounded domains. First, the problem is sepa-
rated into a bounded and an unbounded part. To efficiently model the unbounded
part, a function set is needed that not only satisfies the Helmholtz equation, but also
the Sommerfeld radiation condition. A suitable function set is proposed, together
with a formulation for two common sources in scattering problems: a point source
and an incident plane wave.

The prediction accuracy and computational efficiency of the proposed approach are
validated on two numerical examples: the scattering of a plane wave by a rigid or
soft sphere and the cat’s eye problem. In both cases, it is shown that the conver-
gence rate is strongly improved as compared to the BE method. This enhanced
computational efficiency allows to apply the WBM for problems in an extended
frequency range.
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